数学归纳法ppt

  • 格式:ppt
  • 大小:4.62 MB
  • 文档页数:20

下载文档原格式

  / 20
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3 数学归纳法
阜阳四中 李斌
完全归纳 法 问题 1:袋中有5个小球,如何证明它们都是 绿色的? an n 1, 2, ... 问题 2: 对于数列an ,已知a1 1,an1
1 an
1 a1 1 1 a2 2 1 a3 3
问题情境一
猜想其通项公式
1 an n
优点:可以帮助我们从一些具体事
例中发现一般规律 缺点:仅根据有限的特殊事例归纳 得到的结论有时是不正确的
在使用归纳法探究数学命题时,必 须对任何可能的情况进行论证后,才能 判别命题正确与否。
思考1:与正整数n有关的数学命题能否 通过一一验证的办法来加以证明呢? 思考2:如果一个数学命题与正整数n有 关,我们能否找到一种既简单又有效的证 明方法呢?
例1:观察
5 3 1
9
7
你能得出什么结论? n 并用数学归纳法证 明你的结论。
归纳猜想: 1+3+5+…+(2n–1)=n2 (n∈N*)
等式成立. (1)当n=1时,左边=1, 右边=12=1, 证明: (2)假设n=k时等式成立, 即1+3+5+…+(2k–1)=k2 , 则n=k+1时, 1+3+5+…+[2(k+1)–1] = 1+3+5+…+(2k–1)+[2(k+1)-1] = k2+2k+1 =(k+1)2. 即n=k+1时等式也成立.
等式成立。 (2)假设当n=k时,等式成立,就是
k (k 1)( 2k 1) 1 2 3 k 6
2 2 2 2
那么
12 2 2 3 2 k 2 ( k 1) 2 k ( k 1)(2 k 1) ( k 1) 2 6 k ( k 1)(2 k 1) 6( k 1) 2 6 ( k 1)(2 k 2 7 k 6 ) 6 ( k 1)(k 2 )(2 k 3 ) 6 ( k 1)( k 1) 12( k 1) 1 6
归纳小结
1.数学归纳法是一种证明与正整数有关的数 学命题的重要方法.主要有两个步骤一个结论: (1)证明当n取第一个值n0(如 n0=1或2等)时 结论正确 (2)假设n=k时结论正确,证明n=k+1时结论 也正确 (3)由(1)、(2)得出结论 作业:课本:P96 A组 1,2
这就是说,当n=k+1时,等式也成立
由(1)和(2),可知等式对任何 n N 都成立

上述结论是容易理解的 :根据(),n 1 1 时等式成立,再根据(),n 1 1 2时等式 2 也成立。由于 2时等式成立,再根据(), n 2 n 2 1 3时等式也成立,这样递 推下去,就 知道n 4, , , 时等式都成立,即等式 5 6 对任 何n N 都成立。
因此数学归纳法是一种科学的递推方法
(1)是递推的基础 (2)是递推的依据
练习:已知数列{a n }为等比数列, 公比为q,求证:通项公式为a n = a1q n-1 (提示:a n = qa n-1)
注意 :
1、用数学归纳法进行证明时,要分两个步骤,两 步同样重要,两步骤缺一不可. 2、第二步证明,由假设n=k时命题成立,到 n=k+1时.必须用假设条件,否则不是数学归 纳法。 3、最后一定要写“由(1)(2)……”
不完全归 纳法
问题3:某人看到树上乌鸦是黑的, 深有感触地说全世界的乌鸦都是黑的。

论的推理方法
:由一系列有限的特殊事例得出一般结 归纳法
归纳法分为完全归纳法 和 不完全归纳法
考察全体对象, 得到一般结论 的推理方法 考察部分对象,得 到一般结论的推 理方法 结论不一定可靠
结论一定可靠
思考:归纳法有什么优点和缺点?
证明:(1)当n=1时, 左边
a1 , 右边 a1 0 d a1 ,
等式是成立的
(2)假设当n=k时等式成立,就是 a k a1 ( k 1)d ,
那么 a a d [a (k 1)d ] d k 1 k 1
a1 [(k 1) 1]d
这就是说,当n=k+1时等式也成立。
根据(1)和(2),可知等式对任何n∈N*都成立。
思考1:试问等式2+4+6+…+2n=n2+n+1成立吗?某 同学用数学归纳法给出了如下的证明,请问该同 学得到的结论正确吗?
解:设n=k时成立,即 2+4+6+…+2k=k2+k+1 则当n=k+1时 2+4+6+…+2k+2(k+1) =k2+k+1+2k+2=(k+1)2+(k+1)+1
数学归纳法步骤,用框图表示为:
验证n=n0时 命题成立。 归纳奠基
若n = k ( k ≥ n0 ) 时命题成立, 证明当n=k+1wenku.baidu.com命题也成立。
归纳递推
命题对从n0开始的所有 的正整数n都成立。
注:两个步骤,一个结论,缺一不可
例2 如果 {a n } 是等差数列,已知首项为 a1 公差为 d ,那么 a n a1 ( n 1)d 对一切n N 都成立 试用数学归纳法证明
数学归纳法
对于由不完全归纳法得到的某些与自然数有 关的数学命题我们常采用下面的方法来证明它 们的正确性: (1)证明当n取第一个值n0(例如n0=1) 时命题 成立; 【命题成立的必要性】递推基础 (2)假设当n=k(k∈N* ,k≥ n0)时命题成立 【命题成立的连 证明当n=k+1时命题也成立. 续性】归纳假设 最后由(1)(2)得出结论全体自然数成立(结论) 这种证明方法叫做 数学归纳法(两步一结论)
这就是说,n=k+1时也成立
所以等式对任何n∈N*都成立 该同学在没有证明当n=1时,等式是否成立的前提 下,就断言等式对任何n∈N*都成立,为时尚早 事实上,当n=1时,左边=2,右边=3 左边≠右边,等式不成立
思考3:下面是某同学 用数学归纳法证明等式 1 + 1 + 1 + + 1 1 1 (n∈N*) 2 3 2 2 2 2n 2n 成立的过程,它符合数学归纳法的证明要求吗?为什么? 第二步的证明没有在假设条件下进行,因此不符合 数学归纳法的证明要求 1 1 证明:①当n=1时,左边= 1 , 右边= 1 1 , 等式成立 2 2 2 1 + 1 + 1 ++ 1 1 1 , ②假设n=k时,等式成立, 即 2 22 23 2k 2k
1 ( k 1)k 1 1k 1 2 = 3
凑结论
∴ n=k+1时命题正确。 由(1)和(2)知,当
n N ,命题正确。
例题4 用数学归纳法证明
n(n 1)( 2n 1) 1 2 3 n 6
2 2 2 2
证明:
1 2 3 1 (1)当n=1时,左边=12=1,右边= 6
例3:用数学归纳法证明:
1 1×2+2×3+3×4+…+n(n+1) = n(n 1)(n 2) 3
证明: 1)当n=1时,左边=1×2=2,右边= 1 ×1×2×3 =2. 命题成立
3
2)假设n=k时命题成立,即 1 1×2+2×3+3×4+…+k(k+1)= k ( k 1)(k 2)
3
则当n=k+1时, 1 2 2 3 3 4 ... k (k 1)
( k 1)(k 2)
从n=k到n=k+1有什么变化

=
1 k ( k 1)(k 2) + 3
(k 1)(k 2)
利 用 假 设
1 ( k 1) (k 1)(k 2) 3
1 [1 ( 1 )k 1 ] 1 2 1 + 1 + 1 ++ 1 1 2 1 k 1 . 2 2 2 23 2 2k 2k 1 1 1 2 这就是说,当n=k+1时,等式也成立
那么n=k+1时
根据(1)和(2),可知等式对任何n∈N*都成立
因此,用数学归纳法证明命 题的两个步骤,缺一不可。第一 步是递推的基础,第二步是递 推的依据。缺了第一步递推失 去基础;缺了第二步,递推失去 依据,因此无法递推下去。
根据(1),(2)知等式对一切n∈N*都成立.
n
用数学归纳法证明
口诀:递推基础不可少,
1+3+5+‥+(2n-1)=
n2
归纳假设要用到,
证明: (1)当n=1时,左边=1,右边=1,等式成立。 结论写明莫忘掉。 (2)假设当n=k时,等式成立,即 (假设) 1+3+5+‥+(2k-1)= k2 证 那么当n=k+1时 明 传 1+3+5+‥+(2k-1)+[2(k+1)-1] 递 = k2 + [2(k+1)-1] 性 (利用假设) = k2 +2k+1 = (k+1)2 (凑结论) 即当n=k+1时等式也成立。 根据(1)和(2)可知,等式对任何 n N 都成立。