18.2勾股定理的逆定理(三)
- 格式:doc
- 大小:32.50 KB
- 文档页数:3
勾股定理课时练(1)1.在直角三角形 ABC 中,斜边 AB=1 ,则 AB 2BC 2AC 2的值是()A.2B.4C.6D.82.如图 18-2- 4 所示 ,有一个形状为直角梯形的零件ABCD ,AD ∥ BC,斜腰 DC 的长为10 cm,∠ D=120°,则该零件另一腰 AB 的长是 ______ cm(结果不取近似值) .3.直角三角形两直角边长分别为 5 和 12,则它斜边上的高为 _______.4.一根旗杆于离地面12 m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16 m,旗杆在断裂之前高多少m ?5. 如图,如下图,今年的冰雪灾害中,一棵大树在离地面 3 米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米 .3m“路”4m第5题图第2题图6. 飞机在空中水平飞行, 某一时刻刚好飞到一个男孩子头顶正上方4000 米处 , 过了 20 秒, 飞机距离这个男孩头顶 5000 米, 求飞机每小时飞行多少千米 ?7.如图所示,无盖玻璃容器,高 18 cm,底面周长为 60 cm,在外侧距下底 1 cm的点 C 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口 1 cm的 F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度 .8.一个零件的形状如图所示,已知AC=3cm, AB=4cm,BD=12cm。
求 CD的长 .9.如图,在四边形 ABCD中,∠ A=60°,∠ B=∠ D=90°, BC=2,CD=3,求 AB 的长 .10. 如图,一个牧童在小河的南4km 的 A 处牧马,而他正位于他的小屋B 第的西7 8km题图北 7km处,第 8题图. 他要完成这件事情所走的最短路程是多少?他想把他的马牵到小河边去饮水,然后回家11 如图,某会展中心在会展期间准备将高5m, 长 13m,宽2m 的楼道上铺地毯 , 已知地毯平方米 18 元,请你帮助计算一下,铺完这个楼第9题图道至少需要多少元钱 ?12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻13m5m 找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为 15 千米.早晨 8:00甲先出发,他以 6 千米 / 时的第 11题速度向东行走, 1 小时后乙出发,他以 5 千米 / 时的速度向北行进,上午10:00,甲、乙二人相距多远?还第一课时答案:1.A ,提示:根据勾股定理得BC2AC21,所以 AB2BC 2AC 2=1+1=2 ;2.4 ,提示:由勾股定理可得斜边的长为 5 m ,而 3+4-5=2 m ,所以他们少走了4 步.3.60 ,提示:设斜边的高为 x ,根据勾股定理求斜边为12252169 13 ,再利13用面积法得,15 12 1 13 x, x60 ; 2 2134. 解:依题意, AB=16 m , AC=12 m ,在直角三角形 ABC 中 ,由勾股定理 ,BC 2 AB 2AC 2162 122202,所以 BC=20 m ,20+12=32( m ), 故旗杆在断裂之前有 32 m 高.5.86. 解: 如图 , 由题意得 ,AC=4000 米 , ∠C=90° ,AB=5000 米 , 由勾股定理得BC=50002 400023000 ( 米 ),3所以飞机飞行的速度为540( 千米 / 小时 )2036007. 解:将曲线沿 AB 展开,如图所示,过点 C 作 CE ⊥ AB 于 E.在Rt CEF , CEF 90 , EF=18-1-1=16 ( cm ),1CE= 30(cm) ,2. 60CE2EF230 2 16 234( )由勾股定理,得 CF=8. 解:在直角三角形 ABC 中,根据勾股定理,得22222在直角三角形 CBD 中,根据勾股定理,得 2222CD=BC+BD=25+12 =169,所以 CD=13.9. 解:延长 BC 、AD 交于点 E. (如图所示)∵∠ B=90°,∠ A=60°,∴∠ E=30°又∵ CD=3,∴ CE=6,∴ BE=8, 设 AB=x ,则 AE=2x ,由勾股定理。
《勾股定理》同步作业及参考答案§18.1 勾股定理(一)1.在Rt △ABC ,∠C=90°:⑴已知a=b=5,求c ; ⑵已知a=1,c=2, 求b ;⑶已知c=17,b=8, 求a ; ⑷已知a :b=1:2,c=5, 求a ; ⑸已知b=15,∠A=30°,求a ,c .2. 已知:如图,等边△ABC 的边长是6cm :⑴求等边△ABC 的高;⑵求S △ABC .3.填空题:⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= ; ⑵在Rt △ABC ,∠B=90°,a=3,b=4,则c= ;⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= ; ⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 ; ⑸已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 ; 4.已知:如图,在△ABC 中,∠C=60°,AB=34,AC=4,AD 是BC 边上的高,求BC 的长.5.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积.中考链接1.(2005 扬州)如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.2.(2006,娄底)如图,滑杆在机械槽内运动,ACB ∠为直角,已知滑杆AB 长2.5米,顶端A 在AC 上运动,量得滑杆下端B 距C 点的距离为1.5米,当端点B 向右移动0.5米时,求滑杆顶端A 下滑多少米? DBAAEC§18.1 勾股定理(二)1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是米.A2.已知:如图,四边形ABCD中,AD∥BC,AD⊥DC,AB⊥AC,∠B=60°,CD=1cm,求BC的长. ArrayB3.(2009年,北京市)如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M、N分别是AD、n ,且n为BC边的中点,则A′N= ; 若M、N分别是AD、BC边的上距DC最近的n等分点(2整数),则A′N=(用含有n的式子表示).4.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是多少?5.如图,欲测量松花江的宽度,沿江岸取B、C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为.BC6.一根32厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=16厘米,且RP⊥PQ,则RQ= 厘米.Q7.有一个边长为1米的正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为米. 8.如图,山坡上两株树木之间的坡面距离是43米,则这两株树之间的垂直距离是米,水平距离是米.中考链接棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答.()A.一定不会B.可能会C.一定会D.以上答案都不对§18.1 勾股定理(三)1. 已知:在Rt △ABC 中,∠ACB=90°,CD ⊥BC 于D ,∠A=60°,CD=3,求线段AB 的长.2. 已知:如图,△ABC 中,AC=4,∠A =45°,∠B =60°,根据题设可知什么?3. 已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2,求四边形ABCD 的面积.4.(2010年,北京市燕山)已知等边△ABC 的边长为a ,则它的面积是( ).A .21a 2 B .23a 2 C .42a 2 D .43a 25.如图,将长方形ABCD 沿直线AE 折叠,点D 落在BC 边上的点D ′.若AB=8,AD=10,求CE 的长.6.已知:如图,在△ABC 中,∠B=30°,∠C=45°,AC=22, 求(1)AB 的长;(2)S △ABC .C中考链接1.(2006,河北课改)如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从→→所走的路程为m.(结果保留根号)A B C2.(2010年,北京市门头沟区)如图,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,……,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积S n=________(n为正整数).§18.1 勾股定理(四)1. △ABC 中,∠C=90°,AB=4,BC=32,CD ⊥AB 于D ,则AC= ,CD= ,BD= ,AD= ,S △ABC = .2.已知:如图,△ABC 中,AB=26,BC=25,AC=17,求S △ABC .3.如图所示在平面直角坐标系中,第一象限的角平分线OM 与反比例函数的图象相交于点M ,已知OM①求点M 的坐标;②求此反比例函数的解析式.4.如图,甲、乙两船从港口A 同时出发,甲船以16海里/时速度向南偏东50°航行,乙船向北偏东40°航行,3小时后,甲船到达B 岛,乙船到达C 岛.若C 、B 两岛相距60海里,问乙船的航速是多少?5.如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域. (1)A 城是否会受到这次台风的影响?为什么?(2)若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?C中考链接(2010年,北京市大兴区)如图,ABC 的三个顶点A 、B 、C 的坐标分别为(33),、(64)46,、(,),则B C 边上的高为 .1.在Rt △ABC 中,若AC BC AB =4,则下列结论中正确的是( ).A .∠C =90°B .∠B =90°C .△ABC 是锐角三角形D .△ABC 是钝角三角形2.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( ). A. 仍是直角三角形 B. 不可能是直角三角形 C. 是锐角三角形 D. 是钝角三角形3.下列四条线段不能组成直角三角形的是( )A .a=8,b=15,c=17B .a=9,b=12,c=15C .a=5,b=3,c=2D .a :b :c=2:3:44.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?⑴ a=3,b=22,c=5; ⑵ a=5,b=7,c=9; ⑶ a=2,b=3,c=7; ⑷ a=5,b=62,c=1 .5.一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.6.如图所示,在△ABD 中,∠A 是直角,AB =3,AD =4,BC =12,DC =13,△DBC 是直角三角形吗?为什么?中考链接(2006,荆门大纲)园丁住宅小区有一块草坪如图所示,已知3AB =米,4BC =米,12CD =米,13DA =米,且AB BC ⊥,求这块草坪的面积.1.在△ABC 中,若a 2=b 2-c 2,则△ABC 是 三角形, 是直角; 2.△ABC 中∠A 、∠B 、∠C 的对边分别是a 、b 、c ,下列命题中的假命题是( )A .如果∠C -∠B=∠A ,则△ABC 是直角三角形;B .如果c 2= b 2—a 2,则△ABC 是直角三角形,且∠C=90°; C .如果(c +a )(c -a )=b 2,则△ABC 是直角三角形;D .如果∠A :∠B :∠C=5:2:3,则△ABC 是直角三角形. 3. 根据三角形的三边a ,b ,c 的长,判断三角形是不是直角三角形: (1)a =11,b =60,c =61 (2)a =32,b =1,c =45 4.如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A 、B 、C 三点能否构成直角三角形?为什么?CD5.如图,四边形ABCD 中,AD=4,CD=3,AB=13,BC=12, ∠ADC=90°,求四边形ABCD 的面积.6.在△ABC 中,AB=13,BC=10,BC 边上的中线AD=12,求AC 的长.C中考链接(2005年,呼和浩特课改)如图,在由单位正方形组成的网格图中标有AB CD EF GH ,,,四条线段,其中能构成一个直角三角形三边的线段是( ).A.CD EF GH ,, B.A BE F G H ,, C.AB CD GH ,, D.A BC D E F ,,1.若三角形的三边是 ⑴1、3、2; ⑵51,41,31; ⑶32,42,52 ⑷9,40,41;⑸(m +n )2-1,2(m +n ),(m +n )2+1;则构成的是直角三角形的有( ).A .2个B .3个 C.4个 D.5个2.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?⑴a=9,b=41,c=40; ⑵a=15,b=16,c=6;⑶a=2,b=32,c=4; ⑷a=5k ,b=12k ,c=13k (k >0). 3.已知△ABC 的三边为a 、b 、c ,且a+b=4,ab=1,c=14,试判定△ABC 的形状.4.若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+50=6a+8b+10c ,求△ABC 的面积.5.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?N中考链接某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?参考答案及解析§18.1 勾股定理(一)1.(1)25; (2)3; (3)15; (4)5; (5)a=53, c=103.2. (1)33; (2)S △ABC =93.3.⑴17; ⑵7; ⑶a=6,b=8; ⑷6,8,10; ⑸4或34.4.8.5.48.中考链接1. 4.2.由勾股定理求得AC =2米,DC =2米,CE=1.5米,所以滑杆顶端A 下滑的长AE=0.5米.§18.1 勾股定理(二)1.2502米.2. 334.3.2,n (2n ≥,且n 为整数).4.18米.5. 503米.6.20厘米.7.22米.8.23米,6米.中考链接A.§18.1 勾股定理(三)1. 4.2. 根据题设可求得BC=634,AB=63222+.提示:作CD ⊥AB 于D.3. 63.提示:延长AD 、BC 交于点E ,则S 四边形ABCD =S △ABE - S △CDE .4. D .5.3.6.(1)AB=4; (2)S △ABC =2+23.中考链接 1.52 .2. 22-n .§18.1 勾股定理(四)1.AC=2,CD=3,BD=3,AD=1,S △ABC =23.2. S △ABC =204.提示:作BD ⊥AC 于D.设AD=x ,由勾股定理得方程:2222)17(2526x x --=-,解得x =10. 3.①点M 的坐标为(2,2); ②反比例函数的解析式为xy 4=. 4.12海里/时.5.(1)A 城会受到这次台风的影响.作AM ⊥BF 于M ,则AM=160km<200km .(2)以A 为圆心、以200km 为半径画圆,分别交BF 于C 、D 两点,求得MC=MD=120km ,即CD=240 km , A 城遭受这次台风影响的时间为240÷40=6小时.中考链接S △ABC =5,BC=22,则B C 边上的高为225.§18.2 勾股定理的逆定理(一)1.A .2.A.3.D .4.⑴是直角三角形,∠B 是直角; ⑵不是直角三角形;⑶是直角三角形,∠C 是直角; ⑷是直角三角形,∠A 是直角.5.设短边长x 米,则另外两边分别长7+x 、8+x 米,x +7+x +8+x =30,x =5,三边长分别为5、12、13,这个三角形是直角三角形.6.在R t △ABD 中,由勾股定理得BD=5;在△CBD 中,由勾股定理的逆定理得∠CBD=90º,△DBC 是直角三角形吗.中考链接连结AC .在R t △ABC 中,由勾股定理得AC=5;在△ACD 中,由勾股定理的逆定理得∠ACD=90º,则S=6,S△ACD=30, S四边形ABCD=36米2.△ABC§18.2 勾股定理的逆定理(二)1.直角,∠B.2.B.3.(1)是,(2)不是.4.BC=25,AC=5,AB=5,由勾股定理的逆定理得∠ACB=90º,即A、B、C三点能构成直角三角形.5. 连结AC.在R t△ADC中,由勾股定理得AC=5;在△ACB中,由勾股定理的逆定理得∠ACB=90º,则S△ADC=6,S△ACB=30, S四边形ABCD=24米.6. AC=13.中考链接B.§18.2 勾股定理的逆定理(三)1.B.分别是⑴、⑷、⑸.2.⑴是直角三角形,∠B是直角;⑵不是直角三角形;⑶是直角三角形,∠C是直角;⑷是直角三角形,∠C是直角.3.由a+b=4,ab=1,得a2+b2=(a+b)2-2ab=14= c2,所以∠C=90º,即△ABC是直角三角形.4.由a2+b2+c2+50=6a+8b+10c,得(a-3)2+(b-4)2+( c-5)2=0,则a=3,b=4,c=5,由勾股定理的逆定理得∠ACB=90º,则S△ABC=6.5.AC=12, BC=5, AB=13,∠ACB=90º,又∠ABC=50º,则∠CAB=40º,甲巡逻艇的航向为北偏东50°.中考链接“海天”号沿西北(或北偏西45º)方向.。
要点一、勾股定理的逆定理如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如c ).(2) 验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C =90°的直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形,其中c 为三角形的最大边.要点三、互逆命题如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.要点诠释:原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.要点四、勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果a b c 、、是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形. 要点诠释:(1)22121n n n -+,,(1,n n >是自然数)是直角三角形的三条边长; (2)2222,21,221n n n n n ++++(n 是自然数)是直角三角形的三条边长;(3)2222,,2m n m n mn -+ (,m n m n >、是自然数)是直角三角形的三条边长;。
18.2 勾股定理的逆定理知识点1 互逆命题在两个命题中,如果一个命题的题设和结论分别是另一个命题的结论和题设,那么这两个命题称为互逆命题,如果把其中一个叫做原命题,那么另一个叫做它的逆命题.每个命题都有逆命题,但原命题是真命题,它的逆命题不一定是真命题.原命题和逆命题的真假性一般有四种情况:真、假;真、真;假、假;假、真.知识点2 互逆定理如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.每个命题都有逆命题,但不是所有的定理都有逆定理.知识点3 勾股定理的逆定理——直角三角形的判别条件定理:如果三角形的边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.解读:(1)作用:可用边的关系来判断一个三角形是否是直角三角形.(2)用较短两边的平方和与最大边的平方进行比较.(3)条件中没有涉及直角三角形,结论是直角三角形.(4)勾股定理与勾股定理的逆定理的联系与区别:联系:①两者都与三角形的三边关系a2+b2=c2有关;②两者都与直角三角形有关.区别:①勾股定理是以“一个三角形是直角三角形”为条件,进而得到这个直角三角形的三边的数量关系,即a2+b2=c2.②勾股定理的逆定理是以“一个三角形的三边满足a2+b2=c2”为条件,进而得到这个三角形是直角三角形,是判断一个三角形是否是直角三角形的一个有效的方法.(5)应用:①现实生活中,在没有测量角的仪器的情况下,常利用勾股定理的逆定理来确定直角(或垂线).②勾股定理与勾股定理的逆定理的综合运用.知识点4 勾股数概念:满足a2+b2=c2的三个正整数,称为勾股数.解读:(1)勾股数满足两个条件:①正整数;②满足a2+b2=c2.(2)常见的勾股数:3,4,5;6,8,10;5,12,13;8,15,17;9,40,41;…(3)小窍门:记住常见的勾股数可以提高做题速度.(4)一组勾股数中各数扩大相同的整数倍能得到一组新的勾股数,如当k=1,2,3,…,n时,下列各组数还是勾股数,{3k,4k,5k},{l5k,l2k,l3k},…延伸:(1)几个求勾股数的常见公式:①n2-1,2n,n2+1(n≥2,n.为正整数);②2n+1,2n2+2n,2n2+2n+1(n是正整数);③m2-n2,2mn,m2+n2(m>n,m、n都是正整数).(2)小窍门:①有最小的勾股数(3,4,5),没有最大的勾股数.②勾股数不能全是奇数,但可以全是偶数.③勾股数中不可能只有两个偶数.一、选择题1.以下面各组数为边长的三角形,能组成直角三角形的个数是( )①6,7,8;②8,15,17;③7,24,25;④12,35,37.A.1B.2C.3D.42.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,在满足下列条件下,不是直角三角形的是( )A.a :b :c =3:4:5B.a :b :c =9:12:15C.∠A :∠B :∠C =3:4:5D.∠A :∠B :∠C =1:2:33.在△ABC 中,∠A :∠B :∠C =2:1:3, a 、b 、c 分别为∠A 、∠B 、∠C 的对边,则有( )A.b 2+a 2=c 2B.c 2=3b 2C.3a 2=2c 2D.c 2=2b 24.等腰三角形底边上的高为1cm,周长为4cm,则三角形的面积是( )A.14cm 2B.10cm 2C.1cm 2D.23cm 45.如图所示,已知AB ⊥CD , △ABD 、△BCE 都为等腰三角形,如果CD =7,BE =3,那么AC 的长为( )A.8B.5C.3D.46.下列说法中,正确的是( )A.三角形两条边的平方和等于第三条边的平方B.如果一个三角形两条边的平方差等于第三条边的平方,那么这个三角形是直角三角形C.在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c , 若a 2+b 2=c 2,则∠A =90°D.在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,若c 2-a 2=b 2,则∠B=90°7.把直角三角形的三边都扩大n 倍( n >0),得到的三角形是( )A.等腰三角形B.锐角三角形C.直角三角形D.不能确定8.小丽和小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了10分钟,小芳先回家拿了钱去图书馆,小芳到家用了6分钟,从家到图书馆用了8分钟.小芳从公园到图书馆拐的角是( )A.锐角B.直角C.钝角D.不能确定9.如图所示,我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果大正方形的面积是13, 小正方形的面积是1,直角三角形较短的直角边为a ,较长的直角边为b ,那么(a +b )2的值为( )A.13B.19C.25D.16910.长度分别为9cm、12cm、15cm、36cm、39cm的五根木棍,选出三根首尾连接,最多可搭成的直角三角形的个数为( )A.1B.2C.3D.411.在下列长度的各组线段中,能组成直角三角形的是( )A.12,15,27B.32,42,52C.5a, l2a, l3a(a>0)D.1,2,312.满足下列条件的△ABC,不是直角三角形的是( )A.∠A=∠B-∠CB.∠A:∠B:∠C=1:1:2C.a:b:c=1:1:2D.b2=a2-c213.已知在△ABC中,AB=8,BC=15,AC=17,则下列结论无法判断的是( )A.△ABC是直角三角形,且AC为斜边B.△ABC是直角三角形,且∠ABC=90°C.△ABC的面积为60D.△ABC是直角三角形,且∠A=60°14.在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是( )A.∠C=90°B.a2=b2-c2C.c2=2a2D.a=b15.若△ABC的三边分别为m2-1,2m,m2+1(m>1),则下列结论正确的是( )A.△ABC是直角三角形,且斜边的长为m2+ 1B.△ABC是直角三角形,且斜边的长为2mC.△ABC是直角三角形,但斜边的长需由m的大小确定D.△ABC无法判定是否是直角三角形二、填空题1.若△ABC三边长为a、b、c,且满足(a-b)(a2+b2-c2)=0,则△ABC的形状为_______三角形.2.若三角形三边之比为3:4:5,则该三角形为________三角形;若三角形三角之比为1:2:3,则该三角形为__________三角形.3.三角形三边分别为6、8、10,则最长边上的高为__________.4.三边长为a=m2-n2,b=2mn,c=m2+n2(其中m>n>0)的三角形为_______三角形.5.请任意写出三组勾股数_______,________,_________.6.一直角三角形的两直角边分别为9、12,该三角形的周长为_________.7.在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,则斜边上的高是__________cm.8.如图所示,在△ABC中,AB=AC,D是BC上一点,AD⊥AB,AD=9cm,BD=15cm,则AC=-_________cm.9.一个直角三角形的三边长是不大于10的三个连续偶数,则它的周长是_________.10.传说,古埃及人曾用“拉绳”的方法画直角,现有一根长24厘米的绳子,请你利用它拉出一个周长为24厘米的直角三角形,那么你拉出的直角三角形三边的长度分别是______厘米,_________厘米,_________厘米,其中的道理是________.11.一条对角线长39cm,一条边长是36cm的矩形的周长为________cm.12.三角形三边长为a+1,a+2,a+3,当a=_________时,此三角形为直角三角形.13.在△ABC中,三边为a、b、c,且满足a2+b2+c2=ab+ac+bc,则△ABC的形状为________.14.在△ABC中,AB=13cm,BC=10cm,BC边上的中线AD=l2cm,则△ABC的面积为_______.15.如图所示,在Rt△ABC中,∠C=90°,∠1=∠2, CD=1.5,BD=2.5,则AC等于___________.16.将一根长24cm的筷子,置于直径为5cm、高为12cm的圆柱形水杯中(如图所示).设筷子露在杯子外面的长为h cm,则h的取值范围是__________.17.直角三角形的三边长分别是a-b,a,a+b,其周长为24cm,则面积为________cm2.三、解答题1.试判断三边长分别为2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是否是直角三角形.2.已知△ABC的三边的长分别为a、b、c,且满足关系式a2+b2+c2+50=6a+8b+10c,试判断△ABC的形状.3.在△ABC中,∠BAC=90°,AB=AC,P为BC上一点,求证:PB2+PC2=2P A2.4.如图所示,CD是△ABC的边AB上的高,且CD2=AD·DB.求证:∠ACB=90°.5.求证a=m2-n2, b=m2+n2,c=2mn(m>n>0)是一个直角三角形的三边.6.如图所示,如果只给你一把带刻度的直尺,你是否能检验∠MPN是不是直角,简述你的作法.7.如图所示,在四边形ABCD中,AB⊥BC,且AB=9,BC=12,CD=17,AD=8,求四边形ABCD的面积.8.如图所示,学校B前面有一条笔直的公路,学生放学后走AB、BC两条路可到达公路,经测量BC=6km,BA=8km,AC=10km.现需修建一条公路使学校B到公路的距离最短,请你帮助学校B设计一种方案,并求出公路的长.9.如图所示,一个池塘呈三角形形状,三角形的边长分别为6m、8m、10m,距池塘边缘5m 内的土地上栽着树,问池塘连同树木共占土地多少m2?(结果精确到1m2,π=3.14)10.如图所示,在正方形ABCD中,F为DC的中点,E为BC上一点,且1,4EC BC试判断AF与EF的位置关系,并说明理由.11.3,4 ,5 32+42=525, 12 , 13 52+122=327,24 ,25 72+242=2529,40 ,41 92+402=412……21, b ,c212+b2=c2(1)试找出它们的共同点,并说明你的结论;(2)当a=21时,求b、c的值.a b c第一组3=2×1+1 4=2×l×(1+1) 5=2×1×(1+1)+1第二组 5=2×2+1 12=2×2×(2+1) 13=2×2×(2+1)+1 第三组7=2×3+1 24=2×3×(3+1) 25=2×3×(3+1)+1 第四组9=2×4+1 40=2×4×(4+1) 41=2×4×(4+1)+1 … … … …根据以上勾股数组的组成傅点,你能求,出第七组勾股数的a 、b 、c 各是多少吗?第n 组呢?13.如图是一个零件的形状,校规这个零件中必须有AC ⊥BC ,工人师傅量得B 、C 两点距离为36,AD =12,CD =9,AB =39,∠ADC =90°.问:这个零件符合要求吗?并说明理由.14.如图所示,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,并且AB =4,1,4CE BC =F 为CD 的中点,连接AF 、AE 、EF ,△AEF 是什么三角形?请说明理由.15.甲、乙两船从港口A 同时出发,甲船以16海里/时的速度向北偏东35°航行,乙船沿南偏东一角度航行,船速为12海里/时,2小时后,甲、乙两船相距40海里,问乙船的航行方向.16.如图所示,在△ABC 中,AB =40,BC =100,且BC 边上的中线长AD =30.(1)试说明2;ABC ABD S S ∆∆=(2)求△ADC 的面积.17.同学们在数学老师的带领下来到平坦的草原上游玩,他们发现前面有两棵大树,当地的牧'民告诉他们,这是两棵古老而特别的树,两楝树之间的距离为750 m,一部分同学以45 m/min 的速度向一棵大树走去,伺时,剩下的一部分同学以60m/min 的速度向另一棵大树走去,10min 后,两组同学同时到达目的地.问:(1)两组同学行走的方向是否成直角?(2)如果他们仍以原速度行走,至少还需要几分钟才能相遇?18.Tom 和Jerry 去野外宿营,在某地要确定两条互相垂直的路,而身边又没带直角尺,可利用的只有背包带,你能帮他们想一个简单可行的办法吗?19.已知某开发区有一块四边形的空地ABCD ,如图所示,现计划在该空地上种上草皮,经测量,∠A =90°,AB =3m,BC =12m,CD =13m,DA =4m.若每平方米草皮需要200元,问需要投人多少元.20.阅读下列解题过程:已知a 、b 、c 为△ABC 的三边,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.解:∵222244a c b c a b -=-① ∴2222222()()()c a b a b a b -=+- ②∴222c a b =+③ ∴△ABC 是直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:________;(2)错误的原因为___________;(3)本题正确的结论是_____________;21.观察下列两组勾股数:(1)3,4,5;5,12,13;7,24,25;…(2)6,8,10;10,24,26;14,48,50;…你发现上述两组勾股数各有什么特征?请用含有字母m 、n 的式子表示出来,你还能发现勾股数有什么特征?与同学交流.22.已知,如图△ABC 的周长是24,M 是AB 的中点,MC =MA =5,求△ABC 的面积.。
勾股定理的逆定理及其证明勾股定理是数学中一个经典的几何定理,它可以被表述为:在直角三角形中,斜边的平方等于两个直角边的平方和。
而勾股定理的逆定理则是对这一关系进行逆向推导的结果,即:如果一个三边长满足两条较短边的平方之和等于最长边的平方,那么这三条边所对应的角形成一个直角三角形。
本文将阐述这一逆定理的证明方法。
首先,假设有一个三角形ABC,其三条边分别为AB、AC和BC,我们要证明的是如果满足AB² + AC² = BC²,那么角ABC是个直角。
证明思路首先要求建立直角三角形,而直角可以通过两条垂直线交汇形成。
因此我们可以将边BC延长,产生点D,使得AD与BC垂直相交。
这样,我们就得到了直角三角形ABD。
接下来,我们需要证明两个关键的定理,即:定理1:如果AB² + AC² = BC²,那么∠ABC = ∠ABD。
证明:根据勾股定理,我们可以得到AB² = AD² + BD²,将这个等式带入AB² + AC² = BC²中,得到AD² + BD² + AC² = BC²。
而AB² + AC² = BC²是题目已经给出的条件,所以我们可以得到AD² + BD² = 0。
由于无论AD和BD的长度为多少,它们都是正数,所以AD² + BD² = 0只有一个可能的解,即AD = 0,BD = 0。
因此,D点与B点重合,这说明∠ABC = ∠ABD。
定理2:如果∠ABC = ∠ABD,并且∠ABC是直角,那么AB² +AC² = BC²。
证明:根据正弦定理,我们可以得到AB/AD = sin∠ABD,以及AC/AD = sin∠ADC。
将这两个等式带入,可以得到AB/AD + AC/AD = sin∠ABD + sin∠ADC。
新人教版八年级数学下册第十七章《勾股定理的逆定理(三)》学案1.⑴在Rt △ABC ,∠C=90°,a =8,b=15,则c= . ⑵在Rt △ABC ,∠B=90°,a =3,b=4,则c= . ⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= .(4)已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 (把这题的解题过程展示到黑板上)2.(1)已知01086=-+-+-z y x ,则由此z y x ,,为三边的三角形是 三角形.(2)三角形的三边长为3、4、5,则其面积为 .(3)△ABC 中,AB=13cm, BC=10cm, BC 边上的中线AD=12cm,求AC (画出图形,把这题解题过程展示在黑板上)活动二 加深勾股定理与逆定理之间的关系例:1在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC=14BC ,求证:AF ⊥EF .例2:已知:如图,四边形ABCD ,AD ∥BC ,AB=4,BC=6,CD=5,AD=3。
求:四边形ABCD 的面积。
例3:已知:如图,在△ABC 中,CD 是AB 边上的高,且CD 2=AD ·BD 。
A B C D ECD练习:1、如图,在四边形ABCD中,∠B=90°,AB=1, BC=1, DC=3, AD=5, 试求∠DCB 的大小.(自主完成后小组交流,把过程展示在黑板上)小结:谈谈你的学习收获课堂练习:1.在Rt△ABC,∠C=90°,⑴如果a =7,c=25,则b= .⑵如果∠A=30°,a =4,则b= .⑶如果∠A=45°,a =3,则c= .(4)如果b=8,a:c=3:5,则c=2.若△ABC的三边a、b、c,满足a:b:c=1:1:2,试判断△ABC的形状.3.若△ABC的三边a、b、c满足a 2+b2+c2+50=6 a +8b+10c,求△ABC的面积.【此题选做】反思小结,观点提炼:本节学习检测一、填空题1.如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号)4.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,①若a 2+b 2>c 2,则∠c 为____________;②若a 2+b 2=c 2,则∠c 为____________;③若a 2+b 2<c 2,则∠c 为____________.5.若△ABC 中,(b -a )(b +a )=c 2,则∠B =____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是______三角形.7.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为______.8.△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为______,此三角形为______.二、选择题9.下列线段不能组成直角三角形的是( ).(A)a =6,b =8,c =10 (B)3,2,1===c b a (C)43,1,45===c b a (D)6,3,2===c b a 10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).(A)1∶1∶2 (B)1∶3∶4(C)9∶25∶26 (D)25∶144∶16911.已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).(A)一定是等边三角形 (B)一定是等腰三角形(C)一定是直角三角形 (D)形状无法确定三、解答题12.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.14.已知:如图,在正方形AB CD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .15.在B 港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?拓展、探究、思考16.已知△ABC中,a2+b2+c2=10a+24b+26c-338,试判定△ABC的形状,并说明你的理由.17.已知a、b、c是△ABC的三边,且a2c2-b2c2=a4-b4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n的代数式表示此规律并证明,再根据规律写出接下来的式子.教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
18.2 勾股定理的逆定理(三)
一、教学目标
1.应用勾股定理的逆定理判断一个三角形是否是直角三角形。
2.灵活应用勾股定理及逆定理解综合题。
3.进一步加深性质定理与判定定理之间关系的认识。
二、重点、难点
1.重点:利用勾股定理及逆定理解综合题。
2.难点:利用勾股定理及逆定理解综合题。
三、例题的意图分析
例1(补充)利用因式分解和勾股定理的逆定理判断三角形的形状。
例2(补充)使学生掌握研究四边形的问题,通常添置辅助线把它转化为研究三角形的问题。
本题辅助线作平行线间距离无法求解。
创造3、4、5勾股数,利用勾股定理的逆定理证明DE 就是平行线间距离。
例3(补充)勾股定理及逆定理的综合应用,注意条件的转化及变形。
四、课堂引入
勾股定理和它的逆定理是黄金搭档,经常综合应用来解决一些难度较大的题目。
五、例习题分析
例1(补充)已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,满足a 2+b 2+c 2+338=10a+24b+26c 。
试判断△ABC 的形状。
分析:⑴移项,配成三个完全平方;⑵三个非负数的和为0,
则都为0;⑶已知a 、b 、c ,利用勾股定理的逆定理判断三角形的形状为直角三角形。
例2(补充)已知:如图,四边形ABCD ,AD ∥BC ,AB=4,BC=6,CD=5,AD=3。
求:四边形ABCD 的面积。
分析:⑴作DE ∥AB ,连结BD ,则可以证明△ABD ≌△EDB (ASA ); ⑵DE=AB=4,BE=AD=3,EC=EB=3;⑶在△DEC
中,3、4、5勾股数,△DEC 为直角三角形,DE ⊥BC ; ⑷利用梯形面积公式可解,或利用三角形的面积。
A B C
D E
D
例3(补充)已知:如图,在△ABC 中,CD 是AB 边上的高,且CD 2=AD ·BD 。
求证:△ABC 是直角三角形。
分析:∵AC 2=AD 2+CD 2,BC 2=CD 2+BD 2
∴AC 2+BC 2=AD 2+2CD 2+BD 2
=AD 2+2AD ·BD+BD 2
=(AD+BD )2=AB 2
六、课堂练习
1.若△ABC 的三边a 、b 、c ,满足(a -b )(a 2+b 2-c 2)=0,则△ABC 是( )
A .等腰三角形;
B .直角三角形;
C .等腰三角形或直角三角形;
D .等腰直角三角形。
2.若△ABC 的三边a 、b 、c ,满足a :b :c=1:1:2,试判断△ABC 的形状。
3.已知:如图,四边形ABCD ,AB=1,BC=43,CD=4
13,AD=3,且AB ⊥BC 。
求:四边形ABCD 的面积。
4.已知:在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,且CD 2=AD ·BD 。
求证:△ABC 中是直角三角形。
D D
七、课后练习,
1.若△ABC的三边a、b、c满足a2+b2+c2+50=6a+8b+10c,求△ABC的面积。
2.在△ABC中,AB=13cm,AC=24cm,中线BD=5cm。
求证:△ABC是等腰三角形。
3.已知:如图,∠1=∠2,AD=AE,D为BC上一点,且BD=DC,AC2=AE2+CE2。
求证:AB2=AE2+CE2。
4.已知△ABC的三边为a、b、c,且a+b=4,ab=1,c=14,试判定△ABC的形状。
课后反思:
2。