算法设计背包问题
- 格式:docx
- 大小:38.80 KB
- 文档页数:3
数据结构背包问题背景介绍:数据结构是计算机科学中非常重要的一门学科,它研究的是数据组织、存储和管理的方式。
背包问题是数据结构中的一个经典问题,它涉及到在给定的一组物品中选择一些物品放入背包中,使得背包的总重量或总价值达到最大化。
在本文中,我们将详细介绍背包问题的定义、解决方法和应用领域。
一、问题定义背包问题可以被描述为:给定一个背包,它能容纳一定的重量,再给定一组物品,每个物品有自己的重量和价值。
我们的目标是找到一种方式将物品放入背包中,使得背包的总重量不超过其容量,同时背包中物品的总价值最大化。
二、解决方法1. 贪心算法贪心算法是一种简单而有效的解决背包问题的方法。
它基于贪心的思想,每次选择当前具有最大价值重量比的物品放入背包中。
具体步骤如下:- 计算每个物品的价值重量比,即物品的价值除以其重量。
- 按照价值重量比从大到小对物品进行排序。
- 依次将物品放入背包中,直到背包的总重量达到容量限制或所有物品都放入背包。
贪心算法的优点是简单快速,但它并不能保证一定能找到最优解。
2. 动态规划动态规划是解决背包问题的一种经典方法。
它将问题划分为若干子问题,并通过求解子问题的最优解来求解原问题的最优解。
具体步骤如下:- 定义一个二维数组dp,其中dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。
- 初始化dp数组的第一行和第一列为0,表示背包容量为0或物品数量为0时的最大价值都为0。
- 逐行填充dp数组,对于每个物品,考虑将其放入背包或不放入背包两种情况,选择价值最大的方案更新dp数组。
- 最终dp数组的最后一个元素dp[n][m]即为问题的最优解,其中n为物品数量,m为背包容量。
动态规划方法能够保证找到最优解,但其时间复杂度较高,对于大规模的问题可能会耗费较长的计算时间。
三、应用领域背包问题在实际生活和工程领域中有着广泛的应用,以下是一些常见的应用领域:1. 物流配送在物流配送中,背包问题可以用来优化货车的装载方案,使得货车的装载量最大化,从而减少运输成本。
背包问题是一种常见的优化问题,它涉及到给定一组物品,每个物品都有各自的重量和价值,背包的总容量有限。
目标是选择一些物品,使得背包中物品的总价值最大,同时不超过背包的总容量。
算法设计策略:1.问题建模:首先,需要建立一个数学模型以描述背包问题。
通常,这可以通过一个二元决策图来实现。
决策图中的每个节点代表一个物品,每个边代表一个决策,即是否选择该物品。
2.状态空间树:在背包问题中,状态空间树是一个非常有用的工具。
它可以帮助我们系统地搜索所有可能的物品组合,从而找到最优解。
状态空间树以背包的当前容量为根节点,然后每个子节点代表一个可能的物品选择。
3.剪枝函数:在回溯法中,剪枝函数是一个关键的工具,它可以用来避免对不可能产生最优解的子节点进行搜索。
例如,如果当前选择的物品已经超过背包的容量,那么我们可以立即剪去该子树,因为它不可能产生最优解。
4.动态规划:动态规划是一种可以用来解决背包问题的算法。
它的思想是将问题分解为更小的子问题,并将这些子问题的解存储起来,以便在解决更大的问题时可以重复使用。
在背包问题中,动态规划可以帮助我们避免重复计算相同的子问题。
5.启发式搜索:虽然动态规划可以保证找到最优解,但它需要大量的存储空间。
如果物品的数量很大,那么动态规划可能不实用。
在这种情况下,可以使用启发式搜索方法,如遗传算法或模拟退火算法,来找到一个好的解决方案。
总的来说,背包问题的算法设计策略涉及到多个步骤,包括建立数学模型,使用状态空间树进行系统搜索,使用剪枝函数避免无效搜索,使用动态规划避免重复计算,以及使用启发式搜索方法在大型问题中寻找近似解。
数据结构背包问题数据结构背包问题1、引言背包问题是一个经典的组合优化问题,在计算机科学和算法设计中具有重要意义。
该问题的基本形式是:给定一个背包的容量和一组物品,每个物品都有自己的重量和价值。
目标是使得背包装下的物品总价值最大化,且不能超过背包的容量限制。
2、背包问题的分类2.1 0/1背包问题2.2 完全背包问题2.3 多重背包问题2.4 无界背包问题3、0/1背包问题3.1 问题描述3.2 动态规划解法3.3 回溯法解法3.4 贪心算法解法4、完全背包问题4.1 问题描述4.2 动态规划解法4.3 贪心算法解法5、多重背包问题5.1 问题描述5.2 动态规划解法5.3 背包价值估价法解法6、无界背包问题6.1 问题描述6.2 贪心算法解法6.3 分数背包问题解法7、附件本文档所涉及的附件包括示例代码、实验数据和相关论文。
8、法律名词及注释8.1 背包问题:在法律术语中,背包问题指的是一类组合优化问题,涉及资源分配、货物装载等方面。
根据不同限制条件的不同,背包问题又分为多种类型。
8.2 0/1背包问题:背包中的物品要么被选中要么不被选中,不能部分选中。
8.3 完全背包问题:背包中的物品可以被选中多次。
8.4 多重背包问题:背包中的物品有一定数量限制。
8.5 无界背包问题:背包中的物品数量无限制。
8.6 动态规划:动态规划是一种解决多阶段最优化决策问题的数学方法,通过将问题分解为子问题,并利用子问题的最优解来构造全局最优解。
8.7 贪心算法:贪心算法是一种通过每一步选择局部最优解,并希望最终达到全局最优解的算法。
背包问题实验报告1. 引言背包问题是一类经典的组合优化问题,在现实生活中有着广泛的应用。
背包问题可以描述为:有一个背包容量为W的背包和N个物品,每个物品有一定的重量和价值,要求将物品放入背包中使得背包的总价值最大。
本实验旨在通过比较不同的算法策略,找到解决背包问题的最佳方法,以提高背包问题的求解效率。
2. 实验环境•操作系统:Windows 10•编程语言:Python 3.8•开发环境:Visual Studio Code3. 实验过程3.1 暴力穷举法暴力穷举法是解决背包问题的一种基本策略。
该方法通过遍历所有可能的组合,计算每个组合的价值,并找到最大价值的组合作为最优解。
具体步骤如下:1.初始化最大价值max_value为0,最优解combo为空集。
2.遍历所有可能的物品组合:–将组合中的物品放入背包中,计算背包中物品的总价值。
–若背包总价值超过max_value,则更新max_value和combo。
3.输出最优解combo和最大价值max_value。
该方法的时间复杂度为O(2^N),其中N为物品的数量,在物品数量较大时效率较低。
3.2 动态规划法动态规划法是解决背包问题的一种高效策略。
该方法通过构建价值表,利用子问题的最优解来求解背包问题的最优解。
具体步骤如下:1.初始化一个二维数组value_table,其中value_table[i][j]表示前i个物品放入容量为j的背包中的最大价值。
2.根据以下递推关系来填充value_table的值:–若第i个物品的重量大于背包容量j,则value_table[i][j]等于value_table[i-1][j],表示第i个物品不能放入背包中。
–若第i个物品的重量小于等于背包容量j,则value_table[i][j]等于max(value_table[i-1][j], value_table[i-1][j-w[i]]+v[i]),表示第i个物品可以选取并放入背包中,或不选取第i个物品。
很高兴能为您提供文章撰写服务。
在开始撰写的过程中,我将按照您的要求,以深度和广度兼具的方式来探讨c语言部分背包问题的算法设计。
第一部分:背包问题的概念和分类1. 背包问题是指在给定的一组物品中选择合适的物品装入背包,使得背包的容量最大化或价值最大化的问题。
在算法设计中,背包问题有0-1背包、完全背包、多重背包等不同的分类。
2. 0-1背包问题是指每种物品只能选择一次放入背包,而完全背包问题则是每种物品可以选择多次放入背包。
第二部分:c语言中的背包问题算法设计1. 对于0-1背包问题,可以采用动态规划的方法进行解决。
具体的算法设计包括定义状态转移方程、初始化数组、填表和回溯等步骤。
2. 完全背包问题的算法设计也可以采用动态规划的方法,但在状态转移方程的定义和填表的过程中需要做出相应的调整。
第三部分:c语言中的背包问题算法实现1. 0-1背包问题的算法实现可以通过c语言的数组和循环结构来实现状态转移方程的计算和填表过程。
2. 完全背包问题的算法实现与0-1背包问题类似,但针对每种物品可以选择多次放入背包的特点需要做出相应的改进。
第四部分:个人观点和总结在我看来,c语言部分背包问题的算法设计是一项具有挑战性和实用性的工作。
通过深入理解不同类型的背包问题,并结合动态规划的算法设计和实现,可以有效解决实际生活和工作中的背包优化问题。
掌握c 语言中背包问题的算法设计和实现,不仅可以提升自身的编程能力,也可以为解决实际问题提供有力的支持。
以上是我根据您提供的主题对c语言部分背包问题的算法设计进行的基本介绍和探讨。
希望这些内容能够满足您对文章的要求,如果有其他方面需要补充或修改,还请您及时提出。
期待您的反馈和意见,谢谢!在c语言中,背包问题是一种常见的算法设计问题,涉及到动态规划和数组的运用。
背包问题可以分为0-1背包、完全背包、多重背包等不同类型,每种类型的背包问题都有其特定的算法设计和实现方法。
在本文中,我们将进一步探讨c语言中背包问题的算法设计和实现,并对算法的效率和实际应用进行分析和总结。
一、问题描绘0/1 背包问题 :现有 n 种物件,对1<=i<=n,已知第i 种物件的重量为正整数W i,价值为正整数V i,背包能蒙受的最大载重量为正整数W ,现要求找出这n 种物件的一个子集,使得子集中物品的总重量不超出W 且总价值尽量大。
(注意:这里对每种物件或许全取或许一点都不取,不一样意只取一部分)二、算法剖析依据问题描绘,能够将其转变为以下的拘束条件和目标函数:nw i x i W(1)i1x i{ 0,1}( 1i n)nmax v i x i (2)i1于是,问题就归纳为找寻一个知足拘束条件( 1 ),并使目标函数式( 2 )达到最大的解向量 X(x1, x2 , x3 ,......, x n ) 。
第一说明一下0-1 背包问题拥有最优解。
假定 (x1, x2 , x3 ,......, x n ) 是所给的问题的一个最优解,则 (x2 , x3,......, x n ) 是下边问题的nw i x i W w1x1 maxn一个最优解:i 2v i x i。
假如不是的话,设( y2, y3 ,......, y n ) 是这x i{ 0,1}( 2i n)i 2n n n个问题的一个最优解,则v i y i v i x i,且 w1x1w i y i W 。
因此,i 2i 2i 2n n nv1x1v i y i v1 x1v i x i v i x i,这说明 (x1, y2 , y3 ,........, y n ) 是所给的0-1 背包问i 2i 2i 1题比 ( x1 , x2 , x3 ,........, x n ) 更优的解,进而与假定矛盾。
穷举法:用穷举法解决0-1 背包问题,需要考虑给定n 个物件会合的所有子集,找出所有可能的子集(总重量不超出背包重量的子集),计算每个子集的总重量,而后在他们中找到价值最大的子集。
因为程序过于简单,在这里就不再给出,用实例说明求解过程。
背包问题算法导论课程设计一、课程目标知识目标:1. 理解背包问题的基础概念,掌握其定义和数学模型。
2. 学习并掌握贪心算法、动态规划算法解决0-1背包问题的基本原理和步骤。
3. 能够运用所学算法解决实际的背包问题,并对不同算法进行比较和分析。
技能目标:1. 培养学生的逻辑思维能力,使其能够运用算法思想解决实际问题。
2. 提高学生的编程能力,使其能够独立编写解决背包问题的程序代码。
3. 培养学生的团队协作能力,通过分组讨论和分享,共同解决复杂问题。
情感态度价值观目标:1. 培养学生对算法学习的兴趣,激发其探索精神和创新意识。
2. 引导学生树立正确的价值观,认识到算法在解决实际问题中的重要性。
3. 培养学生面对困难时的坚持和毅力,鼓励他们勇于挑战自我,克服困难。
本课程针对高中年级学生,结合背包问题算法的学科特点,旨在提高学生的逻辑思维和编程能力。
课程要求学生在掌握基本概念和算法原理的基础上,能够将所学知识应用于实际问题的解决。
通过本课程的学习,学生将能够具备解决类似问题的能力,并为后续学习更复杂的算法打下坚实基础。
二、教学内容1. 背包问题基本概念:介绍背包问题的定义、分类以及数学模型。
- 0-1背包问题- 完全背包问题- 多重背包问题2. 贪心算法:讲解贪心算法的基本原理,分析贪心算法在解决背包问题中的应用。
- 贪心策略的选择- 贪心算法的步骤及实现3. 动态规划算法:介绍动态规划的基本思想,分析动态规划在解决背包问题中的应用。
- 动态规划原理- 0-1背包问题的动态规划解法- 完全背包问题的动态规划解法4. 算法分析与比较:对不同算法进行时间复杂度和空间复杂度分析,比较各自的优缺点。
5. 实践环节:通过编程实践,让学生独立解决背包问题,并分组讨论、分享经验。
6. 拓展与提高:介绍其他解决背包问题的算法,如分支限界法等,拓展学生的知识面。
教学内容依据课程目标,紧密结合教材,按照教学大纲进行安排。
课程进度分为基础理论、算法分析与实践、拓展与提高三个阶段,以确保学生能够系统、科学地掌握背包问题算法的相关知识。
0-1背包问题(回溯法)实验报告姓名:学号:指导老师:一.算法设计名称:0-1背包问题(回溯法)二.实验内容问题描述:给定n 种物品和一背包。
物品i 的重量是w i ,其价值为v i ,背包的容量为C 。
问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i 只有两种选择,即装入背包或不装入背包。
不能将物品装入背包多次,也不能只装入部分的物品。
三.实验目的1.运用回溯思想,设计解决上述问题的算法,找出最大背包价值的装法。
2.掌握回溯法的应用四.算法设计:问题求解思路1.由0-1背包问题的最优子结构性质,建立计算m[i][j]的递归式如下:i i i w j w j j i m i v w j i m j i m j i m <≤≥⎩⎨⎧-+---=0],1[]}[],1[],,1[max{),(2.查找装入背包物品的回溯函数:从0-1二叉树的根开始搜索:若是叶子节点,则判断此时的价值是否比当前最优的价值大,否则将之替换,并获得最优解向量且返回;若不是叶子节点,则向左右子树搜索,先改变当前的数据状态,递归的调用自己,然后恢复数据状态表示回溯。
3.边界函数bound主要是当还未搜索到叶子节点时,提前判断其子树是否存可能存在更优的解空间,否则进行回溯,即裁剪掉子树的解空间。
关键数据结构及函数模块:(Backtrack.h )#ifndef __BACKTRACK_H__#define __BACKTRACK_H__class BP_01_P{public:∑=ni i i x v 1max ⎪⎩⎪⎨⎧≤≤∈≤∑=n i x C x w i n i i i 1},1,0{1BP_01_P(int w,int n):m_Sum_weitht(0),m_Number(0) {m_Sum_weitht=w;m_Number=n;bestHav=0;bestVal=0;curVal=0;curHav=0;m_hav=new int[n];m_val=new int[n];temop=new int[n];option=new int[n];}~BP_01_P(){delete []m_hav;delete []m_val;delete []temop;delete []option;}void traceBack(int n);int bound(int n);void printBestSoulation();int *m_hav;//每个物品的重量int *m_val;//每个物品的价值int *temop;//01临时解int *option;//01最终解int bestHav;//最优价值时的最大重量int bestVal;//最优的价值int curVal;//当前的价值int curHav;//当前的重量private:int m_Sum_weitht;//背包的总容量int m_Number;//物品的种类};#endif __BACKTRACK_H__五:主要的算法代码实现:(Backtrack.cpp)边界函数:bound( )int BP_01_P::bound(int n){int hav_left=m_Sum_weitht-curHav;int bo=curVal;while(n<m_Number && m_hav[n]<=hav_left){hav_left-=m_hav[n];bo+=m_val[n];n++;}if(n<m_Number){bo+=m_val[n]*hav_left/m_hav[n];//bo+=hav_left;}return bo;}回溯递归函数:traceBack( )void BP_01_P::traceBack(int n){if(n>=m_Number){if(curVal>=bestVal){bestVal=curVal;for(int i=0;i<n;i++){option[i]=temop[i];}return ;}}if(curHav+m_hav[n]<=m_Sum_weitht)//向左子树搜索 {curHav=curHav+m_hav[n];curVal=curVal+m_val[n];temop[n]=1;//标记要选择这个物品traceBack(n+1);curHav=curHav-m_hav[n];curVal=curVal-m_val[n];}if(bound(n+1)>bestVal)//向右子树搜索{temop[n]=0;//标记要丢弃这个物品traceBack(n+1);}}主控函数:(main.cpp)#include <iostream>#include "Backtrack.h"using namespace std;int main(){int number,weigth;cout<<"包的总容量:";cin>>weigth;cout<<"物品的种类:";cin>>number;BP_01_P *ptr=new BP_01_P(weigth,number);cout<<"各种物品的重量:"<<endl;for(int i=0;i<number;i++)cin>>ptr->m_hav[i];cout<<"各种物品的价值:"<<endl;for(i=0;i<number;i++)cin>>ptr->m_val[i];ptr->traceBack(0);ptr->printBestSoulation();cout<<"总重量:"<<ptr->bestHav<<"\t总价值:"<<ptr->bestVal<<endl;return 0;}六:算法分析采用回溯法解决0-1背包问题,明显比动态规划法更优良。
算法背包问题的五种方法1. 动态规划背包问题是一种经典的组合优化问题,动态规划是解决背包问题的常用方法之一。
动态规划将问题分解为子问题,并利用已解决子问题的结果来求解更大规模的问题。
对于背包问题,动态规划算法的基本思想是创建一个二维数组dp,其中dp[i][j]表示在前i个物品中选择若干个物品放入容量为j的背包中所能获得的最大价值。
通过填表格的方式,从子问题逐步求解到原问题,最终得到最优解。
2. 贪心算法贪心算法是另一种解决背包问题的方法。
它的基本思想是每一步都选择当前看起来最好的选择,而不考虑之前的选择对后续步骤的影响。
在背包问题中,贪心算法通常是按照物品的价值密度(价值与重量的比值)进行排序,然后依次选择价值密度最高的物品放入背包,直到背包容量不足为止。
贪心算法的优势在于其简单性和高效性,但它并不一定能得到最优解。
3. 分支定界法分支定界法是一种通过搜索方式求解背包问题的方法。
它的基本思想是通过搜索可能的解空间,并根据当前搜索路径的特性进行剪枝操作,从而减少搜索的时间和空间复杂度。
在背包问题中,分支定界法通常根据当前节点的上界(通过松弛问题得到)与当前最优解进行比较,如果上界小于当前最优解,则该节点不再继续拓展,从而减少搜索空间的大小,提高求解效率。
4. 回溯算法回溯算法是一种通过不断试探和回退的方式求解背包问题的方法。
它的基本思想是从问题的初始状态开始,不断地尝试不同的决策,并根据约束条件判断该决策是否可行。
如果决策可行,则继续尝试下一步决策;如果不可行,则回退到上一步并尝试其他决策。
在背包问题中,回溯算法通过递归的方式依次尝试每个物品的放入与不放入两种选择,直到找到满足约束条件的解或者穷尽所有可能。
5. 近似算法近似算法是一种通过快速求解背包问题的“近似”解来减小计算复杂度的方法。
它的基本思想是用一种简单而快速的策略求解背包问题,并且能够保证求解结果的近似程度。
在背包问题中,常见的近似算法有贪心算法和启发式算法。
1.实验目的(结出本次实验所涉及并要求掌握的知识点)利用动态规划策略解决0-1背包和完全背包问题2.实验内容(结出实验内容具体描述)(1)0-1 Knapsack Problem和Unbounded Knapsack Problem的算法进行实现(2)对0-1Knapsack Problem的算法进行空间优化,使其空间复杂度达到O(W)3.算法描述及实验步骤(用适当的形式表达算法设计思想与算法实现步骤)1. 二维数组的0-1背包空间O(nW)int record[100][100]; // 0-1 背包的二维表void ZO_knapsack_1(int num,int room){// 针对每一个物品进行筛选,看他是否是构成最终max的组成int i,j;for(i=0;i<=num;i++)for(j=0;j<=room;j++)record[i][j]=0; // 初始化record表for(i=1;i<=num;i++){for(j=0;j<=room;j++){if(a[i][0]>j)record[i][j]=record[i-1][j];else{if(record[i-1][j-a[i][0]]+a[i][1]>record[i-1][j])record[i][j]=record[i-1][j-a[i][0]]+a[i][1];elserecord[i][j]=record[i-1][j];}}}}int arry[100]; // 一维记录表int carry[100]; // 是否拿走该物品记录void ZO_knapsack_2(int num,int room){int i,j;for(i=0;i<=num;i++)arry[i]=0; // 初始化arry表for(i=1;i<=num;i++){for(j=room;j>=a[i][0];j--){ //逆序记录if(arry[j-a[i][0]]+a[i][1]>arry[j])arry[j]=arry[j-a[i][0]]+a[i][1];}}3. 一维数组实现完全背包空间:O(W)void UNbounded(int num,int room){int i,j;for(i=0;i<=num;i++)arry[i]=0; // 初始化arry表for(i=1;i<=num;i++){for(j=a[i][0];j<=room;j++){ //顺序记录if(arry[j-a[i][0]]+a[i][1]>arry[j])arry[j]=arry[j-a[i][0]]+a[i][1];}}}4.调试过程及运行结果(详细记录在调试过程中出现的问题及解决方法。
算法设计与分析实验报告实验名称贪心算法实现背包问题评分实验日期年月日指导教师姓名专业班级学号一.实验要求1. 优化问题有n个输入,而它的解就由这n个输入满足某些事先给定的约束条件的某个子集组成,而把满足约束条件的子集称为该问题的可行解。
可行解一般来说是不唯一的。
那些使目标函数取极值(极大或极小)的可行解,称为最优解。
2.贪心法求优化问题算法思想:在贪心算法中采用逐步构造最优解的方法。
在每个阶段,都作出一个看上去最优的决策(在一定的标准下)。
决策一旦作出,就不可再更改。
作出贪心决策的依据称为贪心准则(greedy criterion)。
3.一般方法1)根据题意,选取一种量度标准。
2)按这种量度标准对这n个输入排序3)依次选择输入量加入部分解中。
如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。
procedure GREEDY(A,n) /*贪心法一般控制流程*///A(1:n)包含n个输入//solutions←φ //将解向量solution初始化为空/for i←1 to n dox←SELECT(A)if FEASIBLE(solution,x)then solutions←UNION(solution,x)endifrepeatreturn(solution)end GREEDY4. 实现典型的贪心算法的编程与上机实验,验证算法的时间复杂性函数。
二.实验内容1. 编程实现背包问题贪心算法。
通过具体算法理解如何通过局部最优实现全局最优,并验证算法的时间复杂性。
2.输入5个的图的邻接矩阵,程序加入统计prim算法访问图的节点数和边数的语句。
3.将统计数与复杂性函数所计算比较次数比较,用表格列出比较结果,给出文字分析。
三.程序算法1.背包问题的贪心算法procedure KNAPSACK(P,W,M,X,n)//P(1:n)和W(1;n)分别含有按P(i)/W(i)≥P(i+1)/W(i+1)排序的n件物品的效益值和重量。
第1篇一、实验目的1. 理解背包问题的基本概念和分类。
2. 掌握不同背包问题的解决算法,如0-1背包问题、完全背包问题、多重背包问题等。
3. 分析背包问题的复杂度,比较不同算法的效率。
4. 通过实验验证算法的正确性和实用性。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 实验数据:随机生成的背包物品数据三、实验内容1. 0-1背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个二维数组dp[n+1][C+1],其中dp[i][j]表示前i个物品在容量为j 的背包中的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值计算dp值。
c. 返回dp[n][C],即为最大价值。
2. 完全背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大,且每个物品可以重复取。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
3. 多重背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
每个物品有无限个,求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
四、实验结果与分析1. 0-1背包问题实验结果显示,在背包容量为100时,最大价值为298。
算法实验报告
---背包问题
实验目的
1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优
值计算方法。
2.熟练掌握分阶段的和递推的最优子结构分析方法。
3.学会利用动态规划算法解决实际问题。
问题描述:
给定n种物品和一个背包。
物品i的重量是wi,体积是bi,其价值为vi,
背包的容量为c,容积为d。
问应如何选择装入背包中的物品,使得装入背包中
物品的总价值最大? 在选择装入背包的物品时,对每种物品只有两个选择:装入
或不装入,且不能重复装入。
输入数据的第一行分别为:背包的容量c,背包的
容积d,物品的个数n。
接下来的n行表示n个物品的重量、体积和价值。
输出
为最大的总价值。
问题分析:
标准0-1背包问题,MaxV表示前i个物品装入容量为j的背包中时所能产生的最大价值,结构体objec表示每一个可装入物品,其中w表示物品的重量,v表示物品的价值。
如果某物品超过了背包的容量,则该物品一定不能放入背包,问题就变成了剩余i-1个物品装入容量为j的背包中所能产生的最大价值;如果该物品能装入背包,问题就变成i-1个物品装入容量为j-objec[i].w的背包所能产生的最大价值加上物品i的价值objec[i].v.
复杂性分析
时间复杂度,最好情况下为0,最坏情况下为:(abc)
源程序
#include <stdio.h>
#include <stdlib.h>
#include<time.h>
#include <iostream>
#include<iostream.h>
int V [200][200][200];
int max(int a,int b)
{
if(a>=b)
return a;
else
return b;
}
int KnapSack(int n,int w[],int z[],int v[],int x[],int c,int b)
{
int i,p,q;
for(i=0;i<=n;i++)
V[i][0][0]=0;
for(p=0;p<=c;p++)
for (q=0;q<=b;q++)
V[0][p][q]=0;
for(i=0;i<=n-1;i++)
for(p=0;p<=c;p++)
for(q=0;q<=b;q++)
if(p<w[i]&&q<z[i])
V[i][p][q]=V[i-1][p][q];
else
V[i][p][q]=max(V[i-1][p][q],V[i-1][p-w[i]][q-z[i]]+v[i]);
p=c; q=b;
for(i=n-1;i>=0;i--)
{
if(V[i][p][q]>V[i-1][p][q])
{
x[i]=1;
p=p-w[i];
q=q-z[i];
}
else
x[i]=0;
}
cout<<"选中的物品是:";
for(i=0;i<n;i++)
cout<<" "<<x[i];
cout<<endl;
int r=0;
for(i=0;i<n;i++)
{
if(x[i]==1)
r+=v[i];
else
r+=0;
}
return r;
}
void main()
{
int mv;
int w[150];
int z[150];
int v[150];
int x[150];
int n,i;
int c;int b;//背包最大容量和容积
cout<<"请输入背包的最大容量:"<<endl;
cin>>c;
cout<<"请输入背包的最大容积:"<<endl;
cin>>b;
cout<<"输入物品数:"<<endl;
cin>>n;
cout<<"请分别输入物品的重量:"<<endl;
for(i=0;i<n;i++)
cin>>w[i];
cout<<"请分别输入物品的体积:"<<endl;
for(i=0;i<n;i++)
cin>>z[i];
cout<<"请分别输入物品的价值:"<<endl;
for(i=0;i<n;i++)
cin>>v[i];
mv=KnapSack(n,w,z,v,x,c,b);
cout<<"最大物品价值为:"<<mv<<endl; }。