动态规划算法 背包问题
- 格式:ppt
- 大小:67.00 KB
- 文档页数:12
0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。
原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。
但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。
过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。
判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。
动态规划——01背包问题⼀、最基础的动态规划之⼀01背包问题是动态规划中最基础的问题之⼀,它的解法完美地体现了动态规划的思想和性质。
01背包问题最常见的问题形式是:给定n件物品的体积和价值,将他们尽可能地放⼊⼀个体积固定的背包,最⼤的价值可以是多少。
我们可以⽤费⽤c和价值v来描述⼀件物品,再设允许的最⼤花费为w。
只要n稍⼤,我们就不可能通过搜索来遍查所有组合的可能。
运⽤动态规划的思想,我们把原来的问题拆分为⼦问题,⼦问题再进⼀步拆分直⾄不可再分(初始值),随后从初始值开始,尽可能地求取每⼀个⼦问题的最优解,最终就能求得原问题的解。
由于不同的问题可能有相同的⼦问题,⼦问题存在⼤量重叠,我们需要额外的空间来存储已经求得的⼦问题的最优解。
这样,可以⼤幅度地降低时间复杂度。
有了这样的思想,我们来看01背包问题可以怎样拆分成⼦问题:要求解的问题是:在n件物品中最⼤花费为w能得到的最⼤价值。
显然,对于0 <= i <= n,0 <= j <= w,在前i件物品中最⼤花费为j能得到的最⼤价值。
可以使⽤数组dp[n + 1][w + 1]来存储所有的⼦问题,dp[i][j]就代表从前i件物品中选出总花费不超过j时的最⼤价值。
可知dp[0][j]值⼀定为零。
那么,该怎么递推求取所有⼦问题的解呢。
显⽽易见,要考虑在前i件物品中拿取,⾸先要考虑前i - 1件物品中拿取的最优情况。
当我们从第i - 1件物品递推到第i件时,我们就要考虑这件物品是拿,还是不拿,怎样收益最⼤。
①:⾸先,如果j < c[i],那第i件物品是⽆论如何拿不了的,dp[i][j] = dp[i - 1][j];②:如果可以拿,那就要考虑拿了之后收益是否更⼤。
拿这件物品需要花费c[i],除去这c[i]的⼦问题应该是dp[i - 1][j - c[i]],这时,就要⽐较dp[i - 1][j]和dp[i - 1][j - c[i]] + v[i],得出最优⽅案。
动态规划——背包问题python实现(01背包、完全背包、多重背包)参考:⽬录描述:有N件物品和⼀个容量为V的背包。
第i件物品的体积是vi,价值是wi。
求解将哪些物品装⼊背包,可使这些物品的总体积不超过背包流量,且总价值最⼤。
⼆维动态规划f[i][j] 表⽰只看前i个物品,总体积是j的情况下,总价值最⼤是多少。
result = max(f[n][0~V]) f[i][j]:不选第i个物品:f[i][j] = f[i-1][j];选第i个物品:f[i][j] = f[i-1][j-v[i]] + w[i](v[i]是第i个物品的体积)两者之间取最⼤。
初始化:f[0][0] = 0 (啥都不选的情况,不管容量是多少,都是0?)代码如下:n, v = map(int, input().split())goods = []for i in range(n):goods.append([int(i) for i in input().split()])# 初始化,先全部赋值为0,这样⾄少体积为0或者不选任何物品的时候是满⾜要求dp = [[0 for i in range(v+1)] for j in range(n+1)]for i in range(1, n+1):for j in range(1,v+1):dp[i][j] = dp[i-1][j] # 第i个物品不选if j>=goods[i-1][0]:# 判断背包容量是不是⼤于第i件物品的体积# 在选和不选的情况中选出最⼤值dp[i][j] = max(dp[i][j], dp[i-1][j-goods[i-1][0]]+goods[i-1][1])print(dp[-1][-1])⼀维动态优化从上⾯⼆维的情况来看,f[i] 只与f[i-1]相关,因此只⽤使⽤⼀个⼀维数组[0~v]来存储前⼀个状态。
那么如何来实现呢?第⼀个问题:状态转移假设dp数组存储了上⼀个状态,那么应该有:dp[i] = max(dp[i] , dp[i-v[i]]+w[i])max函数⾥⾯的dp[i]代表的是上⼀个状态的值。
分支界限方法是一种用于解决优化问题的算法。
在动态规划算法中,分支界限方法被广泛应用于解决01背包问题。
01背包问题是一个经典的动态规划问题,其解题步骤如下:1. 确定问题:首先需要明确01背包问题的具体描述,即给定一组物品和一个背包,每个物品有自己的价值和重量,要求在不超过背包容量的情况下,选取尽可能多的物品放入背包,使得背包中物品的总价值最大。
2. 列出状态转移方程:对于01背包问题,可以通过列出状态转移方程来描述问题的求解过程。
假设dp[i][j]表示在前i个物品中,背包容量为j时能够获得的最大价值,则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i])3. 初始化边界条件:在动态规划中,需要对状态转移方程进行初始化,一般情况下,dp数组的第一行和第一列需要单独处理。
对于01背包问题,可以初始化dp数组的第一行和第一列为0。
4. 利用分支界限方法优化:针对01背包问题,可以使用分支界限方法来优化动态规划算法的效率。
分支界限方法采用广度优先搜索的思想,在每一步选择最有希望的分支,从而减少搜索空间,提高算法的效率。
5. 实际解题步骤:根据上述步骤,实际解决01背包问题的步骤可以概括为:确定问题,列出状态转移方程,初始化边界条件,利用分支界限方法优化,最终得到问题的最优解。
分支界限方法在解决01背包问题时起到了重要的作用,通过合理的剪枝策略,可以有效地减少动态规划算法的时间复杂度,提高问题的求解效率。
分支界限方法也可以应用于其他优化问题的求解过程中,在算法设计和实现中具有重要的理论和实际意义。
在实际应用中,分支界限方法需要根据具体问题进行灵活选择和调整,结合动态规划和剪枝策略,以便更好地解决各类优化问题。
掌握分支界限方法对于解决复杂问题具有重要的意义,也是算法设计和优化的关键技术之一。
分支界限方法在解决01背包问题的过程中,具有重要的作用。
利用动态规划解决01背包问题01背包问题动态规划背包问题是一个经典的动态规划模型,很多关于算法的教材都把它作为一道例题,该问题既简单又容易理解,而且在某种程度上还能够揭示动态规划的本质。
将具有不同重量和价值的物体装入一个有固定载重量的背包,以获取最大价值,这类问题被称为背包问题。
背包问题可以扩展出很多种问题,而01背包问题是最常见、最有代表性的背包问题。
一、问题描述给定一个载重量为M的背包及n个物体,物体i的重量为wi、价值为pi,1≤i≤n,要求把这些物体装入背包,使背包内的物体价值总量最大。
此处我们讨论的物体是不可分割的,通常称这种物体不可分割的背包问题为01背包问题。
二、基本思路01背包问题的特点是:每种物体只有一件,可以选择放或者不放。
假设:xi表示物体i被装入背包的情况,xi=0,1。
当xi=0时,表示物体没有被装入背包;当xi=1时,表示物体被装入背包。
根据问题的要求,有如下的约束方程(1)和目标函数(2):三、利用动态规划法求解01背包问题(一)动态规划算法的基本思想动态规划算法通常用于求解具有某种最优性质的问题。
在这类问题中,可能会有许多可行解。
每一个解都对应于一个值,我们希望找到具有最优值的解。
动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。
若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算很多次。
如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。
我们可以用一个表来记录所有已解的子问题的答案。
不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中,这就是动态规划法的基本思路。
具体的动态规划算法多种多样,但它们具有相同的填表格式。
(二)算法设计假定背包的载重量范围为0~m。
动态规划之-0-1背包问题及改进有N件物品和一个容量为V的背包。
第i件物品的重量是w[i],价值是v[i]。
求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。
在选择装入背包的物品时,对于每种物品i,只能选择装包或不装包,不能装入多次,也不能部分装入,因此成为0-1背包问题。
形式化描述为:给定n个物品,背包容量C >0,重量第i件物品的重量w[i]>0, 价值v[i] >0 , 1≤i≤n.要求找一n元向量(X1,X2,…,X n,), X i∈{0,1}, 使得∑(w[i] * Xi)≤C,且∑ v[i] * Xi达最大.即一个特殊的整数规划问题。
数学描述为:求解最优值:设最优值m(i,j)为背包容量为j、可选择物品为i,i+1,……,n时的最优值(装入包的最大价值)。
所以原问题的解为m(1,C)将原问题分解为其子结构来求解。
要求原问题的解m(1,C),可从m(n,C),m(n-1,C),m(n-2,C).....来依次求解,即可装包物品分别为(物品n)、(物品n-1,n)、(物品n-2,n-1,n)、……、(物品1,物品2,……物品n-1,物品n)。
最后求出的值即为最优值m(1,C)。
若求m(i,j),此时已经求出m(i+1,j),即第i+1个物品放入和不放入时这二者的最大值。
对于此时背包剩余容量j=0,1,2,3……C,分两种情况:(1)当w[i] > j,即第i个物品重量大于背包容量j时,m(i,j)=m(i+1,j)(2)当w[i] <= j,即第i个物品重量不大于背包容量j时,这时要判断物品i放入和不放入对m的影响。
若不放入物品i,则此时m(i,j)=m(i+1,j)若放入物品i,此时背包剩余容量为 j-w[i],在子结构中已求出当容量k=0,1,2……C 时的最优值m(i+1,k)。
所以此时m(i,j)=m(i+1,j-w[i])+v[i]。
背包问题是一种经典的优化问题,通常用于解决在给定一组物品和它们的重量、价值等信息的情况下,如何选择一些物品放入一个容量有限的背包中,使得背包中物品的总价值最大或总重量最小等问题。
以下是背包问题的一种经典算法——动态规划法:
1. 定义状态:设f[i][j]表示前i个物品中选择若干个物品放入容量为j的背包中所能获得的最大价值或最小重量。
2. 状态转移方程:对于第i个物品,有两种情况:
- 不放入背包中,此时f[i][j]=f[i-1][j];
- 放入背包中,此时f[i][j]=max(f[i-1][j], f[i-1][j-w[i]]+v[i]),其中w[i]和v[i]分别表示第i 个物品的重量和价值。
3. 初始化:f[0][0]=0。
4. 计算最优解:根据状态转移方程,从上到下依次计算每个物品的状态值,最终得到f[n][m]即为所求的最优解。
时间复杂度:O(n*m),其中n为物品数量,m为背包容量。
空间复杂度:O(n*m)。
动态规划方案解决算法背包问题实验报告含嘿,大家好!今天我来给大家分享一个相当有趣的编程问题——背包问题。
这可是算法领域里的经典难题,也是体现动态规划思想的好例子。
我会用我10年的方案写作经验,给大家带来一份详细的实验报告,附带哦!让我简单介绍一下背包问题。
假设你是一个盗贼,要盗取一个博物馆里的宝贝。
博物馆里有n个宝贝,每个宝贝都有它的价值v和重量w。
你有一个承重为W的背包,你希望放入背包的宝贝总价值最大,但总重量不能超过背包的承重。
这个问题,就是我们要解决的背包问题。
一、算法思路1.创建一个二维数组dp,dp[i][j]表示前i个宝贝放入一个承重为j的背包中,能达到的最大价值。
2.初始化dp数组,dp[0][j]=0,因为如果没有宝贝,那么无论背包承重多少,价值都是0。
3.遍历每个宝贝,对于每个宝贝,我们有两种选择:放入背包或者不放入背包。
4.如果不放入背包,那么dp[i][j]=dp[i-1][j],即前i-1个宝贝放入一个承重为j的背包中,能达到的最大价值。
5.如果放入背包,那么dp[i][j]=dp[i-1][j-w[i]]+v[i],即前i-1个宝贝放入一个承重为j-w[i]的背包中,加上当前宝贝的价值。
6.dp[i][j]取两种情况的最大值。
二、defknapsack(W,weights,values,n):dp=[[0for_inrange(W+1)]for_inrange(n+1)]foriinrange(1,n+1):forjinrange(1,W+1):ifj>=weights[i-1]:dp[i][j]=max(dp[i-1][j],dp[i-1][j-weights[i-1]]+values[i -1])else:dp[i][j]=dp[i-1][j]returndp[n][W]测试数据W=10weights=[2,3,4,5]values=[3,4,5,6]n=len(values)输出结果max_value=knapsack(W,weights,values,n)print("最大价值为:",max_value)三、实验结果分析通过上面的代码,我们可以得到最大价值为15。
实验四“0-1”背包问题一、实验目的与要求熟悉C/C++语言的集成开发环境;通过本实验加深对贪心算法、动态规划算法的理解。
二、实验内容:掌握贪心算法、动态规划算法的概念和基本思想,分析并掌握“0-1”背包问题的求解方法,并分析其优缺点。
三、实验题1.“0-1”背包问题的贪心算法2.“0-1”背包问题的动态规划算法说明:背包实例采用教材P132习题六的6-1中的描述。
要求每种的算法都给出最大收益和最优解。
设有背包问题实例n=7,M=15,,(w0,w1,。
w6)=(2,3,5,7,1,4,1),物品装入背包的收益为:(p0,p1,。
,p6)=(10,5,15,7,6,18,3)。
求这一实例的最优解和最大收益。
四、实验步骤理解算法思想和问题要求;编程实现题目要求;上机输入和调试自己所编的程序;验证分析实验结果;整理出实验报告。
五、实验程序// 贪心法求解#include<iostream>#include"iomanip"using namespace std;//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ); //获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u);int main(){float w[7]={2,3,5,7,1,4,1}; //物品重量数组float p[7]={10,5,15,7,6,18,3}; //物品收益数组float avgp[7]={0}; //单位毒品的收益数组float x[7]={0}; //最后装载物品的最优解数组const float M=15; //背包所能的载重float ben=0; //最后的收益AvgBenefitsSort(avgp,p,w);ben=GetBestBenifit(p,w,x,M);cout<<endl<<ben<<endl; //输出最后的收益system("pause");return 0;}//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ) {//求出物品的单位收益for(int i=0;i<7;i++){arry_avgp[i]=arry_p[i]/arry_w[i];}cout<<endl;//把求出的单位收益排序,冒泡排序法int exchange=7;int bound=0;float temp=0;while(exchange){bound=exchange;exchange=0;for(int i=0;i<bound;i++){if(arry_avgp[i]<arry_avgp[i+1]){//交换单位收益数组temp=arry_avgp[i];arry_avgp[i]=arry_avgp[i+1];arry_avgp[i+1]=temp;//交换收益数组temp=arry_p[i];arry_p[i]=arry_p[i+1];arry_p[i+1]=temp;//交换重量数组temp=arry_w[i];arry_w[i]=arry_w[i+1];arry_w[i+1]=temp;exchange=i;}}}}//获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u) {int i=0; //循环变量ifloat benifit=0; //最后收益while(i<7){if(u-arry_w[i]>0){arry_x[i]=arry_w[i]; //把当前物品重量缴入最优解数组benifit+=arry_p[i]; //收益增加当前物品收益u-=arry_w[i]; //背包还能载重量减去当前物品重量cout<<arry_x[i]<<" "; //输出最优解}i++;}return benifit; //返回最后收益}//动态规划法求解#include<stdio.h>#include<math.h>#define n 6void DKNAP(int p[],int w[],int M,const int m); void main(){int p[n+1],w[n+1];int M,i,j;int m=1;for(i=1;i<=n;i++){m=m*2;printf("\nin put the weight and the p:");scanf("%d %d",&w[i],&p[i]);}printf("%d",m);printf("\n in put the max weight M:");scanf("%d",&M);DKNAP(p,w,M,m);}void DKNAP(int p[],int w[],int M,const int m) {int p2[m],w2[m],pp,ww,px;int F[n+1],pk,q,k,l,h,u,i,j,next,max,s[n+1];F[0]=1;p2[1]=w2[1]=0;l=h=1;F[1]=next=2;for(i=1;i<n;i++){k=l;max=0;u=l;for(q=l;q<=h;q++)if((w2[q]+w[i]<=M)&&max<=w2[q]+w[i]){u=q;max=w2[q]+w[i];}for(j=l;j<=u;j++){pp=p2[j]+p[i];ww=w2[j]+w[i];while(k<=h&&w2[k]<ww){p2[next]=p2[k];w2[next]=w2[k];next++;k++;}if(k<=h&&w2[k]==ww){if(pp<=p2[k])pp=p2[k];k++;}else if(pp>p2[next-1]){p2[next]=pp;w2[next]=ww;next++;}while(k<=h&&p2[k]<=p2[next-1])k++;}while(k<=h){p2[next]=p2[k];w2[next]=w2[k];next=next+1;k++;}l=h+1;h=next-1;F[i+1]=next;}for(i=1;i<next;i++)printf("%2d%2d ",p2[i],w2[i]);for(i=n;i>0;i--){next=F[i];next--;pp=pk=p2[next];ww=w2[next];while(ww+w[i]>M&&next>F[i-1]){next=next-1;pp=p2[next];ww=w2[next];}if(ww+w[i]<=M&&next>F[i-1])px=pp+p[i];if(px>pk&&ww+w[i]<=M){s[i]=1;M=M-w[i];printf("M=%d ",M);}else s[i]=0;}for(i=1;i<=n;i++)printf("%2d ",s[i]);}六、实验结果1、贪心法截图:七、实验分析。
01背包问题的数学逻辑1.引言1.1 概述01背包问题是一类经典的组合优化问题,它是数学逻辑中的一个重要问题之一。
在实际生活中,我们经常会面对资源有限的情况,而如何在有限的资源下做出最佳决策,已经成为一个重要的研究领域。
01背包问题就是在给定总容量和一组物品的情况下,选取其中的一些物品放入背包中,使得背包中物品的总价值最大化,而不超过背包的总容量。
这个问题由G. Dantzig在1957年首次提出,并且成为组合优化中的一个经典问题。
它的名字来源于背包只能放入0或1个同样特性的物品。
虽然问题看似简单,但由于问题的解空间庞大,是一个NP完全问题,因此求解过程通常使用一些近似算法。
1.2 目的本文的目的是探究01背包问题的数学逻辑,并介绍一些常用的求解方法。
通过深入研究01背包问题,我们可以更好地理解其数学模型,在实际应用中解决类似的优化问题。
具体目标包括:1. 分析01背包问题的数学模型,并介绍相关的定义和术语;2. 探讨01背包问题的求解方法,包括动态规划、贪心算法和近似算法等;3. 介绍优化问题的评价指标,包括背包的总价值、总重量和可行性等;4. 分析不同情况下的算法复杂性,讨论解决01背包问题的时间和空间复杂性;5. 举例说明01背包问题在实际生活中的应用,如旅行行李、采购决策等。
通过对01背包问题的研究,我们能够更好地理解和应用数学逻辑,提高问题求解的能力。
了解背包问题的求解方法和评价指标,对我们在实际生活中面对资源有限的情况下做出最佳决策具有重要意义。
无论是在物流管理、金融投资还是其他领域,都可以通过对01背包问题的研究,提高决策的效率和准确度。
在接下来的文章中,将会详细介绍01背包问题的数学逻辑,分析不同求解方法的优劣,并给出实际应用的例子,以便读者更好地理解和应用该问题。
2.正文2.1 01背包问题的定义和背景介绍01背包问题是运筹学中的一个经典问题,在算法和动态规划中有重要的应用。
该问题的核心是在给定的背包容量和一组物品的情况下,如何选择物品放入背包中,使得背包中的物品总价值最大化。
C语⾔动态规划之背包问题详解01背包问题给定n种物品,和⼀个容量为C的背包,物品i的重量是w[i],其价值为v[i]。
问如何选择装⼊背包的物品,使得装⼊背包中的总价值最⼤?(⾯对每个武平,只能有选择拿取或者不拿两种选择,不能选择装⼊某物品的⼀部分,也不能装⼊物品多次)声明⼀个数组f[n][c]的⼆维数组,f[i][j]表⽰在⾯对第i件物品,且背包容量为j时所能获得的最⼤价值。
根据题⽬要求进⾏打表查找相关的边界和规律根据打表列写相关的状态转移⽅程⽤程序实现状态转移⽅程真题演练:⼀个旅⾏者有⼀个最多能装M公⽄的背包,现在有n件物品,它们的重量分别是W1、W2、W3、W4、…、Wn。
它们的价值分别是C1、C3、C2、…、Cn,求旅⾏者能获得最⼤价值。
输⼊描述:第⼀⾏:两个整数,M(背包容量,M<= 200)和N(物品数量,N<=30);第2…N+1⾏:每⾏两个整数Wi,Ci,表⽰每个物品的质量与价值。
输出描述:仅⼀⾏,⼀个数,表⽰最⼤总价值样例:输⼊:10 42 13 34 57 9输出:12解题步骤定义⼀个数组dp[i][j]表⽰容量为j时,拿第i个物品时所能获取的最⼤价值。
按照题⽬要求进⾏打表,列出对应的dp表。
W[i](质量)V[i](价值)01234567891000000000000210011111111133001334444444500135568899790013556991012对于⼀个动态规划问题设置下标时最好从0开始,因为动态规划经常会和上⼀个状态有关系!从上⾯的dp表可以看出来对于⼀个物品我们拿还是不难需要进⾏两步来判断。
第⼀步:判断背包当前的容量j是否⼤于物品当前的质量,如果物品的质量⼤于背包的容量那么就舍弃。
第⼆步:如果背包可以装下这个物品,就需要判断装下该物品获取的最⼤价值是不是⼤于不装下这个物品所获取的最⼤价值,如果⼤于那么就把东西装下!根据这样的思想我们可以得到状态转移⽅程:如果单签背包的容量可以装下物品:dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);如果当前背包的容量装不下该物品:dp[i][j]=dp[i-1][j];#include <stdio.h>int max(const int a,const int b){return a>b ? a:b;}int main(){int w[35]={0},v[35]={0},dp[35][210]={0};int n,m;scanf("%d %d",&m,&n);int i,j;for(i=1;i<=n;i++){scanf("%d %d",&w[i],&v[i]);}for(i=1;i<=n;i++){for(j=1;j<=m;j++){if(j>=w[i])//如果当前背包的容量⼤于商品的质量{dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);//判断是否应该拿下}else//⼤于背包的当前容量{dp[i][j]=dp[i-1][j];}}}for(int k=0;k<=n;k++){for(int l=0;l<=m;l++){printf("%d ",dp[k][l]);}printf("\n");}printf("%d\n",dp[n][m]);}通过运⾏以上程序可以看到最终的输出dp表和我们的预期是相符合的!但是并没有结束,动态规划有⼀个后⽆效性原则(当前状态只与前⼀个状态有关)。
1.实验目的(结出本次实验所涉及并要求掌握的知识点)利用动态规划策略解决0-1背包和完全背包问题2.实验内容(结出实验内容具体描述)(1)0-1 Knapsack Problem和Unbounded Knapsack Problem的算法进行实现(2)对0-1Knapsack Problem的算法进行空间优化,使其空间复杂度达到O(W)3.算法描述及实验步骤(用适当的形式表达算法设计思想与算法实现步骤)1. 二维数组的0-1背包空间O(nW)int record[100][100]; // 0-1 背包的二维表void ZO_knapsack_1(int num,int room){// 针对每一个物品进行筛选,看他是否是构成最终max的组成int i,j;for(i=0;i<=num;i++)for(j=0;j<=room;j++)record[i][j]=0; // 初始化record表for(i=1;i<=num;i++){for(j=0;j<=room;j++){if(a[i][0]>j)record[i][j]=record[i-1][j];else{if(record[i-1][j-a[i][0]]+a[i][1]>record[i-1][j])record[i][j]=record[i-1][j-a[i][0]]+a[i][1];elserecord[i][j]=record[i-1][j];}}}}int arry[100]; // 一维记录表int carry[100]; // 是否拿走该物品记录void ZO_knapsack_2(int num,int room){int i,j;for(i=0;i<=num;i++)arry[i]=0; // 初始化arry表for(i=1;i<=num;i++){for(j=room;j>=a[i][0];j--){ //逆序记录if(arry[j-a[i][0]]+a[i][1]>arry[j])arry[j]=arry[j-a[i][0]]+a[i][1];}}3. 一维数组实现完全背包空间:O(W)void UNbounded(int num,int room){int i,j;for(i=0;i<=num;i++)arry[i]=0; // 初始化arry表for(i=1;i<=num;i++){for(j=a[i][0];j<=room;j++){ //顺序记录if(arry[j-a[i][0]]+a[i][1]>arry[j])arry[j]=arry[j-a[i][0]]+a[i][1];}}}4.调试过程及运行结果(详细记录在调试过程中出现的问题及解决方法。