高三数学课件 椭圆定义及几何性质
- 格式:ppt
- 大小:2.69 MB
- 文档页数:7
椭圆的简单几何性质课件椭圆的简单几何性质椭圆,作为一种常见的几何形状,具有许多有趣的性质和特点。
在这篇文章中,我们将探讨椭圆的一些简单几何性质,帮助读者更好地理解和应用椭圆。
一、椭圆的定义和基本元素椭圆是指平面上到两个固定点F1和F2的距离之和等于常数2a的点的轨迹。
这两个固定点称为焦点,连接两个焦点的线段称为主轴,主轴的中点称为椭圆的中心。
椭圆的两个焦点与中心之间的距离称为焦距,记为c。
椭圆的长轴长度为2a,短轴长度为2b,其中a大于b。
二、椭圆的离心率和焦半径椭圆的离心率是一个重要的参数,用e表示。
离心率的定义是焦距与长轴长度的比值,即e=c/a。
离心率可以用来描述椭圆的扁平程度,当离心率接近于0时,椭圆趋近于圆形;当离心率接近于1时,椭圆趋近于直线。
与离心率相关的概念是焦半径。
焦半径是指从椭圆上的任意一点到两个焦点的距离之和,记为r。
根据焦半径的定义,我们可以得到一个重要的结论:椭圆上的任意一点到两个焦点的距离之和等于2a,即r=2a。
三、椭圆的方程和参数方程椭圆的方程是描述椭圆上的点的数学表达式。
椭圆的标准方程是(x-h)^2/a^2+(y-k)^2/b^2=1,其中(h,k)是椭圆的中心坐标。
根据椭圆的定义,我们可以得到一个重要的性质:椭圆上的任意一点到中心的距离与椭圆的长轴、短轴长度之间存在一定的关系,即(x-h)^2/a^2+(y-k)^2/b^2=1。
除了标准方程,椭圆还可以用参数方程来表示。
参数方程是通过引入一个参数t,将椭圆上的点的坐标表示为x=a*cos(t)+h,y=b*sin(t)+k。
参数方程的优点是可以方便地描述椭圆上的点的运动和变化。
四、椭圆的性质和应用椭圆具有许多有趣的性质和应用。
首先,椭圆是一个闭合曲线,它的形状稳定且对称。
其次,椭圆上的点到两个焦点的距离之和是常数,这个性质可以应用于天文学中的行星轨道计算、卫星轨道设计等领域。
此外,椭圆还有许多与切线、法线、对称性等相关的性质。
椭圆的性质课件椭圆的性质椭圆是数学中一种重要的几何图形,它具有许多独特的性质和特点。
在本文中,我们将探讨椭圆的性质,包括其定义、方程、焦点、直径和切线等方面。
一、椭圆的定义和方程椭圆可以通过一对焦点和到焦点距离之和等于常数的点的集合来定义。
具体而言,给定两个焦点F1和F2,以及一个正常数2a(a>0),椭圆是满足以下条件的点P的集合:PF1 + PF2 = 2a。
椭圆的方程可以通过焦点和到焦点距离之和的定义来推导。
假设椭圆的焦点分别为F1(c,0)和F2(-c,0),其中c为正常数。
椭圆上的任意一点P(x,y)到焦点F1和F2的距离分别为PF1和PF2,根据定义,我们有PF1 + PF2 = 2a。
根据距离公式,我们可以得到椭圆的方程:√[(x-c)²+y²] + √[(x+c)²+y²] = 2a二、椭圆的焦点和直径椭圆的焦点是椭圆上特殊的点,它们对于椭圆的性质起着重要的作用。
根据椭圆的定义,焦点F1和F2分别位于椭圆的长轴上,并且到焦点距离之和等于常数2a。
椭圆的中点O为焦点F1和F2连线的中点,也是椭圆的对称中心。
椭圆的直径是椭圆上通过中心点O的线段,且两端点都在椭圆上。
椭圆的长轴是通过焦点F1和F2的直径,而短轴是与长轴垂直的直径。
椭圆的长轴长度为2a,短轴长度为2b。
三、椭圆的切线和法线椭圆上的切线是与椭圆相切的直线,它与椭圆的曲线只有一个交点。
椭圆上的任意一点P处的切线可以通过求解椭圆的方程和切线的斜率来确定。
根据导数的定义,我们可以得到椭圆上任意一点P(x,y)处的切线的斜率为:dy/dx = -x/√[(a²-x²)/b²]椭圆上的法线是与切线垂直的直线,它与切线的交点为切点。
椭圆上任意一点P处的法线可以通过求解椭圆的方程和法线的斜率来确定。
根据切线的斜率和法线的斜率的关系,我们可以得到椭圆上任意一点P(x,y)处的法线的斜率为:dy/dx = √[(a²-x²)/b²]/x四、椭圆的性质和应用椭圆具有许多重要的性质和应用。
高三椭圆知识点课件1. 椭圆的定义与特点椭圆是平面上一点到两个定点的距离之和等于常数值的轨迹。
对于椭圆,其中心就是两个定点的中点,称为焦点,两个定点距离的一半是椭圆的半长轴,两焦点连线的垂直平分线称为椭圆的直径,直径的一半是椭圆的半短轴。
2. 椭圆的方程椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心坐标,a和b分别是椭圆的半长轴和半短轴的长度。
当a=b时,椭圆退化为圆。
3. 椭圆的焦点与准线椭圆的焦点是平面上到椭圆上任意一点距离之和等于半长轴长度的两个点,焦点与椭圆的半长轴的交点称为准线。
4. 椭圆的离心率椭圆的离心率表示椭圆形状的圆度程度,计算公式为e = c/a,其中c为焦点到中心的距离,a为半长轴的长度。
离心率是0到1之间的实数,当离心率接近于0时,椭圆趋向于圆形,当离心率接近于1时,椭圆则趋向于长条形。
5. 椭圆的参数方程椭圆的参数方程x = h + a*cosθ,y = k + b*sinθ,其中θ为角度,(h,k)为椭圆的中心坐标。
6. 椭圆的性质与应用椭圆有许多重要的性质和应用。
例如,焦点到椭圆上任意一点的距离和等于定点到该点的距离差的绝对值;椭圆的周长可以通过椭圆的参数方程以及积分的方法求得;椭圆还被广泛应用于天体力学、通讯技术等领域。
7. 椭圆与其他几何图形的关系椭圆与其他几何图形有一些重要的关系。
与椭圆相似的图形有椭球体和椭圆锥,它们都具有类似的性质;椭圆还可以通过割椭圆法生成抛物线;直角坐标系中的椭圆可以通过仿射变换转化为标准方程,使得其焦点在坐标轴上。
8. 高三椭圆知识点总结高三阶段学习椭圆的知识是为了准备应对高考数学考试中相关的考点。
在椭圆的学习中,需要掌握椭圆的定义与特点、方程的推导与应用、焦点与准线的概念、离心率的计算等基础知识。
此外,还需要能够灵活运用参数方程、掌握椭圆与其他几何图形的关系。
椭圆的标准方程及其几何性质1. 椭圆定义:(1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点.当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在;当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段(2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<<e )的点的轨迹为椭圆(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化). 2.椭圆的方程与几何性质:3.点),(00y x P 与椭圆)0(12222>>=+b a b y a x 的位置关系:当12222>+b y a x 时,点P 在椭圆外; 当12222>+b y a x 时,点P 在椭圆内; 当12222=+b y a x 时,点P 在椭圆上; 4.直线与椭圆的位置关系直线与椭圆相交0>∆⇔;直线与椭圆相切0=∆⇔;直线与椭圆相离0<∆⇔ 例题分析:题1写出适合下列条件的椭圆的标准方程:⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离 之和等于10;⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23-,25) (3)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0).(4)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P 到两焦点的距离和为26. (5)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为所以所求椭圆标准方程为92522=+y x ⑵ 因为椭圆的焦点在y 轴上,所以设它的标准方程为由椭圆的定义知,22)225()23(2++-=a +22)225()23(-+-10=∴a 又2=c所以所求标准方程为61022=+x y 另法:∵ 42222-=-=a c a b∴可设所求方程142222=-+a x a y ,后将点(23-,25)的坐标代入可求出a ,从而求出椭圆方程(3)∵椭圆的焦点在x 轴上,所以设它的标准方程为: ∵100)35(0)35(222=+-+++=a ,2c =6. ∴3,5==c a∴163522222=-=-=c a b∴所求椭圆的方程为:1162522=+y x . (4)∵椭圆的焦点在y 轴上,所以设它的标准方程为)0(12222>>=+b a bx a y . ∴.144222=-=c a b∴所求椭圆方程为:114416922=+x y (5)∵椭圆的焦点在y 轴上,所以可设它的标准方程为: ∵P(0,-10)在椭圆上,∴a =10.又∵P 到它较近的一焦点的距离等于2, ∴-c -(-10)=2,故c =8. ∴36222=-=c a b .∴所求椭圆的标准方程是13610022=+x y . 题2。
—、基知谀夏习(1)椭圆的第一定义为:平面内与两个定点竹、巧的距离 之和为常数(大于|厲巧1)的点的轨迹叫做椭圆(2)椭圆的第二定义为:平面内到一定点F 与到一定直线Z 的距离之比为一常数e(OVeVl)的点的轨迹叫做椭圆1 •椭圆的定义HI III准线及离心率乂= //c^e=c/ci\ y=cP/c^e=c/C) e - 1)顶点坐标 焦点坐标 标准方程 象 x < a, y <b 范 围 2 2 d + ・ = l(E 〉O) 6/ ,0 ) ,(0, b) 2 be 关系 2 2 尹牙T 〉。
) 关于兀轴、y 轴成轴对称;关于原点成中心对称。
,0 ) ,(0, 长半轴长为©短半轴长为力・ 焦距为2c; 护二方? ________IPFJ 二 a+exIPF 2I= a-ex]|AB|=^l+k 2 lx r x 2l=VMW Iyi-y 2i — —F 21 •椭圆兀2/100+064=1上一点P 到左焦点耳的距离为6,。
是 "1的中点,o 是坐标原点,贝9100= _______2•已知椭圆上横坐标等于焦点横坐标的点,其纵坐标等于3•已知方程 壬 +吝=1表示焦点y 轴上的椭圆,贝畅的 \m ■ 1?鼻Tft,!if取值范围是()(A)FW <2 短半轴长的2/3,(C)加V7 或7 <m <2 (B)7 <m <2(D)加V7 或7 <m <3/24.己知动点P 、Q 在椭圆9*2+16^2=144上.椭圆的中心为O,且f - 则中心O 到弦P0的距离OH 必等于(厂…4 %OPOQ^S, 3 2(B )34 (C )25 5•已知厲、 ZFjPF^O 0 •则△PF/?的面积是 伟是椭圆xV25+j 2/9=l 的焦点,P返回【例1】已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为誓和竽,过P作长轴的垂线恰好过椭圆的一个焦点,求椭圆方程【解题回顾】本题因椭圆况,不能犯“对而不全”的知识性错误2•如图,从椭^x 2/a 2+y 2/b 2=l(a >b >0)上一点P 向兀轴作垂线, 垂足恰为左焦点F], 4是椭圆与兀轴正半轴的交点,〃是椭圆 与y 轴正半轴的交点,且AB 〃OP, I 几4l=710+7f"求翊 方程【解题回顾】求椭圆的方程,先判断焦点的位置,若焦点位置不确定则进行讨论,还要善于利用椭圆的 定义和性质结合图形建立关系式 y B3•已知A 、B 是椭椭圆方程【解题回顾】14巧1与血纽为焦半 径,所以考虑使用焦半径公式建 立关系式,同时结合图形,利用平面几何知识 在应用椭圆第二 \AF 2\+求此 X 2 y 2 + —"上的点,耳是右焦点且 ——a 22 9 Ay定义时,必须注意相应的焦点和准线问题m。