勾股定理复习课教学设计
- 格式:doc
- 大小:552.00 KB
- 文档页数:10
勾股定理教案范本勾股定理教案教学方法优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理教案范本勾股定理教案教学方法优秀7篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。
年级数学科辅导讲义(第讲)学生姓名:授课教师:授课时间:专题勾股定理章节复习目标掌握勾股定理及其逆定理重难点勾股定理的应用常考点勾股定理的计算、勾股定理的应用勾股定理知识梳理1.勾股定理:直角三角形的两直角边的平方和等于斜边的平方。
若直角三角形的两条直角边为a、b,斜边为c,则a²+b²=c²。
2.勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a²+b²=c²,那么这个三角形是直角三角形。
3.满足a²+b²=c²的三个正整数,称为勾股数。
若a,b,c是一组勾股数,则ak,bk,ck(k为正整数)也必然是一组勾股数。
常用的几组勾股数有3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41等。
4.勾股定理的应用:①圆柱形物体表面上的两点间的最短距离;②长方体或正方体表面上两点间的最短距离问题。
5.直角三角形的判别:①定义,判断一个三角形中有一个角是直角;②根据勾股定理的逆定理,三角形一边的平方等于另外两边的平方和,则该三角形是直角三角形。
6.拓展:特殊角的直角三角形相关性质定理。
精讲点拨考点1. 勾股定理【例1】在Rt△ABC中,已知两边长为3、4,则第三边的长为变式1 在Rt△ABC中,已知两边长为5、12,则第三边的长为变式2 等边三角形的边长为6,则它的高是________变式3 在Rt△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C所对的边,(1)已知c=4,b=3,求a;(2)若a:b=3:4,c=10cm,求a、b。
考点2. 勾股定理的证明【例2】如图:由四个全等直角三角形拼成如下大的正方形,求证:222a b c +=变式 如图:由四个全等直角三角形拼成如下大的正方形,求证:222a b c +=考点3 勾股定理的应用【例3】 如图,A 市气象站测得台风中心在A 市正东方向300千米的B 处,以107千米/时的速度向北偏西60°的BF 方向移动,距台风中心200•千米范围内是受台风影响的区域. (1)A 市是否会受到台风的影响?写出你的结论并给予说明; (2)如果A 市受这次台风影响,那么受台风影响的时间有多长?变式1 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?变式2 一个25m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24m ,如果梯子的顶端A沿墙下滑4m ,那么梯子底端B 也外移4m 吗?考点4. 直角三角形的判定【例4】三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )A .a:b:c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c) D . a:b:c =13∶5∶12 变式1 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形.变式2 已知,△ABC 中,17AB cm =,16BC cm =,BC 边上的中线15AD cm =,试说明△ABC是等腰三角形.变式3 如图,在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC=41BC , 求证:AF ⊥EF .考点5. 勾股定理及其逆定理相关面积计算【例5】一个零件的形状如图,已知∠A=900,按规定这个零件中∠DBC 应为直角,工人师傅量得零件各边尺寸:AD = 4,AB = 3, BC = 12 , DC=13,问这个零件是否符合要求,并求四边形ABCD 的面积.变式1 如图示,有块绿地ABCD ,AD=12m ,CD=9m ,AB=39m ,BC=36m ,∠ADC=90°,求这块绿地的面积。
勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
(例四)(例五)
分析:搅拌棒在易拉罐中的位置可以有多种情形,如图中的
B
A
1、
B
A
2,但它们都不
是最长的,根据实际经验,当搅拌棒的一个端点在B点,另一个端点在A点时最长,此时可以把线段AB放在Rt△ABC
:已知单位长度为“1”,画一条线段,使它的长为
分析:29是无理数,用以前的方法不易准确画出表示长为
可知,两直角边分别为________
可作高利用其“三线合一”的性质来帮助建立方程.
的长方体纸箱的A点沿纸箱爬到B点,那么它所__________________________________.(分析:可以)
展开到同一平面内,由:“两点之间,
”再根据“勾股定理”求出最短路线。
=S为(
与点D重合,C落在C'处,Rt
C。
勾股定理复习课教案一、教学目标1. 知识与技能:(1)理解并掌握勾股定理的内容及证明方法;(2)能够运用勾股定理解决实际问题。
2. 过程与方法:(1)通过复习勾股定理,提高学生的数学思维能力;(2)培养学生运用勾股定理解决几何问题的能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养学生的自主学习能力;(2)培养学生团队协作、交流分享的良好学习习惯。
二、教学内容1. 勾股定理的定义及表述;2. 勾股定理的证明方法;3. 运用勾股定理解决实际问题。
三、教学重点与难点1. 教学重点:(1)勾股定理的表述及证明方法;(2)运用勾股定理解决实际问题。
2. 教学难点:(1)勾股定理的证明方法;(2)灵活运用勾股定理解决复杂几何问题。
四、教学方法1. 采用问题驱动法,引导学生主动思考、探索;2. 通过案例分析,培养学生运用勾股定理解决实际问题的能力;3. 组织小组讨论,促进学生之间的交流与合作。
五、教学过程1. 导入新课:(1)复习已学过的勾股定理相关知识;(2)提问:什么是勾股定理?它能解决哪些问题?2. 知识梳理:(1)讲解勾股定理的定义及表述;(2)介绍勾股定理的证明方法。
3. 案例分析:(1)展示几个运用勾股定理解决实际问题的案例;(2)让学生尝试独立解决类似问题。
4. 小组讨论:(1)组织学生进行小组讨论,分享解题心得;(2)引导学生相互借鉴、共同提高。
5. 练习巩固:(1)布置适量练习题,让学生独立完成;(2)针对学生易错点进行讲解和辅导。
(2)引导学生反思自己在解题过程中的优点和不足。
7. 课后作业:(1)布置课后作业,巩固所学知识;(2)鼓励学生开展课外探究,拓宽知识面。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及小组合作表现,评价学生的学习态度和团队协作能力。
2. 练习完成情况评价:检查学生练习题的完成质量,评价学生对勾股定理的理解和运用能力。
3. 课后作业评价:对学生的课后作业进行批改,了解学生对课堂内容的掌握情况,针对学生的错误进行个别辅导。
许镇中心初中电子备课教学设计
解析:同例题1一样,先将实物模型转化为数学模型,
∠ACD=90°,在Rt△ACD中,只知道CD=1.5,这是典型的利用勾股定理“知二求一”的
a,BF=a,那么在Rt
详细解题步骤如下:
解:设正方形ABCD的边长为4a,则BE=CE=2a,AF=3a,BF=a
在Rt△CDE中,DE2=CD2+CE2=(4a)2+(2a)2=20 a2
同理EF2=5a2, DF2=25a2
在△DEF中,EF2+ DE2=5a2+ 20a2=25a2=DF2
∴△DEF是直角三角形,且∠DEF=90°.
注:本题利用了四次勾股定理,是掌握勾股定理的必练习题。
题型四:利用勾股定理求线段长度——
例题4 如图4,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.
解析:解题之前先弄清楚折叠中的不变量。
合理设元是关键。
详细解题过程如下:
解:根据题意得Rt△ADE≌Rt△AEF
∴∠AFE=90°, AF=10cm, EF=DE
设CE=x cm,
则DE=EF=CD-CE=8-x
在Rt△ABF中由勾股定理得:
AB2+BF2=AF2,即82+BF2=102,
∴BF=6cm
∴CF=BC-BF=10-6=4(cm)
在Rt△ECF中由勾股定理可得:
EF2=CE2+CF2,即(8-x) 2=x2+42
∴64-16x+x2=2+16
∴x=3(cm),即CE=3 cm
注:本题接下来还可以折痕的长度和求重叠部分的面积。
题型五:利用勾股定理逆定理判断垂直——
例题5 如图5,王师傅想要检测桌子的表面AD边是否垂直与AB边和CD边,他测得AD= 80cm,AB=60cm,BD=100cm,AD边与AB边垂直吗?怎样去验证AD边与CD边是否垂直?
解析:由于实物一般比较大,长度不容易用直尺来方便测量。
我
们通常截取部分长度来验证。
如图4,矩形ABCD表示桌面形状,在A
B上截取AM=12cm,在AD上截取AN=9cm(想想为什么要设为这两个长
BC上一点,将矩形纸片
个小正方形,
点沿表
°的楼梯表面铺地毯,地毯的长至少需________米.
四、思维训练:
、如图所示是从长为40cm、宽为30cm
形后,剩下的一块下脚料。
工人师傅要将它做适当的切割,重新拼接后焊成一个面积与原下
附:板书设计。