选修4-5数学归纳法PPT
- 格式:ppt
- 大小:3.23 MB
- 文档页数:6
第四讲数学归纳法证明不等式一数学归纳法学习目标1 •理解并掌握数学归纳法的概念,运用数学归纳法证明等式问题;2.学会运用数学归纳法证明几何问题、证明整除性等问题.数学归纳法课前自主学案1.数学归纳法适用于证明一个与无限多个正整数有关的命题.2.数学归纳法的步骤是: (1)(归纳奠基)验证当〃=必(必为命题成立的起始自然数)时命题成立:(2)(归纳递推)假设当n=k(k^N+,且&$必)时命题成立,推导1时命题也成圭.(3)结论:由(1)(2)可知,命题对一切MM%的自然数都成立.思考感悟在数学归纳法中的必是什么样的数?提示:弘是适合命题的正整数中的最小值,有时是兀0=1或必=2,有时兀0值也比较大,不一定是从1开始取值.课堂互动讲练考点突破用数学归纳法证明等式问题用数学归纳法证明:用N+时,穆++ '''+(2n-l)(2n + l)=2n + V【证明】⑴当〃 =1时,左边=吉,右边= 左边=右边,.••等式成立.(2)假设n = k(k^l)时,等式成立,即有石+亦------- H1_ k(2k-i)(2k-\-r)=2k-\-r则当n=k-\r\时,丄+丄p -------------- ------- + -------- --------1・3 丁3・5丁^(2k- 1)(2氐+1)(2氐+ 1)(2氐+3)k | 1 氐(2 氐+3)+1 ---- + -------------- ---------------2k+r(2k+l)(2k+3) (2&+l)(2k+3) 2/+3&+1 &+1 (2k+l)(2k+3)=2k+3&+12伙+1)+1;.\n=k+1时,等式也成立.由(1)(2)可知,对一切MWN+等式都成立.【名师点评】运用数学归纳法证明时,两个步骤缺一不可,步骤(1)是证明的归纳基础,步骤(2)是证明的主体,它反映了无限递推关系.变式训练1 求证:(n + l)(n + 2)・•(n + n)= 2,te 1*3*5 (In—l)(n EN+).证明:⑴当兀=1时,等式左边=2, 等式右边=2X1=2,・•・等式成立.(2)假设兀=k(k G N+)等式成立,即仇+1)仇+2)…仇+Q=2忍1・3・5・・・・(2&—1)成立.那么n=k+l时,(k + 2)(* + 3)…仇+切(2& +1)(2* + 2) = 2(k +1)仇+ 2)仇+3)…仇+肪(2氐 + 1)=2*+1・1・3・5 (2k —1)-[2(^+1)-1]・即〃=&+1时等式也成立.由⑴⑵可知对任何7/ WN+等式均成立.3平面上有兀个圆,其中每两个圆都相交于两点,并且每三个圆都不相交于同一点,求证:这n个圆把平面分成~Tf(n)=n2—n+2部分.【思路点拨】用数学归纳法证明几何问题,主要是搞清楚当n=k + l时比n=k时分点增加了多加了几块,本题中第&+1个圆被原来的&弧,而每一条弧把它所在部分分成了两部分,此时共增加了个部分,问题就得到了解决.【证明】⑴当兀=1时,一个圆把平面分成两部分,且/⑴=1 —1 + 2 = 2,因此,〃=1时命题成立.(2)假设兀=k(k^l)时,命题成立,即&个圆把平面分成«切=护一&+2部分.如果增加一个满足条件的任一个圆,则这个圆必与前&个圆交于2&个点.这个点把这个圆分成%段弧,每段弧把它所在的原有平面分成为两部分.因此,这时平面被分割的总数在原来的基础上又增加了2&部分,即有f(k^l)=f(k)+2k=k2-k+2+2k = (k+^-(lc+1)+2.即当n=k+l时,f(n)=n2—n+2也成立.根据(1)、(2),可知兀个圆把平面分成了弘)=兀+2部分.【名师点评】有关诸如此类问题的论证,关键在于分析清楚兀=比与〃=无+1时二者的差异,这时常常借助于图形的直观性,然后用数学式子予以描述,建立起AQ与张+1)之间的递推关系.变式训练2平面内有EN+)条直线,其中任何两条不平行,任何三条不共点,求证:这n条直线Z/2 —I—Ji—(― 2把平面分成/(〃)=——个部分.证明:(1)当〃=1时,一条直线把平面分成两部分, 而/(1)=乎+;+2=2,・・・命题成立.(2)假设当n=k(k刃时命题成立,即k条直线把平面分成/(Q= 2「个部分• 则当兀=&+1时,即增加一条直线2,因为任何两条直线不平行,所以2与&条直线都相交,有&个交点;又因为任何三条直线不共点,所以母个交点不同于&条直线的交点,且&个交点也互不相同,如此& 个交点把直线2分成& + 1段,每一段把它所在的平面区域分为两部分,故新增加了& + 1个平面部分.z +a +^+z a +M Z +為+Z+4+Z41+4+ z+r+d I+4+Q)m +4)J ・・考点三報用数学归纳法证明整除性用数学归纳法证明(工+ 1)" + 1 + (工+2)2”-1(〃WN+)能被严+3兀+3整除.【思路点拨】证明多项式的整除问题,关键是在考点三報用数学归纳法证明整除性(工+1)"+1+(工+2)2"—1 中凑出x2+3x+3.【证明】⑴当兀=1时,(x + l)1+1+(x+2)2X1_1=x2+3x+3 能被工2+3工+3 整除,命题成立.(2)假设当兀=尤仇$1)时,a+iy+i+a+2)2—1能被屮+3兀+3整除,那么 (工 + 1)仇+1)+1+(工+2)2 仇+D—1=(工 + l)(x+1)“+1+(x+2)2, (x+2严—1= (x+l)(x + l)fc+1+(x + l)(x+2)2A:_1—(x+l)-(x +2)2ET + (工 + 2)2(" + 2)2RT= (x + l)[(x + lRi + (x+2)^-i] + (^ + 3x + 3)-(x +2严—1.因为(兀+1)*+1+(工+2严-1和0+3兀+3都能被0+ 3卄3整除,所以上面的式子也能被兀2+3兀+3整除. 这就是说,当〃=尤+1时,(兀+ 1)伙+1)+1 + (工+ 2严+1)—1也能被於+ 3工+ 3整除.根据⑴⑵可知,命题对任何MWN+都成立.【名师点评】 用数学归纳法证明数或式的整除 的方法很多,关键是凑成〃=尤时假设的形式. 变式训练3 求证:d" +1 + (° +1)2" T 能被/ +a + 1整除(neN +)・ 证明:⑴当兀=1 时,a1+1+(«+l)2X1_1=a 2+a+ 1,命题显然成立. 性问题时,常釆取加项、减项的配凑法,而配凑⑵假设当n=k(k^l)时,a k+i + (a + l)2k~1能被0 +° + 1整除,则当n=k+l时,a k+2+(a+l)2k^~l=a9a k^~l+(a+l)2(a+l)2k~l=a\a k+1 + (a + 1)2A:_1] + (a + l)2(a + l)2Ar_1~a(a +=a [a k+l+(a+1)2^-1]+(a2+a+l)(a + l)2k~l, 由归纳假设,以上两项均能被a^+a + 1整除,故当〃=氐+1时,命题也成立.由(1)、(2)可知,对〃GN+命题都成立.误区警示・・+戸+予=1—予(其中底N+).【错证】⑴当n = l时,左边=;,右边=—;=* 等式成立.(2)假设当n=k(kM\)时,等式成立,就是这就是说,当n=k+1时,等式也成立. 根据(1)和⑵可知,等式对任何n e N+都成立.【错因】从形式上看,会认为以上的证明是正确的,过程甚至是完整无缺的,但实际上以上的证明却是错误的.错误的原因在第⑵步,它是直接利用等比数列的求和公式求出了当n=k-\-l时式子;+$+§+••• +2-1丁2"丁2"打的和,而没有利用“归纳假设”,这是在用数学归纳法证题时极易犯的一种错误,要引以为戒,一定要引起同学们的足够重视.【自我校正】(1)当〃=1时,左边=亍右边=1 (2)假设当时,等式成立,就是等式成立.这就是说,当M=k+1时,等式也成立• 根据⑴和⑵可知,等式对任何兀UN+都成立.1.数学归纳法的两个步骤缺一不可,第一步中验证〃的初始值至关重要,它是递推的基础,但〃的初始值不一定是1,而是兀的取值范围内的最小值.2.第二步证明的关键是运用归纳假设.在使用归纳假设时,应分析卩的与卩仇+1)的差异与联系,利用拆、添、并、放、缩等手段,或从归纳假设出发, 如仇+1)中分离出卩⑹再进行局部调整.3.在研究探索性问题时,由特例归纳猜想的结论不一定是真命题,这时需要使用数学归纳法证明, 其一般解题步骤是:归纳一猜想一证明.。