微积分基本公式
- 格式:ppt
- 大小:860.00 KB
- 文档页数:17
微积分基本公式与计算微积分是数学的一个分支,主要研究函数的极限、导数、积分等基本概念和基本运算法则。
本文将介绍微积分的基本公式和计算方法。
1.极限:极限是微积分的基本概念之一,用来描述函数在特定点处的趋势。
极限的计算有以下几个基本公式:-基本极限公式:- $\lim_{x\to c} x = c$:常数函数的极限是其本身。
- $\lim_{x\to c} k f(x) = k \lim_{x\to c} f(x)$:常数倍法则。
- $\lim_{x\to c} (f(x) + g(x)) = \lim_{x\to c} f(x) +\lim_{x\to c} g(x)$:和法则。
- $\lim_{x\to c} (f(x) \cdot g(x)) = \lim_{x\to c} f(x)\cdot \lim_{x\to c} g(x)$:积法则。
- $\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{\lim_{x\to c}f(x)}{\lim_{x\to c} g(x)}$(假设$\lim_{x\to c} g(x) \neq 0$):商法则。
-重要极限:- $\lim_{x\to \infty} \frac{1}{x} = 0$:无穷小的定义。
- $\lim_{x\to 0} \frac{\sin x}{x} = 1$:著名的夹逼定理的应用。
- $\lim_{n\to \infty} (1+\frac{1}{n})^n = e$:自然对数的底数。
2.导数与微分:导数是函数在其中一点处的变化率,表示函数的斜率。
导数的计算有以下几个基本公式:-基本导数公式:- $\frac{d}{dx} (k f(x)) = k \frac{d}{dx} f(x)$:常数倍法则。
- $\frac{d}{dx} (f(x) + g(x)) = \frac{d}{dx} f(x) +\frac{d}{dx} g(x)$:和法则。
微积分基本公式16个1. 微分:微分是数学中最重要的概念之一,它指的是在一定时间内几何形状的变化率。
可以理解为小步长地移动拟合函数,接近曲线本身。
可以表示为\frac{dy}{dx} 或f'(x) 。
2. 泰勒公式:泰勒公式是一个重要的微积分工具,它可以在某一特定点附近对任意连续函数进行展开,也就是说任意设定一个位置x0,可以根据它附近的数值向量求出函数在该位置的平均值。
可以用公式表示为:f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)(x-x_0)^2}{2!} + \frac{f^{n}(x_0)(x-x_0)^n}{n!} + ...3. 高斯积分公式:高斯积分是指将函数抽象为一次多项式曲线,采用指数型或线性型积分方法求解积分。
它可以用公式f(x)=\sum_{i=0}^n a_i x^i 表示,其中a_i为积分下限、上限和积分点x_i处函数值相乘所得到的系数。
4. 黎曼积分:黎曼积分是一种常用的积分方法,它通过对连续函数求和,来确定函数在给定区间上的定积分。
可以用公式表示为:\int_{a}^{b}f(x)dx=\sum_{i=1}^{n}f(x_i)\Delta x_i ,其中n为梯形的节点数。
5. Stokes公式:Stokes公式是一种将多变量函数投影到多方向进行积分的方法,可以用公式表示为:\int_{\Omega}\nabla\times{\bf F} dA =\int_{\partial\Omega}{\bf F}\cdot{\bf n}dS,其中\nabla\times{\bf F} 为梯度矢量场,\partial\Omega 为边界,{\bfn}dS 为单位向量与边界面积的乘积。
6. Γ函数:Γ函数是一种重要的数学函数,通常用来表示非负整数的排列组合,也可以表示实数的阶乘,可以用公式表示为:\Gamma(x)=\int_0^{\infty}t^{x-1}e^{-t}dt7. 方阵的行列式:方阵的行列式是指一个n阶矩阵的行列式,可以用公式表示为:D= |a_{i,j}| = \begin{vmatrix} a_{1,1} & a_{1,2} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & ... & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & ... & a_{n,n} \end{vmatrix} ,其中a_{i,j} 为矩阵中的元素。
微积分公式大全1.极限与连续1.1 极限的定义:对于函数$f(x)$,当$x$趋向于$a$时,如果对于任意给定的$\epsilon > 0$,总存在与$a$不相等的$x$使得当$0 < ,x-a,< \delta$时,$,f(x) - L, < \epsilon$,我们就说函数$f(x)$在$x=a$处的极限为$L$,记作$\lim_{x \to a}f(x)=L$。
1.2基本极限公式:a) $\lim_{x \to a}c = c$,其中$c$为常数;b) $\lim_{x \to a}x = a$;c) $\lim_{x \to a}x^n = a^n$,其中$n$为正整数;d) $\lim_{x \to a} \sin x = \sin a$;e) $\lim_{x \to a} \cos x = \cos a$;f) $\lim_{x \to a} \tan x = \tan a$,其中$a \neq\frac{\pi}{2} + \pi k$,$k$为整数;g) $\lim_{x \to a} \ln x = \ln a$,其中$a > 0$。
1.3极限的运算法则:a) $\lim_{x \to a}[f(x) \pm g(x)] = \lim_{x \to a}f(x) \pm \lim_{x \to a}g(x)$;b) $\lim_{x \to a} kf(x) = k \lim_{x \to a}f(x)$,其中$k$为常数;c) $\lim_{x \to a} f(x)g(x) = \lim_{x \to a}f(x) \cdot\lim_{x \to a}g(x)$;d) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a}f(x)}{\lim_{x \to a}g(x)}$,其中$\lim_{x \to a}g(x) \neq 0$;e) $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a}f(x)]^n$,其中$n$为正整数。
基本微积分公式微积分是数学中的一个重要分支,它主要研究函数的变化规律和极限概念。
微积分公式是微积分中最基本的公式,它包括导数公式和积分公式两部分。
导数公式导数是微积分中最基本的概念之一,它表示函数在某一点处的变化率。
导数公式包括以下几种:1. 常数函数的导数为0,即f(x)=c,则f'(x)=0。
2. 幂函数的导数为其指数乘以系数,即f(x)=x^n,则f'(x)=nx^(n-1)。
3. 指数函数的导数为其自身的常数倍,即f(x)=a^x,则f'(x)=a^xlna。
4. 对数函数的导数为其自变量的倒数,即f(x)=lnx,则f'(x)=1/x。
5. 三角函数的导数为其导数的负数,即f(x)=sinx,则f'(x)=cosx;f(x)=cosx,则f'(x)=-sinx;f(x)=tanx,则f'(x)=sec^2x。
积分公式积分是微积分中的另一个重要概念,它表示函数在某一区间内的面积或体积。
积分公式包括以下几种:1. 常数函数的积分为其自身乘以积分区间的长度,即∫c dx=cx。
2. 幂函数的积分为其指数加1后除以指数加1的常数倍,即∫x^n dx=x^(n+1)/(n+1)。
3. 指数函数的积分为其自身除以自然对数的常数倍,即∫a^x dx=a^x/lna。
4. 对数函数的积分为其自变量的对数乘以积分区间的长度,即∫lnx dx=xlnx-x。
5. 三角函数的积分为其导数的相反数,即∫sinx dx=-cosx;∫cosx dx=sinx;∫tanx dx=-ln|cosx|。
总结微积分公式是微积分中最基本的公式,它包括导数公式和积分公式两部分。
导数公式用于求函数在某一点处的变化率,积分公式用于求函数在某一区间内的面积或体积。
掌握微积分公式对于学习微积分和解决实际问题都具有重要意义。
微积分的公式大全一、极限公式1.无穷小量定义:若当x→0时,Δx是x的函数之一,且满足Δx/x→0,则称Δx为x的一个无穷小量。
2.极限的基本性质:-函数f(x)的极限即为f(x)的左极限和右极限存在且相等的值。
-函数的极限与函数的值在有限点无关,只与趋向于该点的方式有关。
-函数有界,且极限存在,则函数必定有极大值和极小值。
3.基本极限:-极限的四则运算规则:设x→x0时有f(x)→A,g(x)→B,则f(x)±g(x)→A±B,f(x)g(x)→AB,f(x)/g(x)→A/B。
- 幂函数极限:若m是正整数,则lim(x→a) (x^m) = a^m。
- e 的指数函数极限:lim(x→∞) (1+1/x)^x = e。
- 自然对数函数极限:lim(x→0) (ln(1+x)/x) = 1-三角函数极限:- lim(x→0) (sinx/x) = 1- lim(x→0) (cosx-1)/x = 0。
四、导数公式1. 基本定义:函数 y=f(x) 在 x0 处可导,当且仅当函数在 x0 处存在极限lim(x→x0) (f(x)-f(x0))/(x-x0),即导数 f'(x0) 存在。
2.基本导数:- 常数函数的导数为 0:d/dx(c) = 0。
- 幂函数的导数:d/dx(x^n) = nx^(n-1)。
- 指数函数的导数:d/dx(e^x) = e^x。
- 对数函数的导数:d/dx(loga(x)) = 1/(xln(a))。
-三角函数的导数:- d/dx(sin(x)) = cos(x)。
- d/dx(cos(x)) = -sin(x)。
- d/dx(tan(x)) = sec^2(x)。
-反三角函数的导数:- d/dx(arcsin(x)) = 1/√(1-x^2)。
- d/dx(arccos(x)) = -1/√(1-x^2)。
- d/dx(arctan(x)) = 1/(1+x^2)。
基本微积分公式1微积分公式微积分是数学中的一个分支,是由著名的德国数学家Gottfried Wilhelm Leibniz和英国数学家Isaac Newton发明的,是为了研究连续的函数的变化的方法。
微积分公式中包含着很多实用的公式,可以用来计算函数的最值、极限、导数等。
2一阶导数公式一阶导数是求导中最常见的一种,也是应用最多的一种,它用来表示某个函数在某一点的变化量,一阶导数的公式通过函数的变化量来计算函数的极限值,公式的形式为:y'=(f(x2)-f(x1))/(x2-x1),其中y'表示函数的一阶导数,x1和x2分别表示两个不同的点,f(x)表示函数的值。
3二阶导数公式二阶导数是比一阶导数更高级的概念,表示函数在某一点处的变化量,二阶导数的公式为:y''=(f'(x2)-f'(x1))/(x2-x1),其中y''表示函数的二阶导数,x1和x2表示不同的点,f'(x)表示函数的一阶导数。
4梯度公式梯度公式是函数变化率最大的方向,可以被用来描述函数的变化量。
梯度公式可以用来表示以点为中心,函数瞬间变化量最大的方向,通常公式记作∇f,表示函数f的梯度方向。
梯度的计算方法有两种,一种是用数值的方法,另一种是矢量的方法,数值的公式为:grad(f)={(f(x+1)-f(x-1))/2,(f(y+1)-f(y-1))/2},其中x、y是变量,f(x)、f(y)分别表示x、y的函数值。
5曲线面积公式曲线面积是求面积的一种重要方法,在曲线面积公式中,首先要定义好曲线。
曲线面积的计算方法有多种,如:从数值解求面积;从边界条件求面积;高元分片梯形公式;梯形公式;抛物线面积公式等等,最常见的曲线面积求法是通过抛物线的公式来求,公式为∫abf(x)dx,其中a和b分别表示抛物线两个端点,f(x)表示抛物线函数值,dx表示定积分积分形式。
以上就是基本微积分公式的介绍,仅供参考,具体的解答还要根据函数的具体情况来求解。
16个微积分公式微积分是数学的一个重要分支,研究的是函数的极限、导数和积分等概念及其应用。
下面将介绍16个微积分公式,包括导数和积分的基本公式以及一些常用的微积分技巧。
一、导数的基本公式1. 常数函数的导数公式:常数函数的导数为0。
这是因为常数函数在任意点的斜率都是0。
2. 幂函数的导数公式:幂函数的导数等于指数乘以底数的指数减1。
3. 指数函数的导数公式:指数函数的导数等于该函数自身乘以底数的自然对数。
4. 对数函数的导数公式:对数函数的导数等于该函数自身除以自变量。
5. 三角函数的导数公式:三角函数的导数可以通过基本的三角函数关系推导得出。
二、积分的基本公式1. 定积分的基本公式:定积分可以看作是函数在给定区间上的面积。
计算定积分可以使用牛顿-莱布尼茨公式,即求导和积分的逆运算。
2. 不定积分的基本公式:不定积分是积分的一种形式,表示函数的原函数。
计算不定积分可以使用导数和积分的基本公式。
三、微积分的常用技巧1. 函数的导数与原函数的关系:函数的导数可以用来求函数的原函数,而函数的原函数可以用来求函数的积分。
2. 导数的链式法则:如果一个函数是两个函数的复合函数,那么它的导数可以通过链式法则来计算。
3. 积分的换元法:积分的换元法是一种常用的求积法则,可以通过变量代换来简化积分的计算。
4. 积分的分部积分法:分部积分法是积分的一种常用技巧,可以将一个复杂的积分转化为两个简单的积分。
5. 积分的化简技巧:有时候,积分的式子可以通过一些化简技巧来简化,如分子分母的拆分、积分区间的变换等。
6. 导数的极值问题:导数可以用来求函数的极值点,通过判断导数的正负可以确定函数的增减性。
7. 积分的应用:积分在物理学、经济学等领域有广泛的应用,如求曲线的长度、求物体的质心等。
8. 微分方程的解法:微分方程是微积分的一个重要应用,可以用来描述物理系统的变化规律。
求解微分方程可以通过积分的方法来得到解析解。
9. 隐函数的求导:隐函数是指用一个方程来表示的函数,它的导数可以通过求偏导数来计算。
16个微积分公式微积分是数学的一个重要分支,主要研究函数的变化规律及其应用。
在微积分中,有许多重要的公式被广泛应用于各种问题的解决中。
本文将介绍16个微积分公式,并分别阐述其含义和应用。
一、导数的定义公式导数是微积分中最基础的概念之一,它描述了函数在某一点的变化率。
导数的定义公式为:f'(x) = lim(h->0) [f(x+h) - f(x)] / h在这个公式中,f'(x)表示函数f(x)在点x处的导数。
该公式的含义是通过计算函数在极限情况下的变化率来求得导数。
导数的应用非常广泛,包括求函数的极值、判断函数的增减性等。
二、导数的四则运算法则导数的四则运算法则是求导过程中常用的规则,它将导数与函数的四则运算相结合。
具体公式如下:(1) (cf(x))' = cf'(x)(2) (f(x) ± g(x))' = f'(x) ± g'(x)(3) (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)(4) (f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x)) / (g(x))^2这些公式可以通过对函数中的每一项进行求导,并按照四则运算法则进行组合计算。
它们对于求解复杂函数的导数提供了便利。
三、常用导数公式在微积分中,有一些常用的导数公式被广泛应用于各种问题的求解中。
这些公式包括:(1) (x^n)' = nx^(n-1)(2) (e^x)' = e^x(3) (lnx)' = 1/x(4) (sinx)' = cosx(5) (cosx)' = -sinx(6) (tanx)' = sec^2x这些公式可以帮助我们快速求取一些特定函数的导数,从而简化求解过程。
四、高阶导数公式除了一阶导数外,函数的高阶导数也是微积分中的重要概念。
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。