当前位置:文档之家› 流体包裹体成因判别

流体包裹体成因判别

流体包裹体成因判别
流体包裹体成因判别

流体包裹体成因判别

芮宗瑶译;张洪涛校

(据Roedder,1976,1979b年的资料修订,不包括出溶包裹体)

一、原生成因判据

1.根据在显示或不显示生长方向或生长环带的某一单晶中的产状。

①在另一无包裹体的单晶中单独产出(或一个小型三维组合,Roedder,1965b,图10;1972,图版6);

②相对围晶而言,其个体大。例如,其直径≧0.1围晶,特别是出现几个这样的包裹体时;

③远离其它包裹体孤立地产出,其距离约为该包裹体直径的5倍;

④呈遍布晶体的无规律的三维分布产出(Roedder和Coombs,1967,图版4,图A和B);

⑤包裹体周围较规则的位错发生扰动,特别是如果这些位错由包裹体向外呈放射状时(Roedder和Weiblen,1970,图9);

⑥如同主晶中产出的固体包裹体或产出同生相一样,产出的子晶(外来的固体包裹体)。

2.根据显示生长方向的子晶的产状。

①产在远离(在生长方向上)干扰主晶生长的外来固相(同生相或其他相)处,有时直接产在这种外来固相的前方,而该处主晶尚未完全封闭(由于发育不完全,包裹体可能围着于固体上或离开一定距离,Roedder,1972,图版1);

②产于某早期生长阶段的愈合裂隙之外,原因是该处新晶体生长不完善(Roedder,1965b,图18和19;Roedder等,1966,图15);

③在某一复合晶体的近于平行的两个单元之间产出(Roedder,1972,卷首插图的右上角);

④在几个生长螺旋体的交切面上或在一个在外表面可见到生长螺旋体的中心部位产出;

⑤尤其呈相对较大的扁平状包裹体产出,它们平行于某一外部晶面,并靠近于其中心(也即由于在晶面中心晶体生长发育不良),例如许多“漏斗状盐晶”;

⑥在板状晶体的核心产出(例如绿柱石)。这可能只不过是上述条款的一个极端情况;

⑦尤其沿两晶面的交切边缘成排产出。

3.根据显示生长环带的单晶中的产状(如根据颜色、透明度、成分、X衍射的暗度、捕获的固体包裹体、浸蚀环带和出溶相等标志确定)。

①产于不规则的三维空间,在临近带中具有不同的富集程度(由于突变的羽毛状的或树枝状的生长);

②呈近平行的组合产出(大致的生长方向),如在前项中一样,特别是在相邻的生长带中具有不同的富集程度(Roedder,1965b,图11);

③呈平面排列沿大致一个生长带方向多重产出(Roedder和Coombs,1967,图版4E;注意:如果这也是解理方向,那么就难于确定);

④产于中断正常晶体生长的某一期淋滤表面。

4.产于一种非均匀流体(也即两相流体)或变化的流体。

①平面排列(如Ⅲ-C)或在生长带中呈其他产状,在这些生长带中各相邻带的包裹体的成分不同【例如一个环带中为气体包裹体,另一环带中则为液体包裹体,或为水和油包裹体(Roedder等,1968,图9)】;

②平面排列(如如Ⅲ-C),其中捕获的一些生长介质为主晶次生加大以及被包围的不相混合的分散相粘聚为液滴处的产物(例如油滴和气泡);

③另一些似乎像是原生包裹体中的流体相不太可能是成矿流体,例如方解石中的贡、萤石中的油(Roedder,1972,图版9,图2),或糖中的空气(Roedder,1972,图版9,图4)。

5.根据主晶而不是单晶中的产状。

①产于两个非平行的晶体之间的协和生长面(这些包裹体通常已发生渗漏,并且也可能属于次生包裹体);

②产于多晶状主晶内,例如作为细粒白云岩中的孔隙、玉髓质线状晶洞内的孔洞(含水的)、玄武岩中的气泡或作为金属矿床或伟晶岩中的晶体线状排列的晶洞(后者是其中的最大的“包裹体”,并几乎总发生渗漏);

③产于非晶质的主相中(例如琥珀中的气泡;浮石中的气孔);

④沿双晶面产出(Kelly和Turneaure,1970)。

6.根据包裹体形状或大小。

①在给定的样品中较大的或等轴状的;

②负晶形-仅在某种特定的样品中有效;

7.根据伸入晶洞的自形晶中的产状(此乃推测,见Roedder,1967a,523页)。

二、次生成因判据

1.大体沿达到晶体表面的愈合裂隙(解理或另一些裂面),呈平面排列组合产出(注意,随着再结晶作用,包裹体的迁移能够引起包裹体分散,Roedder,1971,图11);

2.非常薄而平,形成于颈缩过程。

3.具有代表次生条件下充填物的原生包裹体。

①产于次生愈合裂隙面,因此可以推测是被后来流体再充填所致(Kalyuzhnyi,1971);

②由于随后处于比捕获时较高的温度

或较低的外压力下,由此产生爆裂和再愈合的包裹体;新的包裹体充填物可以具有原始流体成分,但密度较低(Roedder,1965a,图18)。

三、假次生成因判据

1.具有像次生包裹体一样的产状,但可明显见到破裂的外端终止于晶体内的一个生长面(Roedder,1965b,图18和19;Roedder等,1968,图12、14和15)。常常逐渐变细,在外端附近包裹体最大。

2.通常在相同的样品中比次生包裹体更易见到等轴状和负晶形包裹体(仅是推测)。

3.由于交切生长带的蚀坑被覆盖的结果而产生假次生包裹体(Roedder,1972,图版1,图8)。

现代流体测试技术综合实验

研究生教学实验指导书 现代流体测试技术 综合实验 北京航空航天大学能源与动力工程学院 2007年10月

“信号合成与分解实验” 教学实验指导书 教学实验编号: 041701-1 (可不填) 教学实验名称: 信号合成与分解实验 (中文) Synthesis and Analysis of Signal (英文) 学分/学时:1学分/16学时 适用专业:发动机、工程热物理、宇航、气动、汽车专业 先修课程和环节:掌握测量放大器的工作原理和傅里叶变换的理论知识;各种谐波的理 论分析和频率结构;滤波器(低通、高通、带通、带阻)的相关知识; 了解信号的分类。 一、实验目的 1. 在《测试技术》课程中,非正弦周期信号的谐波分析是教学中的重点内容之一。谐波分析的数学工具是将周期函数展开为付氏级数。本实验的主要目的是为了使同学对信号分析中的波形分解、合成及非正弦周期信号的幅值频谱的物理实质建立感性认识与了解。 2. 在精确的测试中,要求测试系统能够确保信号的检测与传输遵循不失真的条件。即要求测试系统是线性的。且幅频特性水平,相频特性为零或与频率成线性关系,本实验的另一个目的是通过实际观察合成某一确定周期信号时,必须保持合理的频率结构,正确的幅值比例和初始相位关系,不管什么原因。如果破坏了其中任何一条,都会导致波形失真,从而加深理解信号检测与运输中确保不失真条件的重要性。 3、 学会用示波器检查各高次谐波与基波之间初始相位差是否为零的测试方法。 二、实验内容及基本原理 本实验内容包括以下四个部分: 1、 测带通滤波器频率特性实验 将信号发生器的乒乓开关打到上方,通过旋钮改变频率,使其在80~120Hz 范围内变化,在输出端测出其相对应的电压,填入表1。 表1 2、 信号分解实验 3、 信号合成实验 4、 观察合理的频率结构,正确的幅值比例和正确的初始相位关系在合成波形中的重要作用 实验原理如下: 对某一个非正弦周期信号)(t f ,其周期为T ,频率为f ,则可以分解为无穷项谐波之和,即

流体包裹体研究进展

流体包裹体研究进展 1.流体包裹体的分类及区分 流体包裹体是成岩成矿流体(含气液的流体或硅酸盐熔融体)在矿物结晶生长过程中,至今尚在主矿物中封存并与主矿物有着明显的相边界的那一部分物质。 1.1流体包裹体的分类 流体包裹体成分复杂且成因多样,其分类研究多年来一直是随着测试手段的改进和研究内容的深化而变化。早期的分类研究主要是以定性描述为主,随着流体包裹体研究水平额度不断发展,出现了以成因、成分、相态和不同包裹体之间的相互关系为主要依据的各种分类。具有代表性的包括: (1)1953-1976年:最有代表性的是1969年Ermakov提出的分类方案,他根据包裹体的成分和成因,建立了21个类型,并且根据相的相对比例,建立了一种应用很广的分类。另外一些人也建立了不同的分类方案,例如,许多分类方案是根据仍宜选用的气液比而划分的,然而气液比由于其连续变化而不易精确测定,限定了其广泛应用。 (2)1985-2003年:最有代表的芮宗瑶的分类方案,他根据捕获时的流体特征将包裹 体分为由均一体系形成的和由非均一体系形成的。其中,均一体系形成的包裹体又分为原生包裹体、次生包裹体、假次生包裹体和出溶包裹体;非均一体系形成的包裹体包括液相+固相、液体+气体或液体+蒸气、两种不混溶流体3类。 (3)2003年至今:有些学者在著作及文献中阐述了一些流体包裹体类型的划分方案,多以流体包裹体的物理状态、成因、形成期次等指标为划分依据。其中,卢焕章等根据包裹体相数的不同,将流体包裹体分为纯液体包裹体、纯气体包裹体、液体包裹体、气体包裹体、含子矿物包裹体、含液体CO2包裹体、含有机质包裹体和油气包裹体等8类。 1.2流体包裹体的区分 在流体包裹体的诸多分类中,按捕获时间与主晶矿物形成时间的关系可分为原生和次生流体包裹体。原生包裹体是矿物形成时包裹周围的流体而形成的,而次生包裹体的形成晚于主晶矿物,一般与后期主晶矿物的改造事件有关。二者由于形成时间和方式不同而携带了不同的信息。原生包裹体指示了主晶矿物形成时的流体环境和物理化学条件,次生包裹体则指示了主晶矿物后期被改造事件中的流体环境、构造特征以及物化条件。 一般,原生和次生包裹体区分可应用以下两条准则:一是根据包裹体的形状和分布特征判别,即原生包裹体的形状往往是规则的,常呈孤立状或沿主晶矿物某一结晶方位或生长环带分布,次生包裹体的外形一般是不规则的,多沿愈合裂隙分布;二是同一成因的包裹体密度、均一温度、盐度和成分是近似的,可与已知包裹体类比归类。 2.流体包裹体研究的技术方法 2.1流体包裹体显微测温方法 以显微热台、冷热台以及爆裂以为代表的流体包裹体显微测温技术现已达到成熟,实际应用中多采用均一法和爆裂法相结合的方法。 (1)均一法是将流体包裹体放在冷热台上加热,随着温度的升高,气液两相逐步复原为一个均一相,此时的温度为包裹体均一温度。这是包裹体测温的基本方法,其特点是可直接观察到包裹体相态随温度的变化,也能测得各相的体积,所测数据直观可信。具有针对性且便于区分原生和次生包裹体,因此在流体包裹体研究中得到广泛应用。但这种方法测温速度慢,且只适用于透明和半透明矿物。 (2)爆裂法是将流体包裹体加热,使得包裹体内压升高,当内压大于主矿物强度及外压时,流体包裹体就会爆破而发出响声,用仪器收集、放大、记录其爆裂声响,从而来测定爆裂温度。这种方法适用性广,适用于透明和不透明矿物,且测温速度快。缺点是肉眼无法观察到所研究对象的特征,测定结果受主矿物的物理性质与位置、流体成分、流体包裹体形态

现代热物理测试技术一些知识点总结

第13章:红外气体分析 分子光谱: 分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从紫外到远红外直至微波谱). E E E E ?=?+?+?电子振动转动 . 气体特征吸收带: 气体:1~25μ m 近、中红外 . 红外吸收的前提: 存在偶极距(对称分子无法分析)、频率满足要求 . 非分光红外(色散型)原理、特点 : 原理:课本P195 特点: 优点:灵敏度高、选择性好、不改变组分、连续稳定、维护简单寿命长. 缺点:无法检测对称分子气体(如O 2,H 2,N 2.)、测量组分受探头限制. 烟气预处理的作用 :滤除固液杂质(3224SO H O H SO +=)、冷凝保护(1.酸露点温度达 155℃ 2.冷凝器 )、 去除水气影响(1.红外吸收干扰 2.气体溶解干扰 ). 分光红外原理: ? (三棱镜分光原理) 傅立叶分光原理(属于分光红外常用一种)、特点 : 原理:光束进入干涉仪后被一分为二:一束透射到动镜(T),另一束反射到定镜(R)。透射到动镜的红外光被反射到分束器后分成两部分, 一部分透射返回光源(TT), 另一部分经反射到达样品(TR);反射到定镜的光再经过定镜的反射作用到达分束器,一部分经过分束器的反射作用返回光源(RR), 另一部分透过分束器到达样品(RT)。也就是说,在干涉仪的输出部分有两束光,这两束相干光被加和, 移动动镜可改变两光束的光程差,从而产生干涉,得到干涉图,做出此干涉图函数的傅立叶余弦变化即得光谱, 这就是人们所熟悉的傅立叶变换. 特点:优点:测试时间短、同时测多组分、可测未知组分;而且,分辨能力高、具有极低的杂散辐射、适于微少试样的研究、研究很宽的光谱范围、辐射通量大、扫描时间极快. 第12章:色谱法 色谱法的发明和命名、色谱法原理 : P173-174 色谱系统的组成:分析对象、固定相、流动相 气相色谱与液相色谱的区别 :气相色谱法系采用气体为流动相(载气)流经装有填充剂的色谱柱进行分离测定的色谱方法。物质或其衍生物气化后,被载气带入色谱柱进行分离,各组分先后进入检测器,用记录仪、积分仪或数据处理系统记录色谱信号。高效液相色谱法是用高压输液泵将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,经进样阀注入供试品,由流动相带入柱内,在柱内各成分被分离后,依次进入检测器,色谱信号由记录仪或积分仪记录。 气相色谱和液相色谱优缺点:1、气相色谱采用气体作为流动相,由于物质在气相中的流速比在液相中快得多,气体又比液体的渗透性强,因而相比液相色谱,气相色谱柱阻力小,可以采用长柱,例如毛细管柱,所以分离效率高。2、由于气相色谱毋需使用有机溶剂和价格昂贵的高压泵,因此气相色谱仪的价格和运行费用较低,且不易出故障。3、能和气相色谱分离相匹配的检测器种类很多,因而可用于各种物质的分离与检测。特别是当使用质谱仪作为检测器时,气相色谱很容易把分离分析与定性鉴定结合起来,成为未知物质剖析的有力工具。4、气相色谱不能分析在柱工作温度下不汽化的组分,例如,各种离子状态的化合物和许多高分子化合物。气相色谱也不能分析在高温下不稳定的化合物,例如蛋白质等。5、液相色谱则不能分析在色谱条件下为气体的物质,但却能分离不挥发、在某溶剂中具有一定溶解度的化合物,例如高分子化合物、各种离子型化合物以及受热不稳定的化合物(蛋白质、核酸及其它生化物质)。 色谱系统组成及各部分作用: 载气、进样、温控、分离、检测 (P176) 温控的作用:P178

流体包裹体成因判别

流体包裹体成因判别 芮宗瑶译;张洪涛校 (据Roedder,1976,1979b年的资料修订,不包括出溶包裹体) 一、原生成因判据 1.根据在显示或不显示生长方向或生长环带的某一单晶中的产状。 ①在另一无包裹体的单晶中单独产出(或一个小型三维组合,Roedder,1965b,图10;1972,图版6); ②相对围晶而言,其个体大。例如,其直径≧0.1围晶,特别是出现几个这样的包裹体时; ③远离其它包裹体孤立地产出,其距离约为该包裹体直径的5倍; ④呈遍布晶体的无规律的三维分布产出(Roedder和Coombs,1967,图版4,图A和B); ⑤包裹体周围较规则的位错发生扰动,特别是如果这些位错由包裹体向外呈放射状时(Roedder和Weiblen,1970,图9); ⑥如同主晶中产出的固体包裹体或产出同生相一样,产出的子晶(外来的固体包裹体)。 2.根据显示生长方向的子晶的产状。 ①产在远离(在生长方向上)干扰主晶生长的外来固相(同生相或其他相)处,有时直接产在这种外来固相的前方,而该处主晶尚未完全封闭(由于发育不完全,包裹体可能围着于固体上或离开一定距离,Roedder,1972,图版1); ②产于某早期生长阶段的愈合裂隙之外,原因是该处新晶体生长不完善(Roedder,1965b,图18和19;Roedder等,1966,图15); ③在某一复合晶体的近于平行的两个单元之间产出(Roedder,1972,卷首插图的右上角); ④在几个生长螺旋体的交切面上或在一个在外表面可见到生长螺旋体的中心部位产出; ⑤尤其呈相对较大的扁平状包裹体产出,它们平行于某一外部晶面,并靠近于其中心(也即由于在晶面中心晶体生长发育不良),例如许多“漏斗状盐晶”; ⑥在板状晶体的核心产出(例如绿柱石)。这可能只不过是上述条款的一个极端情况; ⑦尤其沿两晶面的交切边缘成排产出。 3.根据显示生长环带的单晶中的产状(如根据颜色、透明度、成分、X衍射的暗度、捕获的固体包裹体、浸蚀环带和出溶相等标志确定)。 ①产于不规则的三维空间,在临近带中具有不同的富集程度(由于突变的羽毛状的或树枝状的生长);

最新现代流动测试技术大作业

现代流动测试技术 大作业 姓名: 学号: 班级: 电话: 时间:2016

第一次作业 1)孔板流量计测量的基本原理是什么?对于液体、气体和蒸汽流动,如何布置测点? 基本原理:充满管道的流体流经管道的节流装置时,在节流件附近造成局部收缩,流速增加,在上下游两侧产生静压差。在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。公式如下: 4v q d π α== 其中: C -流出系数 无量纲 d -工作条件下节流件的节流孔或喉部直径 D -工作条件下上游管道内径 qv -体积流量 m3/s β-直径比d/D 无量纲 ρ—流体的密度Kg/m3 测量液体时,测点应布置在中下部,应为液体未必充满全管,因此不可以布置的太靠上。 测量气体时,测点应布置在管道的中上部,以防止气体中密度较大的颗粒或者杂质对测量产生干扰。 测量水蒸气时,测点应该布置在中下部。 2)简述红外测温仪的使用方法、应用领域、优缺点和技术发展趋势。 使用方法:红外测温仪只能测量表面温度,无法测量内部温度;安装地点尽量避免有强磁场的地方;现场环境温度高时,一定要加保护套,并保证水源的供应;现场灰尘、水汽较大时,应有洁净的气源进行吹扫,保证镜头的洁净;红外探头前不应有障碍物,注意环境条件:蒸汽、尘土、烟雾等,它阻挡仪器的光学系统而影响精确测温;信号传输线一定要用屏蔽电缆。 应用领域:首先,在危险性大、无法接触的环境和场合下,红外测温仪可以作为首选,比如: 1)食品领域:烧面管理及贮存温度 2)电气领域:检查有故障的变压器,电气面板和接头 3)汽车工业领域:诊断气缸和加热/冷却系统 4)HVAC 领域:监视空气分层,供/回记录,炉体性能。 5)其他领域:许多工程,基地和改造应用等领域均有使用。 优点:可测运动、旋转的物体;直接测量物料的温度;可透过测量窗口进行测量;远距离测量;维护量小。 缺点:对测量周围的环境要求较高,避免强磁场,探头前不应有障碍物,信号传输线要用屏蔽电缆,当环境很恶劣时红外探头应进行保护。 发展趋势:红外热像仪,可对有热变化表面进行扫描测温,确定其温度分布图像,迅速检测出隐藏的温差。便携化,小型化也是其发展趋势。 3)简述LDV 和热线的测速原理及使用方法。

流体机械的测试技术

误差分析 1仪表的精度等级如何定义? 精度等级的数字表示允许仪器的极限误差为仪器满量程的正负百分之几 2误差如何分类,系统误差如何消除,随机误差分布有何特点? 误差按性质分为三类:系统误差、随机误差和粗大误差; 消除系统误差有两种方法,1:引入修正值,2:消除产生系统误差的根源,如恒温控制; 随机误差指同一仪器,在相同条件下,对同一不变的量测量,测量的值不完全一致,随机误差呈现高斯正态分布的特点 3极限误差的定义 用б表示标准误差,工程上常用极限误差δ来表示偶然误差δ=3б,指任何一个测得值一定处于真值正负δ范围内 4间接测量误差分析中,如何消除交叉项 当N很大时,1 N dx i dx j=0(d x i=x i?x有正有负,dx i dx j为小量),所以可以消除交叉项。 压力测量 1概念: 总压力:气流从某一状态绝能等熵滞止到速度为零的状态时的压力 静压:气流与测量仪器保持相对静止时所测得的压力 表压力:绝对压力超过大气压力的部分称为表压 真空度:表示实际压力低于大气压力的数值 2空气分别以100m/s,300m/s的速度流动,气体温度15度,静压100kpa,利用皮托管测量流动,计算由空气是不可压缩的假设引起的滞止点压力的误差。 15摄氏度时,空气密度为1.225kg/m3,c=340.3m/s,Ma1=0.294,Ma2=0.882 当空气以100m/s的速度流动时,伯努利方程得总压力为Pt=P+1/2*rou*V2=100000+0.5*1.225*100*100=106125Pa,气动函数计算可得:Pt=P*pai(λ)=100000*(1+0.2*0.294*0.294)^(1.4/0.4)=106182.4Pa,误差为△P=57.4Pa; 当空气以300m/s的速度流动时,伯努利方程得总压力为Pt=P+1/2*rou*V2=100000+0.5*1.225*300*300=155125Pa;气动函数计算可得:Pt=P*pai(λ)=100000*(1+0.2*0.882*0.882)^(1.4/0.4)=165884.7Pa,误差为△P=10759.7Pa; 3三孔针对向测量原理是什么?如何用三孔针测量二维气流速度 将三孔针绕测量支杆的轴线转动,使1,3两孔的压力相等,从而保证2孔对准气流P2=Pt.根据P1/P2=f(Pai(λ)),可以求出静压P。由于三孔探针适合在低速区使用,还可以根据伯努利方程求出气流速度. 测量方法:转动探针,使p 1=p 3 ,则p 2 =p*。三孔针在设计时有速度特性曲线, 校准系数ξ不变。当λ≤0.3时,不考虑气流压缩性,此时,p??p=1 2 ρυ2,取1 2 ρυ2 p2?p1=p??p p2?p1 =ξ;当λ>0.3时,ξ= 1 2 ρυ2 p2?p1 = k k+1 p?λ2ελ p2?p1 。从而可计算出p,求解 出速度v。 4压力扫描阀的作用是什么? 对多路的稳态压力进行快速的测量,以缩短大型试验的时间;对压力传感器进行实时校

《现代测试技术》习题

《现代测试技术》习题 基本题型: 填空题、判断题、问答题、名词解释、大题(计算题、作图题) 一、填空题 1.1 传感器主要由、与三大部分构成。 1.2 信号x(t)的正弦形式的傅里叶级数的系数a0= ,a n= ,b n= , A n= ,φn= 。 1.3 傅里叶变换对1?,当x(t)?X(f)时,频移特性为。 1.4 傅里叶变换对δ(t)?,当x(t)?X(f)时,时移特性为。 1.5 傅里叶变换对ε(t)?,当x(t)?X(f)时,时移特性为。 1.6 组合压电元件在力学结构上是形式,在电学结构上是形式。 1.7 光电效应可分为效应、效应与效应。 1.8压电元件的常用结构形式在力学结构上是形式,在电学结构上是形式。 1.9热电偶总电动势是由与两种电动势组成,其中起主要作的是电动势。 1.10 按照滤波器工作目的可分为、、与4种基本类型。 1.11理想滤波器的条件是其通带的幅频特性为,而阻带的幅频特性为。 1.12金属应变片的常用组桥形式主要有电桥、电桥与电桥。 1.13 信号的自相关系数ρx= ,自相关函数R x(τ)= 。 1.14对变极距式电容式传感器采用结构可极大改善非线性特性,采用方式可消除非线性特性。 1.15 电感式传感器按结构参数的变化可分为式、式与式三类。 1.16 电容式传感器按结构参数的变化可分为式、式与式三类。 1.17对测试系统实际特性的拟合可采用拟合与拟合。 1.18 周期信号的自相关函数仍为频率的周期函数,且保留了原信号的信息,丢失了原信号的信息。 1.19 两同频周期信号的互相关函数仍为频率的周期函数,且保留了原信号的信息与信息,丢失了原信号的信息。 1.20实现不失真测试的频域条件(表达式)为与。时域条件是。 二、名词解释题 2.1 应变效应、压阻效应、电涡流效应、金属应变效应、压电效应、霍尔效应、热电阻效应、热敏电阻效应、磁敏效应、磁阻效应、外光电效应、内光电效应、光生伏特效应

流体包裹体研究方法

流体包裹体研究方法 一、野外样品采集和室内样品加工 1、野外样品采集 这里只叙及构造岩的显微样品的采集与制备。微观构造研究的首要工作就是野外标本的采集。构造岩主要产于脆性断层及韧性剪切带内,因此,在野外充分观察的基础上,首先就是以垂直断裂带(面)或剪切带片(麻)理走向作剖面,对构造岩作初步分带,并沿带取样。第一块样应从未变形岩石开始。取构造岩最好是定向标本。定向的方法是:将标本从露头上敲下,再放回原来位置,在标本上选取一平面,用记号笔画上水平线(利用罗盘测量),并标出其方向(一般在右侧用箭头表示),再测出倾向及倾角。其次是做好记录。记录包括:标本号、倾向及倾角、采样处片(麻)理产状、线理或断层擦线产状等,并尽可能作详细素描。 2、室内样品加工 首先是用记号笔将野外编号和定向线一一标好,再标出要切制的薄片面,然后送磨片室切制薄片。若只需切一片,破碎岩薄片一般要平行擦线、垂直断面;糜棱岩薄片则是尽量平行矿物拉伸线理、垂直片(麻)理,这样做出来的切片可直接用来判断运动方向或剪切运动指向(注意:一定要通过手标本恢复到野外产状)。糜棱岩如果要做三维有限应变测量,除平行线理、垂直面理的切片外,一般是垂直线理及面理再切一片。并常用该片做岩组测量,因为该片所切矿物数量最多,信息也最多,而组构图可以旋转到平行矿物线理的方向上。如果岩石本身矿物线理及面理不十分发育,应变测量则需作三个互为垂直的切片(根据三个切片的实际产状和测量结果用计算机拟合)。 二、显微镜下观察和冷热台下测定 1、显微镜下观察 对每个包裹体应做的观察内容包括如下几个方面。 ⑴包裹体的大小:应该注明包裹体两个或三个方向上的尺寸(以μm表示)。这一点很重要,因为有些包裹体的性质,特别是密度、形状可能随包裹体的大小有规律地变化;通常与CO2包裹体比较,水溶液包裹体很少有规则的形状。 ⑵包裹体的形状:大多数包裹体具有不规则的形状,然而如果包裹体具有诸如带晶面的形状(负晶形)、球形、椭球形和扁平形等形状时,需要注意。 ⑶气泡大小:应该在一定温度下测量气泡的直径,或是在温度超过CO2临界点时测量CO2+H2O混合包裹体中富CO2相的大小,以便随后在加热或冷却时引起包裹体的任何泄露能够鉴别出来。 ⑷体积百分数:应该记录温度超过CO2临界点(31.3℃)时(一般是+40℃)CO2+H2O 混合包裹体中富CO2相(内部相)的估计体积(或面积),其目的是计算包裹体中CO2的摩尔分数。 ⑸包裹体丰度:每平方毫米还有包裹体的个数。 ⑹包裹体的产状:包裹体岩相学和产状的研究十分重要,包裹体产在岩石什么显微构造中,它们的成因类型和成分类型。一个包裹体可以产于很多条件或环境中,简言之,包裹体可以呈单个产出,或成群产出,沿愈合裂隙(包裹体轨迹)产出,沿次颗粒边界产出,或是沿晶体各生长面产出,以及伴随着变形薄层(叶理)产出。 2、冷热台下测定 抛光的样品必须切成小片,使之符合冷热台腔的大小。切片的大小也要由包裹体的分布来确定。冷热台下测定以下几项内容。

现代流体测试技术-考试试题资料

2013-2014学年第一学期现代流体测试技术期末试题 一、什么是测量,举例说明3种流动显示技术,详述其特征。详述流动显示中的纹影法、阴影法和干涉法。 1、测量是按照某种规律,用数据来描述观察到的现象,即对事物作出量化描述。测量是对非量化实物的量化过程。 2、例举三种流动显示技术:(1)静态法中的涂膜法:这是一种比较常用的方法。这种方法就是在模型或原型表面涂以具有某种特性的涂料,然后置于流动中,根据涂层在试验中出现的图谱,可以分别定性地确定出层流和湍流区、转捩点位置、流动分离区、表面压力和表面温度分布等流动性状。不同的涂料配方,涂膜法显示原理是不同的,选择涂料要视所显示的流动性状而定。例如,利用某些涂料在不同条件下的蒸发、升华或溶解度的不同,就可在显示的图谱中区分出层流区和湍流区。一般观察水流中边界层的转换,可用安息香酸添加对苯二酚、双醋酸醋、红丹粉与铬酸铅粉末等。在气流中,显示边界层的层流一湍流所用的涂料有轻油,液体石蜡与碳粉或与二氧化氢混合成的涂料、以及混有挥发液的陶土等。显示温度分布的方法是利用对温度敏感的涂料,如液晶,由于已知其颜色是局部温度的函数,因此,根据表面图谱中的颜色分布,就得到物体表面的温度分布。如果涂了涂料的物体表面在流动中可以变形,但又不影响流动,则流动对物面的不均匀压力分布,使涂层产生一个确定的表面起伏,据此可分析出压力分布的结果。这种方法最适宜显示马赫波在壁面的反射,所用涂料是碳黑。 (2)动态法中的光学方法:在高速气流中,由于可压缩性,无法应用示踪粒子法。由于光学技术的发展,光学测试方法就在实验流体力学中得到十分广泛的应用。虽然有各种光学方法,但其原理复杂,设备繁多。光学方法的基本原理可归结为两种:一种是光线通过流场,光的折射率随流体密度而变,其折射偏转量与流场密度分布有关;第二种是受到流场扰动的光线相对于未受扰动的光线,产生相移,这种相移量与流场密度变化有关。根据这两种关系,可设计出各种装置,对流场进行各种观测。按照第一种原理设计的方法有阴影法和纹影法,按照后一种原理设计的有干涉法。还有综合两种原理而设计的纹影干涉法。这些方法都是以几何光学为基础的,要求装置有高度的机械稳定性,以保证方法的灵敏度。此外,还有以波动光学为基础的相差纹影法,基本原理是利用衍射产生相差,这种方法的灵敏度最高。(3)线簇法:这种方法就是在模型表面有规律地布之以一簇一簇的丝线,吹风时,线簇指示的方向显然代表物体表面附近气流的方向。图2则是用这种方法得到的汽车表面的流动。线簇法使用方便,应用广泛,但仅适用于低速流动。以上所述的几种表面流动显示法只能适用于定常流动,显示边界面附近流动的某些性状。但是,它们的适用范围十分宽广,比如,油膜流动法对水流的测定范围为10厘米/秒至15米/秒,对气流为10米/秒至M=6,油点法甚至可用于M=12。6的流动。 3、(1)纹影法:原理与阴影法相同,但其灵敏度比阴影法高一个数量级。它是空气动力学和热力学试验研究中用的最多的流动显示方法,有彩色纹影法、干涉纹影法,从定性流动显示过渡到定量流动显示。纹影仪由光源、透镜(或反射镜)、刀口和观察屏幕(或图像记录装置)四部分组成。当折射角一定的情况下,透镜焦距越大、刀口光轴的距离越小,对比度就越大,所以,为了提高纹影仪的灵敏度,应选用长焦距镜头,调整时应尽量调小刀口光轴的距离至目视最小亮度为止。双透镜纹影仪的原理光路图如下图所示。

流体包裹体的研究现状

流体包裹体在地质中应用 摘要: 在多数地质作用过程中, 流体都担任着元素迁移的载体、化学反应的活化剂的角色。大量研究表明, 岩石、矿物以及元素在有无流体的情况下会表现出迥异的物理和化学性质, 所以对于认识某一地质过程而言, 流体方面的研究往 往能够提供极其重要的信息。流体包裹体则以其直接反映古流体的成分, 在各种矿物中的普遍存在性, 以及对各种后期改造有一定的抵抗力等特点而成为研究 古地质流体的最佳样本, 并已经被成功地应用到各种地质过程的研究中。结合前人的研究,本文系统阐述了流体包裹体研究中常用的分析方法及变质岩中流体包裹体的研究, 并举例说明了流体包裹体在矿床学、石油地质学中的应用。 流体包裹体研究是目前地球科学研究中最活跃的领域之一, 已广泛应用于 矿床学、构造地质学、石油勘探、地球内部的流体迁移以及岩浆岩系统的演化过程等地学领域。通过阅读大量该领域的文献,本文就流体包裹体研究的基本原理、分析技术、地质应用的最新进展以及可能的发展方向作了系统的阐述。 1 流体包裹体的种类和区分 流体包裹体按其捕获时间与主晶矿物( hos-tminera l)形成时间的关系可以分为原生和次生流体包裹体。原生包裹体是矿物形成时包裹周围的流体而形成的, 而次生包裹体的形成晚于主晶矿物, 一般与后期主晶矿物的改造事件有关。二者由于形成时间和方式不同而携带了不同的信息。原生包裹体指示了主晶矿物形成时的流体环境和物理化学条件, 次生包裹体则指示了主晶矿物后期被改造事件 中的流体环境、构造特征以及物化条件。这就要求我们在流体包裹体研究中必须正确地区分它们。 一般来说, 原生包裹体和次生包裹体的区分可以应用如下两条准则: 一是 根据包裹体的形状和分布特征判别, 即原生包裹体的形状往往是规则的, 常呈 孤立状或沿主晶矿物某一结晶方位或生长环带分布, 次生包裹体的外形一般是 不规则的, 多沿愈合裂隙分布; 二是同一成因的包裹体密度、均一温度、盐度和成分是近似的, 可与已知的原生或次生包裹体进行对比和归类[1]。当然, 这两 个规则也不是绝对的, 只有较综合地观察包裹体形态以及主晶矿物与包裹体、包

流体机械工程测试技术题解

〈流体机械工程测試技术〉 〉习题解 为了引导同学们深入思考问题,特给出下列习题解答供学习参考。 1,名词解释 测量——就是用同性质的标准量与被测量相比较并确定被测量对标准量的倍数(标准量应是国际上或国家所公认的,性能稳定的)。 测定——就是指间接测量。测试——就是指借助于专用设备,通过试验、测量、数据处理等基本环节,获得被试验对象的有关信息量值的专门技术。 实时测试——(在物化现象发生的同时对其进行的测量,没有时间滞后。)在被测过程发生的实际时间内,迅速及时采集所需全部测试数据,随后(或存储一段时间后)直接给出各种所需的测量结果,这种测量方式称为 实时测试。实时测试是实现测试自动化的重要手段。 系统误差——在同一条件下多次测量同一量时,误差的绝对值和符号保持恒定,或在条件改变时,按某一确定的规律变化的误差。 随机误差——在实际相同条件下多次测量同一量时,误差的绝对值和符号的变化,时大时小,时正时负,没有确定的规律,也不可预定,但具有抵偿性的误差。 粗差(疏忽误差)——明显歪曲测量结果的误差。 真值——在某一时刻和某一位置或状态下,某量的效应体现出的客观值或真实值。 约定真值——(1)指测量次数无限多时所求得的平均值;(2)高精度仪表的测得值。 正确度——表明测量结果偏离真值的程度,反映了系统误差的大小。 精密度——表明测量结果的离散程度,或者说是测量值重复(集中)一致的程度,反映了随机 误差的大小。 准确度——反映了系统误差和随机误差合成的大小程度。精度——精度一词原为精密度的简称,现可通常用作泛指性的广义名词。可指正确度、精密度亦可指准确度。 不确定度——是指试验最后多点测定值的两条包络线之间宽度的二分之一。 直接测量——被测参数通过测量仪器直接获得。 间接测量——被测参数须通过直接测量的量及它们之间相互关系求得。 静态(稳态)测量——就是机组在稳定运行时,对被测参数的测量(此时各参数基本上不随时间而变化)。 动态测量——就是对随时间变化而变化的被测参数进行的测量。 非电量电测法——就是将各种非电量(力、温度、流量,物位等)转换为电量(电流、电压、频率)或电路参数(电感、电容等)的变而加以测量的二次(次级)测量方法传感器——将感受的物理量(非电量:力、温度、流量,物位等)转换为另一种物理量(电量:电流、电压/电感、电容等)输出的装置。 电阻应变效应——当金属电阻丝在外力作用下发生机械变形时,其电阻值随之发生变化的现象。压电效应——当某些固体材料变形时能产生电荷。这种作用是可逆的,即在材料上加上电荷时也可使它产生变形。 压阻效应——是指单晶半导体材料的某一晶向受到外力作用时,其电阻率发生变化的现象。闪频效应——当光线以一定的频率照射在以同样大小频率运动的物体上,由于人眼的暂留现象,该物体会呈现出不动的假象。如果运动物体频率低于光线频率,运动物体会被看成在徐徐的反转,反之亦被看成在徐徐的正转。

动力测试技术(高起专)

1、半导体热敏电阻随温度上升,其阻值【下降】 2、半导体式应变片在外力作用下引起其电阻变化的因素主要是【电阻率】 3、标准佳节流件的直径比β越小,则【流体的压力损失越大】 4、标准节流装置的取压方式主要有【法兰取压】 5、不能用确定函数关系描述的信号是【随机信号】 6、测试系统的传递函数和【具体测试系统的物理结构无关】。 7、测试装置的脉冲响应函数与它的频率响应函数间的关系为【傅里叶变换对】 8、测试装置所能检测出来的輸入量的最小变化值【分辨率】 9、当高频涡流传感器靠近铁磁物体时【线圈的电感增大】。 11、电阻应变片的输入为【应变】 12、定度曲线偏离其拟合直线的程度称为【非线性度】 13、对于稳定的线性定常系统,若输入量为正弦信号时,系统达到稳定后,将输出y(t)与输入x(t)的傅里叶变换之比定义为【频率响应函数】 14、对于与热电偶配套的动圈表,下列叙述正确的是【动国表必须与其相同型号的热电偶相配】。 15、二阶装置引入合适阻尼的目的【获得较好的幅频、相频特性】。 16、傅氏级数中的各项系数是表示各谐波分量的【振幅】 17、概率密度函数给出的分布统计规律是随机信号沿的【幅值域】 18、将被测差压转换成电信号的设备是【差压变送器】

19、将时域信号进行时移,则频域信号将会【仅有相移】 20、描述非周期信号的数学工具【傅里叶变换】。 21、描述周期信号的数学工具【傅氏级数】。 22、频率响应函数反映了系统响应的过程为【稳态】。 23、时域信号的时间尺度压缩时,则其频带的变化为【频带变宽,幅值压低】 24、输出信号与输入信号的相位差随频率变化的关系为【相频特性】 25、数字信号的特征是【时间和幅值上均离散】 26、为消除压电传感器电缆分布电容变化对输出灵敏度的影响,可采用【电荷放大器】。 27、下列传感器中哪个是基于压阻效应的【半导体应变片】。 28、下列哪个不是机械式传感器【电容传感器】。 29、下列哪项不是理想运算放大器的特性【输出电阻ro=∞】 30、压电式加速度传感器的工作频率其固有频率应该是【远低于】 31、一个测试系统不管其复杂与否,都可以归结为研究输入量x(1)、系统的传输特性h(t)和输出量y(1)三者之间的关系【y(t= h(t*x(t)】。 32、已知x1(t)和x2(t)的傅里叶变换分别为×1(和X2(),则卷积×1(t)*2(t)的傅里叶变换为【x1(f)x2(f)】 33、用常系数微分方程描述的系统称为【线性】系统。 34、用金属材料测温热电阻下列说法正确的是【金属纯度越高对测温越有利】。 35、由非线性度来表示定度曲线程度的是【偏离其拟合直线】。

现代流动测试技术

流动测试技术简介 摘要:水利工程是国民经济的基础设施,水泵是水利工程中最重要的组成部分。提高水泵效率,有利于节约能源,提高经济效益。因此,知晓泵内流体的流动特性,流速分布尤为重要。水泵几何结构及内部流动的复杂性,对内部流动的测量技术提出了苛刻的要求。本文就水泵内部流场测试常用的三种现代测试方法进行总结介绍。 关键词:流动测试技术;五孔探针;LDV ;PIV 1、三种测量技术介绍 1.1 五孔探针技术 探针测定恒定流场,其稳定性好、重复性好,对现场条件要求不高,适应性好,设备费用低,简便易行,测量精度高。虽然近年来出现了许多现代流场测定方法,但探针在流场压力测定和条件复杂的现场流场测定方面,以及其简便易行的特点仍具有不可替代的地位。 1.1.1 五孔探针测流场原理 毕托管的构造如图1所示,由图可以看出这种毕托管是由两根空心细管组成。细管1为总压管,细管2为测压管。量测流速时使总压管下端出口方向正对水流流速方向,测压管下端出口方向与流速垂直。在两细管上端用橡皮管分别与压差计的两根玻璃管相连接。 图1 毕托管示意图 如图,毕托管有两根细管。一管孔口正对液流方向,90°转弯后液流的动能转化为势能,液体在管内上升的高度是该处的总水头g v g P Z 22 ++ρ;而另一根管开口方向与液流方向垂直,只感应到液体的压力,液体在管内上升的高度是该处的测压管水头(就是相应于势能的那部分水头)g P Z ρ+,两管液面的高差就是

该处的流速水头g v 22 ,量出两管液面的高差H ?,则H g v ?=22,即H g v ?=2,从而间接地测出该处的流速V 。 五孔探针应用该原理,利用头部感应部位上的五个感应孔,测量系统如图2所示,不仅可测出流场的流速分布,还可测出测点的静压、全压分布,根据轴向速度对面积的积分,即可间接测出测量断面的流量[1-3]。 图2 五孔探针测量系统 1.1.2 提高测量精度的措施及误差分析 1.1. 2.1 测量系统选择 探针系统的组成对针孔压差测量反应时间和测量误差有很大影响。合理选择连接管管径、材料弹性有利于节省测量时间,提高测量精度。用差压变送器测量针孔压差,反应速度较水柱测压计快50~80倍,针孔压差测量精度为%5.0=p δ时的反应时间为2~6s ,但需保证差压变送器的零点漂移满足要求。 1.1. 2.2 探针杆挠曲影响与修正 由于水体对针杆的绕流阻力大,当针杆插入流场的长度较长时,针杆会产生较大挠度,针头挠度最大,产生转角,从而造成测点位置误差和流速分量测量误差。计算表明,标准探针测定轴向流速为6.0m/s 左右的流场,插入长度为355mm 时,轴向流速误差为1.0%。因此,对该误差需要进行修正。 1.1. 2.3 探针杆共振影响 针杆绕流会产生周期性的卡门涡,当探针固有频率等于或接近卡门涡脱落频率时,探针就会发生发生共振,影响测量结果,甚至造成针杆的塑性弯曲,损坏探针。因此,施测前对平均流速进行近似预估,选择合理的探针刚度,预测探针共振长度,布置测点时应该避开共振区域。 1.1. 2.4 泵吸水室涡带影响 测量断面位于水泵叶轮前,压力较低。有些进水流道设计不良的泵站,如采用X 形流道的抽水站,叶片进口处会发生阵发性涡带。涡带发生时,泵吸水室会发出低频振动,涡带区压力急剧下降,此时应暂停测量,待涡带过后再进行测量[3-6]。 1.2 LDV 技术 激光多普勒测速仪技术(LDV )有50多年的历史,是实验流体力学技术发展的一个飞跃。

包裹体在石油地质学中的应用

油气测试分析报告 学号:1006091213 姓名:孟星浑 指导教师:陈永进 中国地质大学(北京) 2011年12月25日

流体包裹体在石油地质中的应用 摘要:流体包裹体研究是油气形成和成藏定量化研究的重要手段。本文总结了油气藏中流体包裹体的地质意义及其在石油、天然气研究中的应用,本文将从从岩相学、成岩作用和流体地质学的角度出发,阐述了沉积岩包裹体发育分布的时空规律和流体组成的特殊性。流体包裹体研究是油气形成和成藏定量化研究的重要手段。 关键词:关键词:流体包裹体油气成藏示踪油气地质学 1 包裹体的基本概念 包裹体是成岩矿物结晶时所捕获的部分成矿流体。流体包裹体的成分、相态、丰度、均一温度及盐度等地化指数, 能够反映不同成矿阶段的地球物理化学条件。作为一种新手段, 流体包裹体研究早已在金属和非金属矿产的普查勘探中得到广泛应用, 在矿产的成矿作用、成矿物理化学条件及矿床成因模式的研究中, 以及指导找矿勘探方面发挥了重要的作用。一个多世纪以来的油气勘探实践证明,石油和天然气资源主要赋存于沉积岩十分发育的含油气盆地中。油气的生成、演化、运移和聚集, 油气的圈闭和保存与地质历史中沉积物的成岩演化和地壳的构造变动史有着极为密切的关系。这些石油地质问题一直是油气勘探中的重要课题。一些具有远见流体是一个在应力作用下发生流动, 并且与周围介质处于相对平衡状态下的物体。矿物中流体包裹体是成岩成矿流体(含气液的流体或硅酸盐熔融体)在矿物结晶生长过程中, 被包裹在矿物晶格缺陷或穴窝中的至今尚在主矿物中封存并与主矿物有着相的界限

的那一部分物质。根据成因 , 包裹体可分为原生、假次生和次生等。矿物流体包裹体作为一种研究方法 , 起初主要被应用于矿床学的研究。目前 , 流体包裹体的分析已广泛应用于矿床学、构造地质学、壳幔演化、地壳尺度上的流体迁移石油勘探以及岩浆岩系统的演化过程等地学领域。流体包裹体研究的基本任务之一 , 即是尽可能地提供准确详细的有关古流体组成的物理化学信息 , 以便于建立古流体作用过程的地球化学模型。 2 形成机制 一般认为油气运移充注过程只要发生成岩作用就会形成油气包裹体。悬浮油滴分布在盐水溶液中,矿物结晶生长时,捕获盐水溶液形成盐水溶液包裹体,捕获油滴形成含全烃的油气包裹体;二者一起捕获就形成既含油气又含盐水溶液的包裹体已深入探讨过碎屑岩储层中油气包裹体的形成机制欧光习将其归纳为跨越障碍物式捕获酸溶式捕获和微裂隙式捕获机制。此外,石油的侵位与成岩作用关系尚有争议,后者与储层质量密切相关。有人依据石英胶结物中存在油气包裹体及其均一温度同现今储层温度相近,以及油、水饱和带之间孔隙度的相似,认为石油侵位不会终止成岩作用。有人根据一些含油砂岩或碳酸盐岩储层孔隙度的显著差异,认为石油充满储层会抑制成岩作用。最近的实验表明只要达到一定的温压条件,即使在石油饱和度很高的环境下也会发生石英的胶结和捕获包裹体。这些成果为利用油气包裹体及其共生的盐水溶液包裹体,探讨油气的形成运移聚集与后期变化奠定了基础。

现代流体测试技术

现代流体测试技术 2013-2014学年第一学期现代流体测试技术期末试题一、什么是测量,举例说明3种流动显示技术,详述其特征。详述流动显示中的纹影法、阴影法和干涉法。1、测量是按照某种规律,用数据来描述观察到的现象,即对事物作出量化描述。测量是对非量化实物的量化过程。2、例举三种流动显示技术:静态法中的涂膜法:这是一种比较常用的方法。这种方法就是在模型或原型表面涂以具有某种特性的涂料,然后置于流动中,根据涂层在试验中出现的图谱,可以分别定性地确定出层流和湍流区、转捩点位置、流动分离区、表面压力和表面温度分布等流动性状。不同的涂料配方,涂膜法显示原理是不同的,选择涂料要视所显示的流动性状而定。例如,利用某些涂料在不同条件下的蒸发、升华或溶解度

的不同,就可在显示的图谱中区分出层流区和湍流区。一般观察水流中边界层的转换,可用安息香酸添加对苯二酚、双醋酸醋、红丹粉与铬酸铅粉末等。在气流中,显示边界层的层流一湍流所用的涂料有轻油,液体石蜡与碳粉或与二氧化氢混合成的涂料、以及混有挥发液的陶土等。显示温度分布的方法是利用对温度敏感的涂料,如液晶,于已知其颜色是局部温度的函数,因此,根据表面图谱中的颜色分布,就得到物体表面的温度分布。如果涂了涂料的物体表面在流动中可以变形,但又不影响流动,则流动对物面的不均匀压力分布,使涂层产生一个确定的表面起伏,据此可分析出压力分布的结果。这种方法最适宜显示马赫波在壁面的反射,所用涂料是碳黑。动态法中的光学方法:在高速气流中,于可压缩性,无法应用示踪粒子法。于光学技术的发展,光学测试方法就在实验流体力学中得到十分广泛的应用。虽然有各种光学方法,但其原

流体包裹体文献综述

流体包裹体文献综述 游智敏 (地球科学与资源学院011070班) 摘要:流体包裹体是研究矿物中和岩石中的古流体,通过利用现代热力学原理,可以恢复流体捕获时的物理化学条件,如温度、压力,密度,成分,组分逸度等。对它们的研究可以定性和定量分析流体参与下的各种地质作用,尤其是成矿作用。对流体包裹体的正式研究始于1858年国外学者Sorby对包裹体地质温度计原理和方法提出,它的发展经历了漫长的过程,可以分为五个阶段。国内流体包裹体起步晚,在流体包裹体理论研究方面与国际先进水平存在差距。此文还总结了水盐体系,CO2-H2O体系这两个主要类型的流体包裹体盐度测算的测温方法,与数据计算公式表格。 关键词:流体包裹体研究进展盐度计算NaCl-H2O体系CO2体系 0 引言 地质体中的流体包裹体多是微米级的观察和研究对象。流体包裹体与微量元素,同位素,微粒矿物等都是微体、微区、和微量物质,但对他们的分析研究、其成果进展等却极大地丰富了宏观地球科学,带来了重要信息,开拓了新的思路,延展了研究领域。对流体包裹体定性和定量分析可解释地壳乃至地幔中流体参与下的各种地质作用过程,它已广泛应用于矿床学、构造地质学、壳幔作用、油气勘探、研究演化、变质学等地学领域。 1、流体包裹体的定义和研究内容 流体包裹体是研究存在于矿物和岩石包裹体中的古流体,通过对其进行定性和定量分析可解释地壳乃至地幔中的流体参与下的各种地质过程。矿物在生长过程中所圈闭的流体保存了当时地质环境的各种地质地球化学信息(P、T、pH、X、W等),是相关地质过程的密码。流体包裹体分析已广泛应用于矿床学、构造地质学、壳幔演化、地壳尺度上流体迁移、石油勘探以及岩浆岩系统演化过程等地质领域。研究流体包裹体是研究包裹体各种性质及其相互关系、为成岩成矿过程提供物理化学和热力学条件数据、探讨地质作用地球化学和演化历史,并服务于找矿勘探。 流体包裹体的研究内容包括: (1)研究矿物中包裹体的成因、恢复地质环境。现今所见的矿物和岩石大多数都是从不同成分和性质的流体或熔体中结晶出来的,它们在结晶过程中以流体包裹体形势捕获了成岩成矿时的介质。矿物中捕获的包裹体是迄今保留下来的最完整最直接的原始流体或熔体的样本,研究其形成机理和捕获后所经的变化,可以区分包裹体的成因,获得包裹体所代表的当

相关主题
文本预览
相关文档 最新文档