微积分常用公式及运算法则(下册).
- 格式:pdf
- 大小:210.09 KB
- 文档页数:15
微积分的公式大全微积分是数学中的重要分支,涵盖了一系列的公式,用于计算和解决各种与变化相关的问题。
下面是微积分中的一些重要公式:1.导数的基本公式:- 常数的导数:$$\frac{d(c)}{dx}=0$$,其中c为常数。
- 幂函数的导数:$$\frac{d(x^n)}{dx}=nx^{n-1}$$,其中n为常数。
- e的指数函数的导数:$$\frac{d(e^x)}{dx}=e^x$$。
- 对数函数的导数:$$\frac{d(\ln(x))}{dx}=\frac{1}{x}$$。
2.常见初等函数的导数:- 正弦函数的导数:$$\frac{d(\sin(x))}{dx}=\cos(x)$$。
- 余弦函数的导数:$$\frac{d(\cos(x))}{dx}=-\sin(x)$$。
- 正切函数的导数:$$\frac{d(\tan(x))}{dx}=\sec^2(x)$$。
- 反正弦函数的导数:$$\frac{d(\arcsin(x))}{dx}=\frac{1}{\sqrt{1-x^2}}$$。
- 反余弦函数的导数:$$\frac{d(\arccos(x))}{dx}=-\frac{1}{\sqrt{1-x^2}}$$。
3.基本微分法则:- 常数乘积法则:$$\frac{d(cu)}{dx}=c\frac{du}{dx}$$。
- 加法法则:$$\frac{d(u+v)}{dx}=\frac{du}{dx}+\frac{dv}{dx}$$。
- 乘法法则:$$\frac{d(uv)}{dx}=u\frac{dv}{dx}+v\frac{du}{dx}$$。
- 商法则:$$\frac{d\left(\frac{u}{v}\right)}{dx}=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}$$。
- 复合函数求导法则:如果y是x的函数,z是y的函数,则$$\frac{dz}{dx}=\frac{dz}{dy}\frac{dy}{dx}$$。
微积分公式大全1.极限与连续1.1 极限的定义:对于函数$f(x)$,当$x$趋向于$a$时,如果对于任意给定的$\epsilon > 0$,总存在与$a$不相等的$x$使得当$0 < ,x-a,< \delta$时,$,f(x) - L, < \epsilon$,我们就说函数$f(x)$在$x=a$处的极限为$L$,记作$\lim_{x \to a}f(x)=L$。
1.2基本极限公式:a) $\lim_{x \to a}c = c$,其中$c$为常数;b) $\lim_{x \to a}x = a$;c) $\lim_{x \to a}x^n = a^n$,其中$n$为正整数;d) $\lim_{x \to a} \sin x = \sin a$;e) $\lim_{x \to a} \cos x = \cos a$;f) $\lim_{x \to a} \tan x = \tan a$,其中$a \neq\frac{\pi}{2} + \pi k$,$k$为整数;g) $\lim_{x \to a} \ln x = \ln a$,其中$a > 0$。
1.3极限的运算法则:a) $\lim_{x \to a}[f(x) \pm g(x)] = \lim_{x \to a}f(x) \pm \lim_{x \to a}g(x)$;b) $\lim_{x \to a} kf(x) = k \lim_{x \to a}f(x)$,其中$k$为常数;c) $\lim_{x \to a} f(x)g(x) = \lim_{x \to a}f(x) \cdot\lim_{x \to a}g(x)$;d) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a}f(x)}{\lim_{x \to a}g(x)}$,其中$\lim_{x \to a}g(x) \neq 0$;e) $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a}f(x)]^n$,其中$n$为正整数。
微积分的公式大全一、极限公式1.无穷小量定义:若当x→0时,Δx是x的函数之一,且满足Δx/x→0,则称Δx为x的一个无穷小量。
2.极限的基本性质:-函数f(x)的极限即为f(x)的左极限和右极限存在且相等的值。
-函数的极限与函数的值在有限点无关,只与趋向于该点的方式有关。
-函数有界,且极限存在,则函数必定有极大值和极小值。
3.基本极限:-极限的四则运算规则:设x→x0时有f(x)→A,g(x)→B,则f(x)±g(x)→A±B,f(x)g(x)→AB,f(x)/g(x)→A/B。
- 幂函数极限:若m是正整数,则lim(x→a) (x^m) = a^m。
- e 的指数函数极限:lim(x→∞) (1+1/x)^x = e。
- 自然对数函数极限:lim(x→0) (ln(1+x)/x) = 1-三角函数极限:- lim(x→0) (sinx/x) = 1- lim(x→0) (cosx-1)/x = 0。
四、导数公式1. 基本定义:函数 y=f(x) 在 x0 处可导,当且仅当函数在 x0 处存在极限lim(x→x0) (f(x)-f(x0))/(x-x0),即导数 f'(x0) 存在。
2.基本导数:- 常数函数的导数为 0:d/dx(c) = 0。
- 幂函数的导数:d/dx(x^n) = nx^(n-1)。
- 指数函数的导数:d/dx(e^x) = e^x。
- 对数函数的导数:d/dx(loga(x)) = 1/(xln(a))。
-三角函数的导数:- d/dx(sin(x)) = cos(x)。
- d/dx(cos(x)) = -sin(x)。
- d/dx(tan(x)) = sec^2(x)。
-反三角函数的导数:- d/dx(arcsin(x)) = 1/√(1-x^2)。
- d/dx(arccos(x)) = -1/√(1-x^2)。
- d/dx(arctan(x)) = 1/(1+x^2)。
微积分的公式大全1.极限的基本公式:(1)常数规则:lim(c) = c (c 为常数)(2)零规则:lim(0) = 0(3)单位规则:lim(x) = x (x 为自变量)(4)和差规则:lim(f(x) ± g(x)) = lim(f(x)) ± lim(g(x))(5)乘法规则:lim(f(x) * g(x)) = lim(f(x)) * lim(g(x))(6)除法规则:lim(f(x) / g(x)) = lim(f(x)) / lim(g(x)) (若lim(g(x)) ≠ 0)2.导数的基本公式:(1)常数函数的导数:(c)'=0(c为常数)(2)幂函数的导数:(x^n)' = nx^(n-1) (n 为实数)(3)指数函数的导数:(e^x)'=e^x(4)对数函数的导数:(ln(x))' = 1/x(5)三角函数的导数:(sin(x))' = cos(x)、(cos(x))' = -sin(x)、(tan(x))' = sec^2(x)(6)反三角函数的导数:(arcsin(x))' = 1/√(1-x^2)、(arccos(x))' = -1/√(1-x^2)、(arctan(x))' = 1/(1+x^2)3.基本积分公式:(1)幂函数的积分:∫(x^n)dx = (x^(n+1))/(n+1) + C (n ≠ -1)(2)指数函数的积分:∫(e^x)dx = e^x + C(3)对数函数的积分:∫(1/x)dx = ln,x, + C(4)三角函数的积分:∫sin(x)dx = -cos(x) + C、∫cos(x)dx = sin(x) + C、∫tan(x)dx = -ln,cos(x), + C(5)反三角函数的积分:∫(1/√(1-x^2))dx = arcsin(x) + C、∫(-1/√(1-x^2))dx = arccos(x) + C、∫(1/(1+x^2))dx = arctan(x)+ C4.微分中值定理:(1)罗尔定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,并且f(a)=f(b),则存在一个c(a<c<b),使得f'(c)=0。
微积分公式与运算法则1.基本公式(1)导数公式 (2) 微分公式(xμ)ˊ= μxμ-1 d(xμ)= μxμ-1 dx(a x)ˊ= a x lna d(a x)= a x lna dx(loga x)ˊ= 1/(xlna) d(loga x)= 1/(xlna) dx(sin x)ˊ= cos x d(sin x)= cos x dx(con x)ˊ= -sin x d(con x)= -sin x dx(tan x)ˊ= sec2 x d(tan x)= sec2 x dx(cot x)ˊ= -csc2 x d(cot x)= -csc2 x dx(sec x)ˊ= sec x·tan x d(sec x)= sec x·tan x dx (csc x)ˊ= -csc x·cot x d(csc x)= -csc x·cot x dx (arcsin x)ˊ= 1/(1-x2)1/2 d(arcsin x)= 1/(1-x2)1/2 dx (arccos x)ˊ= -1/(1-x2)1/2 d(arccos x)= -1/(1-x2)1/2 dx (arctan x)ˊ= 1/(1+x2) d(arctan x)= 1/(1+x2) dx (arccot x)ˊ= -1/(1+x2) d(arccot x)= -1/(1+x2) dx (sinh x)ˊ= cosh x d(sinh x)= cosh x dx (cosh x)ˊ= sinh x d(cosh x)= sinh x dx2.运算法则(μ=μ(x),υ=υ(x),α、β∈R)(1)函数的线性组合积、商的求导法则(αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ(μ/υ)ˊ= (μˊυ-μυˊ)/υ2(2)函数和差积商的微分法则d(αμ+βυ)= αdμ+βdυd(μυ)=υdμ+μdυd(μ/υ)= (υdμ-μdυ)/υ23.复合函数的微分法则设y=f(μ),μ=ψ(x),则复合函数y=f[ψ(x)]的导数为dy/dx = fˊ[ψ(x)] ·ψˊ(x)所以复合函数的微分为dy = fˊ[ψ(x)] ·ψˊ(x) dx由于fˊ[ψ(x)]= fˊ(μ),ψˊ(x) dx = dμ,因此上式也可写成 dy = fˊ(μ) dμ由此可见,无论μ是自变量,还是另一变量的可微函数,微分形式dy = fˊ(μ) dμ保持不变,这一性质称为微分形式不变性。
微积分的公式大全微积分是数学的一个分支,主要研究连续变化的函数及其相关性质。
在微积分中,有许多重要的公式在各个方面被广泛应用。
下面给出了微积分的一些重要公式。
1.极限公式(1)a^0=1,a≠0(2)lim(x→0) sinx/x = 1(3)lim(x→∞) (1+1/x)^x = e(4)lim(x→∞) (1+1/n)^nt = e^t(5)lim(x→0) (1+x)^1/x = e(6)lim(x→∞) (1+1/x)^x = e2.微分公式(1)dy/dx (x^n) = nx^(n-1)(2)dy/dx (a^x) = a^x ln(a)(3)dy/dx (e^x) = e^x(4)d/dx (ln(x)) = 1/x(5)d/dx (sinx) = cosx(6)d/dx (cosx) = -sinx(7)d/dx (tanx) = sec^2x(8)d/dx (cotx) = -csc^2x(9)d/dx (secx) = secx tanx(10)d/dx (cscx) = -cscx cotx3.积分公式(1)∫x^n dx = x^(n+1)/(n+1) + C,n≠-1(2)∫a^x dx = a^x/ln(a) + C(3)∫e^x dx = e^x + C(4)∫1/x dx = ln,x, + C(5)∫sinx dx = -cosx + C(6)∫cosx dx = sinx + C(7)∫sec^2x dx = tanx + C(8)∫csc^2x dx = -cotx + C(9)∫secx tanx dx = secx + C(10)∫cscx cotx dx = -cscx + C4.导数规则(1)(f+g)’=f’+g’(2)(af)’ = af’,a为常数(3)(f×g)’=f’×g+f×g’(4)(f/g)’ = (f’g - fg’)/g^2,g≠0(5)(fog)’=f’og×g’,o表示复合函数(6)(f^n)’ = nf^(n-1) f’,n为常数5.积分规则(1)∫(f + g) dx = ∫f dx + ∫g dx(2)∫(af) dx = a∫f dx,a为常数(3)∫(f × g) dx = ∫f dx ∫g dx - ∫f’ dx ∫g dx + C,C 为常数(4)∫(1/f) dx = ∫1/f dx(5)∫f’(x) dx = f(x) + C,C为常数以上是微积分中的一些公式,它们在求解问题和推导定理时都起到了重要的作用。
微积分的基本公式一定看精心整理微积分是数学的一个重要分支,研究变化的量与变化率,并通过极限、导数和积分等概念来描述和计算。
一、导数的求法公式1.基本导数公式:(1)常数函数的导数为0。
(2)幂函数的导数:设y=x^n,则y'=n*x^(n-1)。
(3)指数函数的导数:设y=a^x,则y' = ln(a) * a^x。
(4)对数函数的导数:设y=log_a(x),则y' = 1 / (x * ln(a))。
2.基本求导法则:(1)和差法则:设f(x)和g(x)是可导函数,则(f+g)'=f'+g',(f-g)'=f'-g'。
(2)常数倍法则:设f(x)是可导函数,c是常数,则(c*f)'=c*f'。
(3)乘积法则:设f(x)和g(x)是可导函数,则(f*g)'=f'*g+f*g'。
(4)商法则:设f(x)和g(x)是可导函数,且g(x)≠0,则(f/g)'=(f'*g-f*g')/g^2(5)复合函数法则:设f(x)和g(x)是可导函数,则(f(g(x)))'=f'(g(x))*g'(x)。
二、常见函数的积分公式1.基本积分公式:(1)幂函数的积分:设n≠-1,则∫x^n dx = (1/(n+1)) * x^(n+1) + C,其中C为常数。
(2)指数函数的积分:∫e^x dx = e^x + C,其中C为常数。
(3)对数函数的积分:∫(1/x) dx = ln,x, + C,其中C为常数。
2.基本初等函数的积分:(1)正弦函数与余弦函数的积分:∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C,其中C为常数。
(2)正切函数的积分:∫tan(x) dx = ln,sec(x), + C,其中C为常数。
微积分的基本公式微积分是数学的一个分支,涉及到函数、极限、导数、积分等概念和理论。
在微积分中,有很多基本公式被广泛应用于解决各种问题。
下面是一些微积分的基本公式及其应用:1.导数公式:-常数导数公式:对于任意常数c,其导数为0。
- 幂函数导数公式:对于任意实数n,导数公式为d(x^n) / dx = n * x^(n-1)。
- 指数函数导数公式:对于任意实数a,指数函数e^x的导数为d(e^x) / dx = e^x。
- 对数函数导数公式:对于任意实数a和b,自然对数函数ln(x)的导数为d(ln(x)) / dx = 1 / x。
2.积分公式:- 幂函数积分公式:对于任意实数n(n ≠ -1),积分公式为∫(x^n)dx = (1 / (n+1)) * x^(n+1) + C,其中C为常数。
- 指数函数积分公式:对于任意实数a,指数函数e^x的积分公式为∫e^xdx = e^x + C,其中C为常数。
- 对数函数积分公式:对于任意实数a和b,自然对数函数ln(x)的积分公式为∫(1 / x)dx = ln,x, + C,其中C为常数。
3.基本微积分定理:基本微积分定理是微积分的核心定理之一,它定量描述了函数与其导函数之间的关系。
根据基本微积分定理,如果F(x)是函数f(x)的一个原函数,则有∫f(x)dx = F(x) + C,其中C为常数。
4.链式法则:链式法则是求复合函数导数的一个重要工具。
设有函数y = f(g(x)),其中f(u)和g(x)分别是可导函数,那么复合函数关于自变量x的导数可以表示为dy / dx = dy / du * du / dx。
5.积分换元法:积分换元法是求定积分的一个常用方法。
当遇到被积函数中含有复杂的函数形式时,可以通过引入一个合适的变量代换,将原函数转化为较简单的形式来进行积分计算。
上述只是微积分中的几个基本公式,实际上微积分涉及到更多的公式和方法。
微积分在物理、工程、经济学等领域中具有广泛的应用,可以用于描述和分析各种变化过程,计算曲线的斜率、面积、体积等。
微积分常用公式及运算法则1.基本导函数:(1)常数函数导数公式:若f(x)=C,其中C是常数,则f'(x)=0。
(2) 幂函数导数公式:若f(x) = x^n,其中n是常数,则f'(x) = nx^(n-1)。
(3) 指数函数导数公式:若f(x) = a^x,其中a是正常数且a≠1,则f'(x) = a^x * ln(a)。
(4) 对数函数导数公式:若f(x) = log_a(x),其中a是正常数且a≠1,则f'(x) = 1 / (x * ln(a))。
(5)三角函数导数公式:- sin函数导数:(sinx)' = cosx。
- cos函数导数:(cosx)' = -sinx。
- tan函数导数:(tanx)' = sec^2(x)。
- cot函数导数:(cotx)' = -csc^2(x)。
- sec函数导数:(secx)' = secx * tanx。
- csc函数导数:(cscx)' = -cscx * cotx。
(6)反三角函数导数公式:- arcsin函数导数:(arcsinx)' = 1 / sqrt(1 - x^2)。
- arccos函数导数:(arccosx)' = -1 / sqrt(1 - x^2)。
- arctan函数导数:(arctanx)' = 1 / (1 + x^2)。
- arccot函数导数:(arccotx)' = -1 / (1 + x^2)。
- arcsec函数导数:(arcsecx)' = 1 / (x * sqrt(x^2 - 1)),其中,x, > 1- arccsc函数导数:(arccscx)' = -1 / (x * sqrt(x^2 - 1)),其中,x, > 1(1)常数乘法法则:若f(x)=C*g(x),其中C是常数,则f'(x)=C*g'(x)。