横截面上切应力分布规律
- 格式:ppt
- 大小:2.28 MB
- 文档页数:3
材料力学笔记之——弯曲切应力、梁的强度条件横力弯曲的梁横截面上既有弯矩又有剪力,所以横截面上既有正应力又有切应力。
下面,讨论几种常见截面梁的弯曲切应力。
矩形截面从发生横力弯曲的梁上截取长度为dx的微段,该段梁上没有载荷作用,微段两侧截面上的剪力相等,但方向相反。
右侧截面上的弯矩相对左侧截面有增量,因为弯矩不等,因而两截面上的正应力也不相同。
对于狭长矩形截面,由于梁的侧面上无切应力,根据切应力互等定理,截面上两侧边各点处的切应力与边界相切,即与边界平行,梁发生对称弯曲,对称轴y轴上的切应力一定沿着y方向,在狭长截面上切应力沿宽度方向变化不大。
于是,关于横截面上切应力的分布规律,作以下假设:横截面上各点的切应力的方向都平行于剪力;切应力沿截面宽度均匀分布,即与中性轴平行的横线上各点的切应力大小相等。
截面高宽比大于2的情况下,以上述假定为基础得到的解与弹性理论的精确解相比,有足够的精确度。
根据切应力互等定理,横截面垂直的纵向截面上应存在与横截面上大小相等的切应力。
沿矩中性轴距离y的纵向面把微段截开,取纵向面下侧微元,受力如图所示。
左侧截面上正应力的合力为右侧截面上正应力的合力为显然这两个合力大小不等,纵向截面上必存在一个沿轴向的力使微段保持平衡,这个力为切应力的合力,这也证明了纵向截面上存在切应力,由于d x 是小量,则设纵向面的切应力均匀分布根据平衡条件即其中由切应力互等定理及剪力与弯矩之间的微分关系可得其中:b为截面上矩中性轴为y的横线的宽度,对于矩形截面为常数;I z为整个横截面对中性轴的惯性矩;S z*为横截面上矩中性轴为y的横线以外部分的面积对中性轴的静矩;F s为横截面上的剪力。
其中代入切应力计算公式切应力沿截面高度为抛物线分布,当y=0时,即中性轴处有截面上的最大切应力角应变为可见角应变大小沿截面高度也为抛物线分布,此时横力弯曲时横截面翘曲形状如下图,验证了横力弯曲变形不满足平面假设。
剪力不变的横力弯曲,相邻横截面上的切应力相同,翘曲程度也相同,纵向纤维的长度不因截面翘曲而改变,因此不会引起附加的正应力。
材料力学第三章答案材料力学第三章答案【篇一:材料力学习题册答案-第3章扭转】是非判断题二、选择题0 b 2t?d316?1?? ? b wp??d316?1?? ?2c wp??d316?1?? ? d w3p??d316?1?? ?46.对于受扭的圆轴,关于如下结论:①最大剪应力只出现在横截面上;②在横截面上和包含杆件的纵向截面上均无正应力;③圆轴内最大拉应力的值和最大剪应力的值相等。
现有四种答案,正确的是( a )a ②③对b①③对c①②对d 全对7.扭转切应力公式?mnp?i?适用于(d)杆件。
pa 任意杆件;b 任意实心杆件;c 任意材料的圆截面;d 线弹性材料的圆截面。
9.若将受扭实心圆轴的直径增加一倍,则其刚度是原来的( d a 2倍; b 4倍; c 8倍; d 16倍。
三、计算题1.试用截面法求出图示圆轴各段内的扭矩t,并作扭矩图2.图示圆轴上作用有四个外力偶矩me1 =1kn/m, me2 =0.6kn/m,)me3= me4 =0.2kn/m, ⑴试画出该轴的扭矩图;⑵若me1与me2的作用位置互换,扭矩图有何变化?(1)(2)解:me1与me2的作用位置互换后,最大扭矩变小。
3.如图所示的空心圆轴,外径d=100㎜,内径d=80㎜,m=6kn/m,m=4kn/m.请绘出轴的扭矩图,并求出最大剪应力解:扭矩图如上,则轴面极惯性矩id4?d4)(1004?804)(10?3)4p=?(32??32?5.8?10?6m4㎜,l=500tr4?103?50?103ip5.8?104.图示圆形截面轴的抗扭刚度为g ip,每段长1m,试画出其扭矩图并计算出圆轴两端的相对扭转角。
ab+ad=cdab=t1l?90?gipgipad=bc=t2l100gipgipcd=t3l40gipgip?90?100?4050?gipgip【篇二:《材料力学》第3章扭转习题解】[习题3-1] 一传动轴作匀速转动,转速n?200r/min,轴上装有五个轮子,主动轮ii输入的功率为60kw,从动轮,i,iii,iv,v依次输出18kw,12kw,22kw和8kw。
一、横截面上的切应力实心圆截面杆和非薄壁的空心圆截面杆受扭转时,我们没有理由认为它们在横截面上的切应力象薄壁圆筒中那样沿半径均匀分布导出这类杆件横截面上切应力计算公式,关键就在于确定切应力在横截面上的变化规律。
即横截面上距圆心τp任意一点处的切应力p与p的关系为了解决这个问题,首先观察圆截面杆受扭时表面的变形情况,据此做出内部变形假设,推断出杆件内任意半径p处圆柱表面上的切应变γp,即γp与p的几何关系利用切应力与切应变之间的物理关系,再利用静力学关系求出横截面上任一点处切应力τp的计算公式实验表明:等直圆杆受扭时原来画在表面上的圆周线只是绕杆的轴线转动,其大小和形状均不变,而且在小变形情况下,圆周线之间的纵向距离也不变图8-56扭转时的平面假设:等直圆杆受扭时它的横截面如同刚性圆盘那样绕杆轴线转动显然这就意味着:等直圆杆受扭时,其截面上任一根沿半径的直线仍保持为直线,只是绕圆心旋转了一个角度φ图8-57现从等直圆杆中取出长为dx的一个微段,从几何、物理、静力学三个方面来具体分析圆杆受扭时的横截面上的应力图8-581.几何方面小变形条件下dφ为dx长度内半径的转角,γ为单元体的角应变图8-59或因为dφ和dx是一定的,故越靠近截面中心即半径R越小,角应变γ也越小且γ与R成正比例(或线性关系)由平面假设:对同一截面上各点θ表示扭转角沿轴长的变化率,称为单位扭转角,在同一截面上其为常数所以截面上任一点的切应力与该点到轴心的距离p成正比p为圆截面上任一点到轴心距离,R为圆轴半径图8-60上式为切应力的变化规律2.物理方面(材料在线性弹性范围内工作)由剪切胡克定律由于G和为常数,所以上式表明受扭等直圆杆在线性弹性范围内工作时,横截面上的切应力在同一半径p 的圆周上各点处大小相同,但它们随p做线性变化同一横截面上的最大切应力在横截面的边缘处。
这些切应力的方向均垂直于各自所对应的半径,指向与扭矩对应3.静力学方面前面已找出了受扭等直圆杆横截面上的切应力τp随p变化的规律,但还没有把与扭矩T联系起来。