实验5两路PCM时分复用
- 格式:ppt
- 大小:3.45 MB
- 文档页数:5
摘要数字通信系统是采用数字信号来传递信息的通信系统,数字通信过程中主要涉及信源编码与译码、信道编码与译码、数字调制与解调等技术问题。
而脉冲编码调制就是一种常用的信源编码方法,将模拟信号抽样、量化,直到转换成为二进制符号的基本过程。
为了扩大通信系统链路的容量,在一条链路上传输多路独立的信号,为此引入了一种复用技术来实现多路信号共同传输的目的。
而在本系统设计中,所运用的复用技术是时分复用,同时基于现场可编程门阵列器件作为主控芯片,在Quartus II软件中使用硬件描述语言Verilog HDL编写PCM编译码和时分复用模块的程序,再对其进行波形仿真以验证程序的正确性,从而设计出语音信号的PCM编码与译码、时分复用的过程。
本设计中,将两路语音信号通过外围硬件电路模块送至FPGA中进行PCM编码、译码处理,最后通过后级外围电路实现语音信号的重现。
关键词:语音脉冲编码调制时分复用FPGADesign of Two-way V oice PCM Systemby Time Division MultiplexingABSTRACT A digital communication system is a communication system that transmit information by using digital signal, and digital communication mainly relates to the source coding and decoding, channel coding and decoding, digital modulation and demodulation technology. Pulse code modulation is a common source coding, and it is that the analog signal sampling ,quantization ,until the transformation become the basic process of binary symbols. In order to expand the capacity of communication link system ,a transmission of multiple independent signal on a link, therefore introduction of a division multiplexing technology to achieve the purpose of multiplexing.In this system design, we use a time division multiplexing technology, and based on the Field Programmable Gate Array, using Verilog HDL hardware description language to write PCM encoding and decoding and time division multiplexing module in Quartus II, then Waveform simulation to verify the correctness of the program, thus design a voice signal process of PCM encoding and decoding, time division multiplexing. In this system design, The two-way voice signal through the peripheral hardware circuit module is sent to the FPGA for PCM encoding and decoding, finally to achieve reproducible speech signal through the peripheral circuit. Key Words:V oice Pulse code modulation Time division multiplexing FPGA目录摘要 (I)ABSTRACT........................................................... I I 目录1 引言 (1)1.1 选题背景与意义 (1)1.2 QuartusⅡ软件 (2)1.3 FPGA的介绍 (3)1.4 本文内容简介 (4)1.5 实施过程简介 (4)1.6 设计结果简介 (4)2 基本原理介绍 (5)2.1 模拟信号的数字化 (5)2.1.1 采样定理 (5)2.1.2 量化原理 (5)2.1.3 A律13折线 (5)2.2 脉冲编码调制 (7)2.3 时分复用技术 (9)2.4 PCM一次群帧结构 (10)3 系统设计介绍 (11)3.1 总体框图 (11)3.2 外围硬件电路的介绍 (12)3.2.1 拾音电路 (12)3.2.2 仪用放大器 (12)3.2.3 带通滤波器 (13)3.2.4 抬升电路 (13)3.2.5 A/D转换电路 (14)3.2.6 D/A转换电路 (14)3.2.7 功率放大器 (15)3.3 基于FPGA的模块设计 (16)3.3.1 系统时钟的设计 (16)3.3.2 前端模块设计 (16)3.3.3 后级模块设计 (18)3.3.4 同步时钟的提取 (20)3.3.5 整体FPGA系统原理框图 (20)4 设计的结果 (21)致谢 (22)参考文献 (22)附录 (23)1 系统实物图 (23)2 FPGA中主要模块程序 (24)1 引言1.1 选题背景与意义在当今信息化极其高度的社会,信息和通信已经与现代社会的发展密不可分。
pcm编码时分复用课程设计一、课程目标知识目标:1. 学生能理解PCM编码的基本原理,掌握其采样、量化和编码的过程。
2. 学生能了解时分复用的概念,掌握其在通信系统中的应用。
3. 学生能运用所学知识分析PCM编码时分复用在实际通信系统中的作用。
技能目标:1. 学生能运用PCM编码方法对模拟信号进行数字化处理。
2. 学生能通过时分复用技术实现多路信号的传输与解复用。
3. 学生能运用相关软件或工具进行PCM编码时分复用的模拟与测试。
情感态度价值观目标:1. 学生培养对通信技术的兴趣,提高对信息科学领域的认识。
2. 学生培养团队协作意识,提高沟通与表达能力。
3. 学生认识到通信技术在现代社会中的重要性,增强社会责任感。
课程性质:本课程为电子信息类学科的基础课程,旨在帮助学生掌握PCM编码和时分复用技术的基本原理和应用。
学生特点:学生为高中二年级学生,具备一定的物理和数学基础,对通信技术有一定了解。
教学要求:结合学生特点,注重理论与实践相结合,提高学生的动手能力和实际问题解决能力。
通过课程学习,使学生能够将所学知识应用于实际通信系统,为后续相关课程打下坚实基础。
教学过程中,注重激发学生的学习兴趣,培养其科学精神和创新意识。
二、教学内容1. PCM编码原理- 采样定理与信号重建- 量化原理与量化误差- 编码方法及其在通信系统中的应用2. 时分复用技术- 时分复用的基本概念- 多路信号时分复用的实现方法- 时分复用在通信系统中的应用案例分析3. PCM编码与时分复用的结合- PCM编码在时分复用中的应用原理- PCM时分复用系统的构建与性能分析- PCM时分复用在现代通信系统中的实例教学大纲:第一周:PCM编码原理学习,包括采样定理、量化原理和编码方法。
第二周:时分复用技术学习,重点掌握时分复用的基本概念和实现方法。
第三周:结合教材案例分析,深入理解PCM编码与时分复用的结合。
第四周:实践操作,运用软件或工具进行PCM编码时分复用的模拟与测试。
实验五 PCM编码、译码原理实验一、实验目的1、加深对PCM 编码过程的理解;2、熟悉PCM 编、译码专用集成芯片的功能和使用方法;3、了解PCM 系统的工作过程;4、了解帧同步信号的时序状态关系;5、掌握时分多路复用的工作过程;6、用同步正弦波信号观察PCM 八比特编码的实验。
二、实验原理脉冲调制就是把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号后在信道中传输。
脉冲编码调制就是对模拟信号先抽样,量化、编码的过程。
所谓抽样,就是在抽样脉冲来到的时刻提取对模拟信号在该时刻的瞬时值,抽样把时间上连续的信号变成时间上离散的信号。
抽样速率的下限是由抽样定理确定的。
在该实验中,抽样速率采用8Kbit/s。
所谓量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。
所谓编码,就是用一组二进制码组来表示每一个有固定电平的量化值。
然而,实际上量化是在编码过程中同时完成的,故编码过程也称为模/数变换,可记作A/D。
PCM原理框图三、实验内容1、用同步正弦波信号观察PCM 八比特编码的实验;2、脉冲编码调制(PCM)及系统实验;3、PCM 八比特编码时分复用输出波形观察测量实验。
四、实验步骤及结果1、打开实验箱右侧电源开关,电源指示灯亮;2、编码部分:SP401 接入模拟信号,输入正弦波信号;SP405 接入2048KHz 主时钟信号;SP406 接入8KHz 脉冲信号;SP407 接入可选发码时钟,有64K、512K、2048K 三种频率。
3、译码部分:SP408 接入8KHz 脉冲信号;SP409 接入可选发码时钟,有64K、512K、2048K 三种频率。
4、连接SP402、SP403 两点,测试译码输出电路各点波形,在TP404能观察到稳定的正弦输出信号。
用音乐信号源取代函数信号发生器测试各点。
TP401:模拟信号输入TP402:数字编码输出; TP403:数字译码输入TP404:模拟信号输出TP405:主时钟TP407/409 :512KHz5、实验现象TP401TP402TP403TP404TP405TP403 405TP406TP407 409TP408五、测量点说明TP401:该点为输入的音频信号,用连接线连接模拟信号源与TP401,若幅度过大,则被限幅电路限幅成方波,因此信号波形幅度尽量小一些。
通信原理实验PCM编译码与时分复用目录一、实验目的二、实验原理三、实验设备四、实验过程五、实验总结2一、实验目的验证PCM编译码原理了解时分复用数字电话原理掌握PCM基群信号的形成过程及分接过程,了解多路PCM编码信号的复用和去复用的过程学习语音信号PCM编译码系统的动态范围和频率特性的定义及测量方法34二、实验原理(1)m (t ) PCM 信号信号(线性或非线性)抽样量化编码001010011000PCM 编码过程示意图时间离散化幅度离散化幅值数字化PCM :Pulse Code Modulation 脉冲编码调制5二、实验原理(2)2020/3/16时分复用原理示意图时分复用是将传输时间划分为若干个互不重叠的时隙,互相独立的多路信号分别占用各自的时隙,合路成为一个复用信号,在同一信道中传输。
F A B …………PCM基群信号32时隙F BA6二、实验原理(3)2020/3/16低通滤波器PCM 编 码器复接器低通滤波器PCM 译 码器分接器混合电路广义信道PCM 复用过程:把若干路相互独立的数字电话信号通过复接器复合成一个标准的数据流,再送入传输信道中传输。
PCM 解复用过程:是复用过程的逆过程。
将经过传输的复用信号数据流,通过分接器把各路信号从复用信号中提取出来,恢复原始信号。
三、实验设备通信原理教学实验箱示波器低频信号发生器失真度测量仪4096KHz 晶 振分频器1分频器2 帧同步信号产生器正弦信号源AS1S2S3S4PCM 编译码器A复接器抽样信号产生电路PCM 编译码器B PCMPCM-ASRBSRAPCM-B256KHzS3S2S18KHz 2048KHz CLKSLA(SL2)SLBSTA-INK5SLASLB⎪⎪⎪⎭⎪⎪⎪⎬⎫SL7SL5SL2、SL1、SL0、K8正弦信号源BSTB-INSTB K6STA-SSTA STB-S 四、实验过程:电路原理框图四、实验过程(1)原始语音信号波形观察通过低频信号发生器产生两路正弦信号注意:信号幅度:小于5V p-p;频率:300-3400Hz4096KHz 晶 振分频器1分频器2 帧同步信号产生器正弦信号源AS1S2S3S4PCM 编译码器A复接器抽样信号产生电路PCM 编译码器B PCMPCM-ASRBSRAPCM-B256KHzS3S2S18KHz 2048KHz CLKSLA(SL2)SLBSTA-INK5SLASLB⎪⎪⎪⎭⎪⎪⎪⎬⎫SL7SL5SL2、SL1、SL0、K8正弦信号源BSTB-INSTB K6STA-SSTA STB-S 四、实验过程(2):PCM 信号观察四、实验过程(2)PCM 信号观察示波器CH1接SL0时隙;CH2接PCM 信号,观察时隙信号和对应的PCM 信号SL0的宽度为1个时隙宽度,对应8位帧同步码比特。
..a2012-2013 第二学期开放实验项目题目:两路话音+两路计算机数据综合传输系统实验学生姓名专业名称:电子信息工程指导教师:2013年5月20日脉冲编码调制解调实验一、实验原理(一)基本原理PCM 调制原理框图1、 量化从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合,模拟信号的量化分为均匀量化和非均匀量化。
模拟信号的量化2、 编码所谓编码就是把量化后的信号变换成二进制码,其相反的过程称为译码。
当然,这里的编码和译码与差错控制编码和译码是完全不同的,前者是属于信源编码的范畴。
模拟入yx量化器量化值..(二)实验电路说明模拟信号在编码电路中,经过抽样、量化、编码,最后得到PCM编码信号。
在单路编译码器中,经变换后的PCM码是在一个时隙中被发送出去的,在其他的时隙中编译码器是没有输出的,即对一个单路编译码器来说,它在一个PCM帧(32个时隙)里,只在一个特定的时隙中发送编码信号。
同样,译码电路也只是在一个特定的时隙(此时隙应与发送时隙相同,否则接收不到PCM编码信号)里才从外部接收PCM编码信号,然后进行译码,经过带通滤波器、放大器后输出。
(三)输入、输出点参考说明1、输入点说明MCLK:芯片工作主时钟,频率为2.048M。
SIN IN-A:模拟信号输入点。
BSX:PCM编码所需时钟信号输入点。
BSR:PCM解码所需时钟信号输入点。
FSXA:PCM编码帧同步信号输入点。
FSRA:PCM解码帧同步信号输入点。
PCMIN-A:PCM解调信号输入点。
EARIN1:耳机语音信号输入点。
MICOUT1:麦克风语音信号输出点。
K1、K2:A律、μ律切换开关PCMAOUT-A:脉冲编码调制信号输出点。
SIN OUT-A:PCM解调信号输出点。
二、实验步骤1、将信号源模块和模块2固定在主机箱上,将黑色塑封螺钉拧紧,确保电源接触良好。
2、插上电源线,打开主机箱右侧的交流开关,将信号源模块和模块2的电源开关拨下,观察指示灯是否点亮,红灯为+5V电源指示灯,绿灯为-12V电源指示灯,黄色为+12V电源指示灯。
实验十三时分多路复用PCM实验【实验内容】1.脉冲编码调制(PCM)及系统实验2.PCM编码时分多路复用时序分析实验【实验目的】1.加深对PCM编码过程的理解。
2.掌握时分多路复用的工作过程。
3.了解PCM系统的工作过程。
【实验环境】1.分组实验:两人一组或单人2.设备:通信实验箱,数字存储示波器【实验原理】1.PCM基本工作原理脉冲编码调制(PCM)是把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号后在信道中传输。
脉冲编码调制包括三个步骤,对模拟信号先抽样,再对样值幅度量化、编码的过程。
抽样:要使模拟信号数字化并实现时分多路复用,首先要在时间上对模拟信号进行离散化处理,这一过程叫抽样。
所谓抽样就是每隔一定的时间间隔T,抽取话音信号的一个瞬时幅度值(抽样值),抽样后所得出的一系列在时间上离散的抽样值称为样值序列。
抽样后的样值序列在时间上是离散的,可进行时分多路复用,也可将各个抽样值经过量化、编码变换成二进制数字信号。
量化:抽样把模拟信号变成了时间上离散的脉冲信号,但脉冲的幅度仍然是模拟的,还必须进行离散化处理,才能最终用数码来表示。
这就要对幅值进行舍零取整的处理,这个过程称为量化。
量化有均匀量化和非均匀量化。
采用均匀间隔量化级进行量化的方法称为均匀量化或线性量化,这种量化方式会造成大信号时信噪比有余而小信号时信噪比不足的缺点。
如果使小信号时量化级间宽度小些,而大信号时量化级间宽度大些,就可以使小信号时和大信号时的信噪比趋于一致。
这种非均匀量化级的安排称为非均匀量化或非线性量化。
目前国际上普遍采用容易实现的A律13折线压扩特性和μ律15折线的压扩特性。
我国规定采用A律13折线压扩特性。
采用13折线压扩特性后小信号时量化信噪比的改善量可达24dB,而这是靠牺牲大信号量化信噪比(亏损12dB)换来的。
A律和μ律的压扩特性如下图所示:编码:抽样、量化后的信号还不是数字信号,需要把它转换成数字编码脉冲,这一过程称为编码。
《通信原理》实验报告实验四:脉冲编码调制解调实验实验五:两路PCM时分复用实验系别:信息科学与技术系专业班级:通信工程0901学生姓名:郑洋同组学生:马超成绩:指导教师:惠龙飞(实验时间:2011年11 月25日)华中科技大学武昌分校一、实验目的1、掌握脉冲编码调制与解调的原理。
2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。
3、了解脉冲编码调制信号的频谱特性。
4、了解大规模集成电路W681512的使用方法。
二、实验内容1、观察脉冲编码调制与解调的结果,分析调制信号与基带信号之间的关系。
2、改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。
3、改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况。
4、改变位同步时钟,观测脉冲编码调制波形。
三、实验器材1、信号源模块一块2、②号模块一块3、60M双踪示波器一台4、连接线若干四、实验原理(一)基本原理模拟信号进行抽样后,其抽样值还是随信号幅度连续变化的,当这些连续变化的抽样值通过有噪声的信道传输时,接收端就不能对所发送的抽样准确地估值。
如果发送端用预先规定的有限个电平来表示抽样值,且电平间隔比干扰噪声大,则接收端将有可能对所发送的抽样准确地估值,从而有可能消除随机噪声的影响。
脉冲编码调制(PCM)简称为脉码调制,它是一种将模拟语音信号变换成数字信号的编码方式。
脉码调制的过程如图5-1所示。
PCM主要包括抽样、量化与编码三个过程。
抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散、幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。
国际标准化的PCM 码组(电话语音)是用八位码组代表一个抽样值。
编码后的PCM码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路。
预滤波是为了把原始语音信号的频带限制在300Hz~3400Hz左右,所以预滤波会引入一定的频带失真。
固定及变速率时分复用、解复用实验第一部分固定速率时分复用/解复用实验一、实验目的1.掌握固定速率时分复用/解复用的同步复接/分接原理。
2.掌握帧同步码的识别原理。
3.掌握集中插入帧同步码时分复用信号的帧结构特点。
二、实验内容1.搭建一个理想信道固定速率时分复用数字通信系统,使系统正常工作。
2.搭建一个理想信道固定速率时分解复用数字通信系统,使系统正常工作。
3.用示波器观察集群信号(FY_OUT)、位同步信号(BS)及帧同步信号(FS),熟悉它们的对应关系。
4.观察信号源发光管与终端发光管的显示对应关系,直接观察时分复用与解复用的实验效果。
三、实验仪器示波器,RC-GT-II型光纤通信实验系统。
四、基本原理1.同步复接/分接原理固定速率时分复用/解复用通常也称为同步复接/分接。
在实际应用中,通常总是把数字复接器和数字分接器装在一起做成一个设备,称为复接分接器(缩写为Muldex)。
图1.1 数字复接器的基本组成图 1.2 数字分接器的基本组成图数字复接器的基本组成如图1.1所示。
数字复接器的作用是把两个或两个以上的支路数字信号按时分复接方式合并成为单一的合路数字信号。
数字复接器由定时、调整和复接单元所组成。
定时单元的作用是为设备提供统一的基准时间信号,备有内部时钟,也可以由外部时钟推动。
调整单元的作用是对各输入支路数字信号进行必要的频率或相位调整,形成与本机定时信号完全同步的数字信号。
复接单元的作用是对已同步的支路信号进行时间复接以形成合路数字信号。
数字分接器的基本组成如图1.2所示。
数字分接器的作用是把一个合路数字信号分解为原来支路的数字信号。
数字分接器由同步、定时、分接和恢复单元所组成。
定时单元的作用是为分接和恢复单元提供基准时间信号,它只能由接收的时钟来推动。
同步单元的作用是为定时单元提供控制信号,使分接器的基准时间与复接器的基准时间信号保持正确的相位关系,即保持同步。
分接单元与复接单元相对应,分接单元的作用是把输入的合路数字信号(高次群)实施时间分离。