反比例函数的图像与性质
- 格式:ppt
- 大小:732.00 KB
- 文档页数:31
反比例函数的图像和性质反比例函数是数学中的一种基本函数类型,其图像和性质具有一定的特点。
本文将从图像和性质两个方面进行论述。
一、图像反比例函数的基本形式为y=k/x,其中k为常数,且k不等于0。
根据函数的定义域和值域,可得反比例函数的图像具有如下特点:1. 对称轴:对于反比例函数y=k/x来说,其对称轴为y轴和x 轴,即函数图像关于y轴和x轴对称。
2. 渐近线:反比例函数的图像会与y轴、x轴以及非对称轴(y=k/x中对称轴为y轴和x轴)形成三条渐近线。
当x趋近于正无穷大或负无穷大时,函数值趋近于0;当y趋近于正无穷大或负无穷大时,函数值趋近于0。
3. 图像形状:反比例函数的图像呈现双曲线的形状,即左右两侧趋近于无穷大而且不相交。
二、性质除了图像特点外,反比例函数还具有以下性质:1. 变化趋势:反比例函数的特殊之处在于当自变量x增大时,因为分母逐渐增大,所以函数值y会逐渐减小;反之,当x减小时,函数值y会逐渐增大。
2. 强调比值关系:反比例函数中,自变量和因变量之间存在着比值关系。
当自变量增大或减小时,因变量的大小相应呈现相反的变化。
3. 零点和定义域:反比例函数在定义域内除了零点x=0外,它的函数值不为零。
定义域一般为除零点的所有实数。
4. 单调性:反比例函数在定义域内通常是单调的,当自变量增大时,因变量会单调减小;当自变量减小时,因变量会单调增大。
5. 特殊情况:当反比例函数中的常数k为正数时,其图像位于第一象限和第三象限;当k为负数时,图像位于第二象限和第四象限。
这决定了函数图像关于原点的对称性。
综上所述,反比例函数的图像呈现双曲线的形状,具有对称轴、渐近线等特点。
同时,反比例函数的性质包括变化趋势、比值关系、零点和定义域、单调性以及特殊情况等。
在实际问题中,反比例函数具有广泛的应用,比如经济学中的供需关系、物理学中的电阻和电流关系等。
通过研究反比例函数的图像和性质,可以更好地理解和应用数学知识。
反比函数的图像是在一个坐标轴上有两根相互对称的曲线而组成,性质分别为:①单调性、②面积、③图想表达、④对称性。
反比例函数图像:
具体性质:
①单调性:反比函数是具有单调性的,当函数内容k大于零的时候,图像分别位于第一三象限,而在每一个象限的内部,从左往右来数,y是随着x的增大而减少,如果K小于零的时候,图像分别位于第二四象限,在每一个象限的内部,y随着x的增大而增大。
当K大于零的时候,函数在x小于零上是一个减函数,而在x大于零的时候,也是为减函数。
在k小于零的时候,函数在x小于零上为增函数,在x大于零的时候同为增函数。
②面积:在一个反比例函数上面取两个点,这两个点可以随意的取,然后过点分别做一个x轴和
一个y轴的平行线,而这个平行线是可以和坐标轴围成一个矩形,而这一个矩形的面积为绝对值得K。
而在反比例函数上,找到一个点,向X/Y轴分别做一个垂线,设置一个围好的矩形,而这个矩形则为QOWM,这个垂线分别位于y轴和x轴,则围成形状的这个面积为绝对值得K,则连接这个矩形的对角线为OM,则满足RT△OMQ的面积等于二分之一绝对值得K。
③图像表达:对于反比例函数的图像来说的话,不和x轴或者是y轴的相交渐近线为x轴和y轴,K值相等的反比例函数图像是相互重合的,k值不相等的反比例函数图像是永远都不会相交的,而绝对值得K越大的话,反比例函数距离坐标轴就会越来越远。
④对称性:反比例函数是一种中心对称的图形,对称中心是原点,而正是这样的一个反比例函数的图像也是轴对称图形,随意反比例函数上的点是关于原点坐标对称的,图像关于原点对称。
反比例函数的图像与性质反比例函数是一种常见的数学函数类型,其图像非常有特点,具有一些独特的性质。
本文将介绍反比例函数的图像及其性质,以帮助读者更好地理解和应用这一函数类型。
一、反比例函数的图像反比例函数的一般形式可以表示为 y = k/x,其中 k 为非零常数。
根据这个函数形式,我们可以研究其图像及其性质。
1. 关于 y 轴和 x 轴的对称性:我们可以观察到反比例函数的图像关于 y 轴和 x 轴均具有对称性。
也就是说,如果一个点 (x, y) 在反比例函数的图像上,那么点 (-x, y)、(x, -y)、(-x, -y) 也会在图像上。
2. 渐近线:对于反比例函数 y = k/x,当 x 趋近于 0 时,y 趋于正无穷大或负无穷大。
也就是说,反比例函数的图像会有两个垂直于 x 轴的渐近线,分别位于第一象限和第三象限。
这两条渐近线可以用方程 x = 0 和 y =0 来表示。
3. 变化趋势:反比例函数的图像随着 x 的增大而逐渐趋向于 x 轴正半轴,随着 x的减小而逐渐趋向于x 轴负半轴。
换句话说,当x 趋近于正无穷大时,y 趋于 0;当 x 趋近于负无穷大时,y 也趋于 0。
这一性质可以通过直观的图像来观察和理解。
二、反比例函数的性质除了图像特点外,反比例函数还具有一些性质,对于解题和实际应用有重要意义。
下面我们将介绍一些常见的性质。
1. 定义域和值域:反比例函数 y = k/x 的定义域为除了 x=0 外的所有实数,值域也为除了 y=0 外的所有实数。
这是因为 0 不能作为分母。
2. 增减性:当 x1<x2 时,对于反比例函数,由于 x1 和 x2 在同一侧相对于 0,所以可以推出 y1 和 y2 在同一侧相对于 0。
也就是说,反比例函数在定义域内的不同点上具有相同的增减性。
3. 零点:反比例函数的零点为x=0,即在坐标系的原点处。
当x 不等于零时,反比例函数的值不会等于零,因此没有其他零点。
反比例函数的图像与性质知识清理1、利用描点法画函数图象的步骤是列表、描点、连线。
2、反比例函数的解析式一般用待定系数法来求得,因为在反比例函数xk y =(k ≠0)中,只有一个待定系数k ,确定了k 值,就确定了反比例函数的解析式。
通常给出一组x 和y 的对应值或者图像上一点的坐标,代入xk y =中,即可以求出k 值,从而求得反比例函数的解析式。
3、反比例函数k y =(k 为常数,且k ≠0)的图像是双曲线具有以下性质:4、反比例函数xk y =(k ≠0)中的比例系数k 的几何意义。
如图:矩形PMON 的面积S=PM ×PM=y x y x ∙=∙,因为xk y =,所以xy=k 。
所以S=K ,即多双曲线上任意一点作x 轴、y 轴的垂线,所得矩形的面积为K ,若已知矩形的面积k 的绝对值时,应当依据双曲线的位置确定k 值的符号。
例题精讲:例题1、已知正比例函数与反比例函数图像交点到x 轴的距离是3,到y 轴的距离是4,求它们的解析式。
例题2、在反比例函数xk y =(k ≠0)的图像上有一点p ,它的横坐标m 和纵坐标n 是方程0242=--t t 的两个根: (1)求k 的值。
(2)求点p 到原点o 的距离。
例题3、函数1-=kx y 与xk y -=(k ≠0)在同一坐标系中的大致图像可能是( )(多项选择)例题4、设函数552)2(+--=m mx m y ,当m 取何值时,它是反比例函数?它的图像位于哪些象限内?(1)在每个象限内,当x 的值增大时,对应的y 值是如何变化的? (2)画出函数草图。
(3)利用图像求出当221≤≤x 时,函数值y 的变化范围。
作业练习 一、选择题1. (2011广东汕头)已知反比例函数xk y =的图象经过(1,-2).则________.2.(2011湖南邵阳)已知点(1,1)在反比例函数xk y =(k 为常数,k ≠0)的图像上,则这个反比例函数的大致图像是( )3. (2011江苏连云港)关于反比例函数xy 4=的图象,下列说法正确的是( )A .必经过点(1,1)B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称4. (2011湖南怀化)函数x y 2=与函数xy 1-=-在同一坐标系中的大致图像是k=5. (2011江苏淮安)如上右图,反比例函数xk y=的图象经过点A(-1,-2).则当x>1时,函数值y的取值范围是()A.y>1B.0<y<1C. y>2D.0<y<26. (2011湖北黄石)若双曲线xky12-=的图象经过第二、四象限,则k的取值范围是A.k>21B. k<21C. k=21D. 不存在7. (2011贵州贵阳)如图,反比例函数y1=k1xy2=k2x 的图象交于A(-1,-3)、B(1,3)两点,若k1x>k2x,则x的取值范围是(A)-1<x<0 (B)-1<x<1 (C)x<-1或0<x<1 (D)-1<x<0或x>18. (2011广东茂名)若函数xmy2+=的图象在其象限内的值随值的增大而增大,则的取值范围是A.B.C.D.9(2011山东东营)如图,直线和双曲线)0(>=kxky交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别是C、D、E,连接OA、OB、OP,设△AOC面积是S1、△BOD面积是S2、△POE面积是S3、则()A. S1<S2<S3B. S1>S2>S3C. S1=S2>S3D. S1=S2<S310. (2011福建福州)下图是我们学过的反比例函数图象,它的函数解析式可能是()A.B.C.D.11. (2011山东威海)下列各点中,在函数xy6-=图象上的是()A.(-2,-4)B.(2,3)C.(-1,6)D.(3,21-)12. (2011四川南充)小明乘车从南充到成都,行车的平均速度y(km/h)和行车时间x(h)之间的函数图像是()y xm2->m2-<m2>m2<ml2y x=4yx=3yx=-12y x=13. (2011浙江杭州)如图,函数和函数xy 22=的图象相交于点M(2,m),N(-1,n),若,则x 的取值范围是( )A .B .C .D .14. (2011浙江台州)如图,反比例函数xm y =的图象与一次函数的图象交于点M ,N ,已点M 的坐标为(1,3),点N 的纵坐标为-1,根据图象信息可得关于x 的方程xm =的解为( )A. -3,1B. -3,3C. -1,1D.3,-115(2011河北)根据图5—1所示的程序,得到了y 与x 的函数图象,过点M 作PQ ∥x 轴交图象于点P ,Q ,连接OP ,OQ.则以下结论 ①x <0时,xy 2=, ②△OPQ 的面积为定值,③x >0时,y 随x 的增大而增大 ④MQ=2PM ⑤∠POQ 可以等于90°其中正确的结论是( )A .①②④B .②④⑤C .③④⑤D .②③⑤11y x =-12y y >102x x <-<<或12x x <->或1002x x -<<<<或102x x -<<>或b kx y -=b kx -yoABx第16题图16. ( 2011重庆江津)已知如图,A 是反比例函数xk y =的图像上的一点,AB ⊥x 轴于点B,且△ABO 的面积是3,则k 的值是( ) A.3 B.-3 C.6 D.-6·17. (2011湖北宜昌)如图,直线y=+2与双曲线xm y 3-=在第二象限有两个交点,那么m 的取值范围在数轴上表示为( )二、填空题1. (2011浙江金华)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOC =60°,点A 在第一象限,过点A 的双曲线为y= k x ,在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ′B ′.当点O ′与点A 重合时,点P 的坐标是_________________。