七年级上册一元一次方程 销售中的盈亏问题
- 格式:ppt
- 大小:729.50 KB
- 文档页数:19
实际问题与一元一次方程——销售中的盈亏问题教学设计一、背景分析《实际问题与一元一次方程》是本学期的难点,学生已学过一元一次方程,大部分同学会解一元一次方程.本课学习的是利用方程解决生活中的“销售盈亏”问题,这是在学生学习了一般性应用问题的基础上展开的第一个重点探究,在这一问题中要让学生理解和生活紧密相关的“进价/成本”、“售价”、“盈利”、“亏损”、“利润”、“利润率”、“折扣”等概念,并使学生体会方程模型在综合性问题中的作用,感受数学与生活的密切联系.二、教学目标1、理解“盈亏问题”中的相关概念并掌握它们之间的数量关系;2、会根据实际问题中数量关系列方程解决问题,培养学生分析问题,解决问题的能力;3、结合实际让学生感受方程与生活的密切联系,让学生逐步建立方程思维,培养学生数学建模能力.三、教学重点探究解决“盈亏问题”的过程,找到问题中的等量关系,列出方程.四、教学难点弄清商品销售中的“进价”、“售价”、“利润”、“利润率”及“折扣”等概念,并找到问题中的等量关系,准确熟练地列出方程.五、教学过程(一)自主学习1、(1)一件衣服进价为200元,售价为250元,利润是元;(2)一件衣服售价为120元,利润50元,进价是元;(3)一件衣服进价为150元,利润为30元,售价是元,利润率是;(4)一件衣服进价为x元,利润率为20%,利润是元,售价是元.2、一件商品进价是40元,卖出后盈利25%,那么该商品的利润是元;一件商品进价是x元,卖出后亏损25%,那么该商品的利润是元,售价是元.小结:售价=进价+ ;利润=售价-;进价=售价—利润率=)(利润×100%;利润=进价 ________.【设计意图】让学生熟悉销售中的相关概念和它们之间的等量关系,并简单运用,引导学生的兴趣,激发学生的探究欲望,为后续学习打下基础.(二)探究学习例 某商店在某一时间内以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?问题1:你估计盈亏情况是怎样的?问题2:销售的盈亏决定于什么?总售价 总成本(大于,小于或等于)问题3:两件衣服的成本各是多少元?分析:两件衣服一共卖了120(= 60×2)元,判断商家是盈利还是亏损,则还需知道商家买进这两件衣服一共花费是多少元.如果进价大于售价,则亏损,反之就盈利.如果进价等于售价,则不盈不亏.问题4:假如你是商店老板,仍以相同价格出售两件衣服,将售价调整为多少时,才能使得销售这两件衣服不亏本呢?(至少每件64元)【设计意图】 通过实际生活中的实例,用问题的形式来探究,使学生感受数学来源于生活,生活中需要数学,引导学生明白销售中盈亏的算法,并经历一个从定性考虑(估算)到定量考虑(计算)的过程,有助于提高他们对数学的应用意识.(三)变式迁移1、一件服装先将进价提高25% 出售,后进行促销活动,又按标价的8折出售,此时售价为60元.请问商家是盈是亏,还是不盈不亏?2、某种商品进价是1000元,标价为1500元,商店要求以利润率为5℅的售价打折出售,那么这种商品应打几折出售?【设计意图】让学生明白商品销售中的问题在不断变化中,但遵循着不变的规律,即售价=进价+利润,折扣问题等,从而找到这一类问题的解决办法,培养他们分析问题的综合能力.(四)归纳小结“盈亏问题”中的相关概念及数量关系:(1)售价=进价+利润;(2)利润率=进价利润×100% ; (3)打折后的售价=标价×10折扣数.(五)巩固练习A 组填空题:1、某品牌篮球原价200元,按九折出售,售价是 元.2、一本笔记本原来零售价是a 元, 现在每件降价10%,降价后每件零售价是 元.3、某商品的价格为100元,先降价10%,则价格为______;然后再提价10%,现在这种商品的价格为 元.解答题:4、某商店有两种书包,每个小书包比大书包的进价少10元,而它们的售后利润额相同.其中,每个小书包的盈利率为30%,每个大书包的盈利率为20%,试求两种书包的进价.B 组5、某种商品的价格为a 元,降价10℅后又降价10℅,销售量一下子就上升了,商场决定再提价20℅,提价后这种商品的价格为( )(A )a (B )a 08.1 (C )a 96.0 (D )a 972.06、某学生课桌原价为320元,现降价20%促销,为了使销售总金额不变,销售量要比按原价销售时增加百分之几?7、据了解,个体商店销售中,售价只要高出进价的20%便可盈利,但老板们常以高出进价50%~100%标价.假若你准备买一双标价为600元的运动鞋,应在什么范围内还价?【设计意图】设计A、B两组题目,依学生实际情况进行合理分层,并有适当的重复和前后的衔接,增大练习的弹性,既保证有后进生做的题,又有优等生做不完的题,学完后有回味的余地.。
一元一次方程的实际应用——销售盈亏问题教学目标1.知识与技能(1)理解商品销售中所涉及的进价、原价、售价、利润及利润率等概念;(2)能利用一元一次方程解决商品销售中的一些实际问题.2.过程与方法(1)经历运用方程解决销售中的盈亏问题,让学生体会方程的思想,提高学生分析问题,解决问题的能力;(2)利用探究题激发学生的学习潜能,促使他们在自主探索与合作交流的过程中真正理解和掌握基本数学知识、技能、数学思想方法,获得广泛的数学行动经验,学会学习数学。
3.情感态度与价值观(1)通过对打折销售问题的探索,让学生体验生活中数学的应用与价值,感受数学来源于生活,感受数学与人类生活的密切联系,激发学生学数学,用数学的兴趣;(2)培养学生勤于思考、乐于探究、敢于发表自己观点的学习习惯,从实际问题中体验数学的价值..重、难点与关键1.运用方程解决实际问题.2.难点都是如何把实际问题转化为数学问题,列方程解决实际问题.3.关键:理解销售中,相关词语的含义,建立等量关系.教具准备多媒体,投影仪.教学过程一、引入新课1.复习旧知识上一节课我们利用一元一次方程解决了实际中的几个简单问题,对一元一次方程解决实际问题的一般步骤进行了总结。
把实际问题通过列一元一次方程的方法转变成数学问题,通过解一元一次方程的解转换到实际问题的解决中来。
怎样来书写一般实际问题解决的过程呢?在这里老师与大家一起再共同回顾一下:列一元一次方程解应用题的书写步骤:(1).设元(即未知数,常用x或y表示) (有直接、间接和辅助设元三种)(设元要带单位);(2).列方程(注意方程两边单位要统一);(3).解方程(解方程一般不要过程);(4).检验并作答。
2.情景引入多媒体展示商场的打折销售图片,让学生从图片中了解打折销售的各种方式,对本节课的内容产生兴趣。
二、新授(一).课前热身1.销售中的各种问题练习(1)、商品原价200元,九折出售,卖价是元.(2)、商品进价是150元,售价是180元,则利润是元.利润率是__________(3)、某商品原来每件零售价是a元, 现在每件降价10%,降价后每件零售价是元.(4)、某种品牌的彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为元.(5)、某商品按定价的八折出售,售价是14.8元,则原定售价是 .先让学生自主学习,得出各个小题的答案。
人教版数学七年级上册3.4《实际问题与一元一次方程》(销售中的盈亏)教学设计一. 教材分析人教版数学七年级上册3.4《实际问题与一元一次方程》(销售中的盈亏)这一节主要讲述了一元一次方程在实际销售问题中的应用。
通过本节课的学习,学生能够理解盈亏问题的实质,掌握用一元一次方程解决实际问题的方法,培养学生的数学应用能力。
二. 学情分析七年级的学生已经掌握了二元一次方程的知识,对于一元一次方程也有了一定的了解。
但是,将一元一次方程应用于实际问题的解决中,对于他们来说还是一个新的领域。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高他们的解题能力。
三. 教学目标1.理解盈亏问题的实质,能够找出关键的等量关系。
2.掌握一元一次方程在解决实际问题中的应用方法。
3.培养学生的数学应用能力和解决实际问题的能力。
四. 教学重难点1.重点:理解盈亏问题的实质,掌握解决盈亏问题的方法。
2.难点:如何引导学生将实际问题转化为数学模型,并用一元一次方程进行求解。
五. 教学方法1.情境教学法:通过创设生动的实际问题情境,激发学生的学习兴趣,引导学生主动参与学习。
2.案例分析法:通过分析具体的盈亏问题案例,让学生理解并掌握解决盈亏问题的方法。
3.小组合作学习法:引导学生分组讨论,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的盈亏问题案例,用于课堂分析和讨论。
2.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际的销售盈亏问题,如商品打折、农产品销售等,引导学生关注盈亏问题,激发学生的学习兴趣。
2.呈现(10分钟)呈现一个具体的盈亏问题案例,如某商品原价为100元,打八折后售价为80元,问商家是否盈利?引导学生分析问题,找出关键的等量关系。
3.操练(10分钟)让学生分组讨论,尝试用一元一次方程来解决这个盈亏问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)选取几组不同的盈亏问题,让学生独立解决,巩固所学知识。
2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练1.请根据图中提供的信息,回答下列问题:(1)一个水瓶是多少元?(2)商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买个水瓶和个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)2.新华书店准备订购一批图书,现有甲、乙两个供应商,均标价每本40元.为了促销,甲说:“凡来我处购书一律九折.”乙说:“如果购书超出100本,则超出的部分打八折.”(1)若新华书店准备订购150本图书,请分别求出去甲、乙两处需支付的钱数;(2)若新华书店去甲乙两处订购了相同数量的图书并且付了相同数量的钱,请问新华书店去甲乙各定了多少本书?3.某种笔记本的售价为5元/本,如果买100本以上,超过100本部分的,每本售价打八折.(1)甲校和乙校分别买了80本和120本,乙校比甲校多花了多少钱?(2)如果丙校买这种笔记本花了740元,丙校买了多少本?(列方程求解)(3)如果丁校买这种笔记本花了a 元,丁校买了多少本?(a 是20的整数倍)4.某商铺准备在端午节前购进一批肉粽和蜜枣粽,已知肉粽的单价比蜜枣粽的单价多元,且花元购买的肉粽数刚好是花元购买的蜜枣粽数的倍.5202.53001002(2)若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得多少元的利润?(3)在实际销售过程中,超市按预售价将购进的甲型号节能灯全部售出,购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,求乙型号节能灯按预售价售出了多少只?8.晨光文具店分两次购进一款礼品盲盒共70盒,总共花费960元,已知第一批盲盒进价为每盒15元,第二批盲盒进价为每盒12元.(利润销售额成本)(1)求两次分别购进礼品盲盒多少盒?(2)文具店老板计划将每盒盲盒标价20元出售,销售完第一批盲盒后,再打八折销售完第二批盲盒,按此计划该老板总共可以获得多少元利润?(3)在实际销售中,该文具店老板在以(2)中的标价20元售出一些第一批盲盒后,决定搞一场促销活动,尽快把第一批剩余的盲盒和第二批盲盒售完.老板现将标价提高到40元/盒,再推出活动:购买两盒,第一盒七五折,第二盒半价,不单盒销售.售完所有盲盒后该老板共获利润710元,按(2)中标价售出的礼品盲盒有多少盒?9.为了拉动内需,哈尔滨市自10月份开始启动“家电下乡”活动,某家电公司销售给农户的A 型电视机和型电视机在9月份(活动未开启)共售出960台,10月份销售给农户的A 型和型电视机的销量分别比9月份增长,,这两种型号的电视机共售出1228台.(1)9月份销售给农户的A 型和型电视机分别是多少台?(2)如果A 型电视机每台价格是1000元,型电视机每台价格是2000元,根据“家电下乡”的有关政府将按每台电视机价格的给购买电视机的农户补贴,10月份销售给农户的这两种型号共1228台电视机,政府共补贴了多少钱?10.某公司生产某种产品,每件成本价是元,销售价为元,本季度销售了5万件,为进一步扩大市场,企业决定降低生产成本,经过市场调研,预计下一季度这种商品每件售价会降低.销售量将提高.(1)下一季度每件产品的销售价和销售量各是多少?(2)为了使两个季度的销售利润保持不变,公司必须降低成本,问每件商品的成本应降低=-B B 30%25%B B 3%4006205%10%多少元11.静静超市购进一批魔方,按进价提高40%后标价,为了促销,超市决定打八折出售,这时每个魔方的售价为28元.(1)求每个魔方的进价是多少元?(2)魔方卖出一半后,超市决定将剩下的魔方以3个为一组捆绑销售,分组后恰好没有剩余,每组售价80元,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?12.工业园区某服装厂加工A,B两种款式的学生服共100件,加工A种学生服的成本为每件80元,加工B种学生服的成本为每件100元,加工两种学生服的成本共用去9200元.(1)A、B两种学生服各加工多少件?(2)服装厂将这批学生服送到市场部销售,A种学生服的售价为200元,B种学生服的售价为220元,在销售过程中发现A种学生服的销量不好,A种学生服卖出一定数量后,服装厂决定余下的部分按原价的八折出售,两种学生服全部卖出后,共获利10520元,则A种学生服卖出多少件后打折销售?13.某超市购进一批运动服,按进价提高40%后标价.(1)为了让利于民,增加销量,超市决定打八折(即按标价的80%)出售,超市是亏损了还是盈利了?请说明理由.(2)若每套运动服的售价为140元,在(1)的条件下,超市卖出一半后,正好赶上双十一促销,商店决定将剩下的运动服每3套400元的价格出售,很快销售一空,这批运动服超市共获利7000元,求该超市所购进运动服的进价及数量?14.某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.(1)请分别计算生产并销售A型车床5台与11台时,工厂的总获利分别是多少?(2)若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销参考答案:1.(1)元(2)选择乙商场购买更合算.【分析】本题考查一元一次方程的应用,有理数混合运算的实际应用,有理数的大小比较,(1)设一个水瓶元,则一个水杯为元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场的费用,比较即可得到结果;正确理解题意,找出题目中的等量关系并列出方程是解题的关键.【详解】(1)解:设一个水瓶元,则一个水杯为元,根据题意得:,解得:,∴(元),∴一个水瓶元,一个水杯是元;(2)选择乙商场购买更合算.理由:在甲商场购买所需费用为:(元),在乙商场购买所需费用为:(元),∵,∴选择乙商场购买更合算.2.(1)去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元(2)当订购200本图书时,去两个供应商处的进货价钱一样【分析】(1)根据题意列式计算即可;(2)列出方程,进行计算即可.【详解】(1)解:由题意得:甲:(元);乙:(元),答:去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元;40x ()48x -x ()48x -()3448152x x +-=40x =4848408x -=-=408()40582080%288⨯+⨯⨯=()40520528280⨯+-⨯⨯=288280>150400.95400⨯⨯=()40100150100400.85600⨯+-⨯⨯=∴,解得:,答:第二次甲种商品按原价打8折销售.【点睛】此题考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.7.(1)购进甲型号的节能灯300只,购进乙型号的节能灯400只(2)3500元(3)300只【分析】(1)设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,根据购进700只节能灯的进货款恰好为20000元,列出方程,解方程即可;(2)根据题意列出算式进行计算即可;(3)设乙型号节能灯按预售价售出了y 只,根据购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,列出方程,解方程即可.【详解】(1)解:设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,由题意,得,解得,所以(只).答:该超市购进甲型号的节能灯300只,购进乙型号的节能灯400只.(2)解:(元).答:若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得3500元的利润.(3)解:设乙型号节能灯按预售价售出了y 只,由题意,得,解得.答:乙型号节能灯按预售价售出了300只.【点睛】本题主要考查了一元一次方程的应用,解题的关键是根据等量关系列出方程.8.(1)第一次购买了40盒,第二次购买了30盒(2)按此计划该老板总共可以获得320元的利润120050004600y﹣=8y =()700x -()700x -()203570020000x x +-=300x =700700300400x -=-=()()30025204004035150020003500⨯-+⨯-=+=()()()()300252040354004090%353100y y ⨯-+-+-⨯⨯-=300y =程求解;(2)根据总价乘以,列算式计算求解.【详解】(1)解:设9月份销售给农户的型台,则型电视机是台,则:,解得:,,答:9月份销售给农户的型560台,型电视机是400台;(2)(元,答:政府共补贴了51840元.【点睛】本题考查了一元一次方程的应用,根据题意列方程是解题的关键.10.(1)销售价为元,销售量为件(2)元【分析】(1)根据“商品每件售价会降低,销售量将提高”进行计算;(2)由题意可得等量关系:销售利润(销售利润=销售价-成本价)保持不变,列方程即可解得.【详解】(1)解:下一季度每件产品销售价为:(元).销售量为(件);(2)解:设该产品每件的成本价应降低x 元,则根据题意得:解这个方程得:.答:该产品每件的成本价应降低元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.11.(1)魔方的进价是25元(2)该超市共购进四阶魔方1200个【分析】(1)设魔方的进价是元,进价八折售价,列方程并解出即可;(2)设该超市共购进四阶魔方个,根据“商店决定将剩下的魔方以每3个80元的价格出0.03A x B (960)x -()0.30.259601228960x x +-=-560x =960400x ∴-=A B ()1000560 1.32000400 1.250.0351840´´+´´´=)58955000115%10%()62015%589⨯-=()50000110%55000⨯+=[589(400)]55000(620400)50000x --=-⨯⨯11x =11x (140%)⨯+⨯=y当生产并销售A 型车床11台时,总获利是:万元.答:工厂的总获利分别是158万元,161万元.(2)设生产并销售B 型车床x 台,则生产并销售A 型车床台,当时,,不成立;当时,每台B 型车床可以获利万元;由题意得:解得:,(舍去)答:生产并销售B 型车床10台.【点睛】本题考查有理数的四则混合计算的实际应用,一元一次方程的运用,审题,明确数量间的关系是解题的关键.15.(1)每件服装的标价为200元,进价为120元(2)最低能打5折【分析】(1)设标价是x 元,根据题意,列出一元一次方程进行求解即可;(2)设小张最低能打a 折,根据题意,列出一元一次方程进行求解即可.【详解】(1)解:设标价是x 元,由题意,得,解得.即每件服装的标价是200元.进价为(元).答:每件服装的标价为200元,进价为120元.(2)解:设小张最低能打a 折,由题意,得:.解得.答:小张最低能打5折.【点睛】本题考查一元一次方程的应用.读懂题意,找准等量关系,正确的列出方程,是解题的关键.16.(1)购进青菜120斤,则购进瓜类80斤1110(1411)17161⨯+-⨯=()14x -4x ≤()171014271400x x x --=-<4x >()()17421x x ⎡⎤⎣=⎦---()()21101470x x x ---=110x =221x =50%2080%40x x +=-200x =50%2050%20020120x +=⨯+=()()()3002001205003002000.112020000a ⨯-+-⨯⨯-=5a =乙种商品每件的进价是元;∴甲、乙两种商品每件的进价分别是330元、590元.【点睛】此题考查了一元一次方程的应用,正确理解题意列得方程是解题的关键.19.(1)元(2)当每条裤子降价元时达到盈利的预期目标【分析】(1)根据利润(售价进价)数量直接计算即可得到答案;(2)设降价x 元,根据利润列方程求解即可得到答案;【详解】(1)解:由题意可得,(元),∴前条裤子的利润是元;(2)解:设降价x 元,由题意可得,,解得:,答:当每条裤子降价元时达到盈利的预期目标;【点睛】本题考查列代数式与一元一次方程解决销售利润问题,解题的关键是找到等量关系式.20.(1)第一次购进甲种商品50件,则购进乙种商品115件(2)9折【分析】(1)设第一次购进甲种商品x 件,则购进乙种商品件,根据“第一次以4450元购进甲、乙两种商品”列方程求解即可;(2)设第二次甲商品是按原价打m 折销售,根据“第二次两种商品都销售完以后获得的总利润与第一次获得的总利润一样”列方程求解即可.【详解】(1)解:设第一次购进甲种商品x 件,则购进乙种商品件,由题意得:,解得,,因此第一次购进甲种商品50件,则购进乙种商品115件.(2)解:设第二次甲商品是按原价打m 折销售,8000.850590⨯-=160002045%=-⨯400(12080)16000⨯-=4001600016000100(12080)8050045%x +⨯--=⨯⨯20x =2045%(215)x +(215)x +2030(215)4450x x ++=50x =21525015115x +=⨯+=。
初一数学上册一元一次方程盈亏问题6道经典题及答案1、某公司销售甲、乙两种运动鞋,2014年这两种鞋共卖出18000双,2015年甲种运动鞋卖出的数量比2014年增加6%,乙种运动鞋卖出的数量比2014年减少5%,且这两种鞋的总销量增加了200双.求2014年甲,乙两种运动鞋各卖了多少双?解:设去年甲种运动鞋卖了x双,则乙种运动鞋卖了(12200﹣x)双,由题意,得(1+6%)x+(18000﹣x)(1﹣5%)=18000+200,解得:x=10000,∵18000﹣10000=8000,∴乙种球鞋卖了8000双.答:去年甲种运动鞋卖了10000双,则乙种运动鞋卖了8000双.2、某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒)问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?解:设购买x盒乒乓球时,两种优惠办法付款一样,根据题意有:30×5+(x﹣5)×5=(30×5+5x)×0.9,解得x=20,答:购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店买,为什么?当购买15盒时甲店需付款30×5+(15﹣5)×5=200元.乙店需付款(30×5+15×5)×0.9=202.5元.因为200<202.5,所以去甲店合算.当购买30盒时甲店需付款30×5+(30﹣5)×5=275元.乙店需付款(30×5+30×5)×0.9=270元.因为275>270,去乙店合算.3、为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;到甲商场购买所花的费用为:150×100+100(a﹣100/10)=100a+14000(元)到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.4、某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?解:设每件衬衫降价x元,(180﹣120)×400+(500﹣400)(180﹣x﹣120)=120×500×42%解得,x=48,答:每件衬衫降价48元.5、某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%. 求这个月的石油价格相对上个月的增长率.解:设这个月的石油价格相对上个月的增长率为x. 根据题意得:(1+x)(1-5%)=1+14%解得x=1/2=20%答:这个月的石油价格相对上个月的增长率为20%.6、北山超市销售茶壶茶杯,茶壶每只定价20元,茶杯每只4元.超市在“双十一”期间开展促销活动,向顾客提供两种优惠方案:①买一只茶壶赠一只茶杯;②茶壶和茶杯都按定价的90%付款。
教学设计
一、课题:3.4实际问题与一元一次方程
——销售中的盈亏
二、教学内容分析:
这一节是人教版新课标教材中数学七年级上册第三章第四节第一课时的内容,是学生学习了代数式、简易方程及一元一次方程的解法后一个理论联系实际的最好教材,也是前一部分知识的应用与巩固。
所有列方程解决实际问题的基本方法与列一元一次方程解决实际问题的基本方法类似,所以这一节又是整个列方程解决实际问题的基础。
列方程解决实际问题体现了现实世界中事物的相互联系,学生从这些联系中看问题的同时也为今后学习函数奠定了基础。
在能力方面,无论是逻辑思维能力、计算能力,还是分析问题、解决问题的能力,都可以在本节教学中得以培养和提高。
三、学清分析:
本节课教学的对象是七年级学生,他们思想活跃、兴趣广泛、善于思考,在进行教学设计时,力争从教学内容、教学形式、教学评价中体现出兴趣性和贴近生活的原则。
通过教学活动,让学生自主探究、分组讨论,引导他们由浅入深、步步推进,从广度、高度和深度上开拓学生的思维,也有助于学生形成完整的知识体系和良好的思维习惯。
四、教学目标:
1.知识与技能:
理解销售问题中常见的数量关系,并能灵活的建立一元一次方程解决生活中的销售问题。
2.过程与方法:
通过列方程解决实际问题,让学生逐步建立方程思想,能够将实际问题抽象为数学问题。
3.情感、态度与价值观:
经历自主探究与合作交流,让学生获取成功体验,增进应用数学的自信心。
五、教学重点、难点:
1.教学重点:掌握销售问题中的等量关系,培养学生运用方程解决实际问题能力。
2.教学难点:根据实际问题,找出等量关系,正确列出一元一次方程。
六、教学过程:。