课时作业43 空间点、直线、平面之间的位置关系
- 格式:doc
- 大小:227.50 KB
- 文档页数:9
空间点、直线、平面之间的位置关系(习题)1.判断正误,正确的打“√”,错误的打“×”(1)有三个公共点的两个平面必重合.()(2)空间中两条平行直线确定一个平面.()(3)空间两两相交的三条直线确定一个平面.()(4)三角形是平面图形.()(5)平行四边形、梯形、四边形都是平面图形.()(6)两组对边分别相等的四边形是平行四边形.()(7)垂直于同一直线的两直线平行.()(8)一条直线和两平行线中的一条相交,也必和另一条相交.()2.已知α,β为平面,A,B,M,N为点,a为直线,下列理解错误的是()A.A∈a,A∈β,B∈a,B∈β⇒a⊂βB.M∈α,M∈β,N∈α,N∈β⇒α∩β=直线MNC.M∈α,M∈β,α∩β=l⇒M∈lD.A,B,M∈α,A,B,M∈β,且A,B,M不共线⇒α,β重合3.l1,l2,l3是空间中三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面4.已知a,b,c为三条不重合的直线,α,β为两个不重合的平面,有下列命题:①若a∥c,b∥c,则a∥b;②若a∥β,b∥β,则a∥b;③若a∥c,c∥α,则a∥α;④若a∥β,a∥α,则α∥β.其中正确的是()A.①②B.①C.②④D.③④5.如图,在空间四边形ABCD中,AB,BC,CD的中点分别是P,Q,R,且PQ=2,QR=5,PR=3,则异面直线AC和BD 所成的角为()A.90°B.60°C.45°D.30°第5题图第6题图6.如图,正方体ABCD-A1B1C1D1两个面上成异面关系的两条对角线所成的角为()A.60°B.90°C.60°或90°D.30°7.如图,在正方体ABCD-A1B1C1D1中,AA1=AB=4,AD=2,E,F,G分别是DD1,AB,CC1的中点,则直线A1E,FG所夹的角为_______.8.将正方体的纸盒展开(如图),则直线AB,CD在原正方体中所成的角为________.9.如图,在空间四边形ABCD中,E,F,G,H分别为AB,BC,CD,DA的中点,若AC=BD=a,且AC与BD所成的角为60°,则四边形EFGH的面积是________.10.如图,在正方体ABCD-A1B1C1D1中,E,F分别是AA1,CC1的中点,求证:四边形BFD1E是平行四边形.11.如图,在正方体ABCD-A′B′C′D′中,求:(1)AA′和C′D′所成角的大小;(2)AA′和B′C所成角的大小;(3)A′B和B′C所成角的大小.12.如图,△ABC在平面α外,直线AB∩平面α=P,直线AC∩平面α=Q,直线BC∩平面α=R,求证:P,Q,R三点共线.【参考答案】1.×√×√××××2.B3.B4.B5.A6.C7.90°8.60°9.238a 10.略11.(1)90°;(2)45°;(3)60°12.略。
课时作业(三十九) 空间点、直线、平面之间的位置关系1.直线a与b垂直,且直线b垂直于平面α,则直线a与平面α的位置关系是( ) A.a⊥αB.a∥αC.a⊂αD.a⊂α或a∥αD [直线a与b垂直,且直线b垂直于平面α,则a⊂α或a∥α,故选D.]2.(多选)三个平面α,β,γ两两相交,则这三个平面的交线总共可能有( )条.A.1 B.2 C.3 D.4AC [当三个平面交于一条直线,交线的条数是1,当三个平面两两相交,交线不重合时,有3条交线,综上可知空间中三个平面两两相交,交线的条数是1或3.故选AC.] 3.(多选)正方体截面的形状有可能为( )A.正三角形B.正方形C.正五边形D.正六边形ABD [画出截面图形如图:可以画出正三角形但不是直角三角形(如图1);可以画出正方形(如图2).经过正方体的一个顶点去切就可得到五边形.但此时不可能是正五边形(如图3);正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,且可以画出正六边形(如图4);故选ABD.]4.如图,在四面体ABCD中,一个平面与AB,BC,CD,DA分别交于点E,F,G,H(不含端点),则下列结论错误的是( )A.若AE∶BE=CF∶BF,则AC∥平面EFGHB.若E,F,G,H分别为各棱的中点,则四边形EFGH为平行四边形C.若E,F,G,H分别为各棱的中点且AC=BD,则四边形EFGH为矩形D.若E,F,G,H分别为各棱的中点且AC⊥BD,则四边形EFGH为矩形C [若AE∶BE=CF∶BF,则EF∥AC,EF⊂平面EFGH,AC⊄平面EFGH,所以AC∥平面EFGH ,故A 正确;若E ,F ,G ,H 分别为各棱的中点,则EH ∥FG ,EF ∥GH ,四边形EFGH 为平行四边形,故B 正确;由于四边形EFGH 为平行四边形,且AC ⊥BD ,所以EF ⊥EH ,所以平行四边形EFGH 是矩形,故D 正确,而当AC =BD 时,EH =EF ,平行四边形EFGH 是菱形,C 错误.故选C.]5.(多选)如图,在长方体ABCD -A 1B 1C 1D 1中,O 是DB 的中点,直线A 1C 交平面C 1BD 于点M ,则下列结论正确的是( )A .C 1,M ,O 三点共线B .C 1,M ,O ,C 四点共面C .C 1,O ,A 1,M 四点共面D .D 1,D ,O ,M 四点共面ABC [连接A 1C 1,AC ,则AC ∩BD =O ,又A 1C ∩平面C 1BD =M ,所以三点C 1,M ,O 在平面C 1BD 与平面ACC 1A 1的交线上,所以C 1,M ,O 三点共线,所以A ,B ,C 项均正确,D 项错误.故选ABC 项.]6.正方体AC 1中,与面ABCD 的对角线AC 异面的棱有________条.解析: 如图,在正方体AC 1中,与面ABCD 的对角线AC 异面的棱有BB 1,DD 1,A 1B 1,A 1D 1,D 1C 1,B 1C 1,共6条.答案: 67.(开放型)如图,在三棱锥A -BCD 中,E ,F ,G ,H 分别是棱AB ,BC ,CD ,DA 的中点,则(1)当AC ,BD 满足条件________时,四边形EFGH 为菱形;(2)当AC ,BD 满足条件____________时,四边形EFGH 为正方形.解析: (1)∵四边形EFGH 为菱形,∴EF =EH ,∴AC =BD .(2)∵四边形EFGH 为正方形,∴EF =EH 且EF ⊥EH ,∵EF ∥AC ,EH ∥BD ,且EF =12AC ,EH =12BD , ∴AC =BD 且AC ⊥BD .答案: (1)AC=BD (2)AC=BD且AC⊥BD8.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.解析: 取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成的角即为异面直线AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点,所以C1D垂直于圆柱下底面,所以C1D⊥AD.因为圆柱的轴截面ABB1A1是正方形,所以C1D=2AD,AD∥BC,所以∠C1AD即直线AC1与AD所成的角.所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为2.答案: 29.如图,在棱长为a的正方体ABCD-A1B1C1D1中,M,N分别是AA1,D1C1的中点,过D,M,N三点的平面与正方体的下底面相交于直线l.(1)画出l的位置;(2)设l∩A1B1=P,求PB1的长.解析: (1)如图,延长DM与D1A1交于点O,连接NO,则直线NO即为直线l.(2)因为l∩A1B1=P,则易知直线NO与A1B1的交点即为P.所以A1M∥DD1,且M,N分别是AA1,D1C1的中点,所以A1也为D1O的中点.由图可知A 1P D 1N =OA 1OD 1=12, 所以A 1P =a 4,PB 1=A 1B 1-A 1P =3a 4.10.如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,PA =2.求: (1)三棱锥P ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解析: (1)S △ABC =12×2×23=23. 三棱锥P -ABC 的体积V =13S △ABC ·PA =13×23×2=433. (2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =22+22-22×2×2=34.故异面直线BC 与AD 所成角的余弦值为34.11.已知平面α∩平面β=直线l ,点A ,C ∈α,点B ,D ∈β,且A ,B ,C ,D ∉l ,点M ,N 分别是直线AB ,CD 的中点,则下列说法正确的是( )A .当|CD |=2|AB |时,M ,N 不可能重合B .M ,N 可能重合,但此时直线AC 与l 不可能相交C .当直线AB ,CD 相交,且AC ∥l 时,BD 可与l 相交D .当直线AB ,CD 异面时,MN 可能与l 平行B [A 选项:当|CD |=2|AB |时,若A ,B ,C ,D 四点共面且AC ∥BD 时,则M ,N 两点能重合,可知A 错误;B 选项:若M ,N 可能重合,则AC ∥BD ,故AC ∥l ,此时直线AC 与直线l 不可能相交,可知B 正确;C 选项:当AB 与CD 相交,直线AC ∥l 时,直线BD 与l 平行,可知C 错误;D 选项:当AB 与CD 是异面直线时,MN 不可能与l 平行,可知D 错误.故选B.]12.正方体ABCD -A 1B 1C 1D 1的棱长为2,M ,N ,E ,F 分别是A 1B 1,AD ,B 1C 1,C 1D 1的中点,则过EF 且与MN 平行的平面截正方体所得截面的面积为________.解析: 由题意,取CD 的中点Q ,BC 的中点P ,连接ME ,NQ ,FQ ,QP ,EP ,EQ,在正方体中易知,ME綊NQ,所以MN∥EQ,因为MN⊄平面EFQP,EQ⊂平面EFQP,所以MN∥平面EFQP,故平面EFQP就是过EF且与MN平行的平面截正方体所得的截面,PQ=2,所以面积S=2×2=22.答案: 2213.如图,E,F,G,H分别是空间四边形ABCD各边上的点,且AE∶EB=AH∶HD=m,CF∶FB=CG∶GD=n.(1)证明:E,F,G,H四点共面;(2)m,n满足什么条件时,四边形EFGH是平行四边形?(3)在(2)的条件下,若AC⊥BD,试证明:EG=FH.解析: (1)证明:因为AE∶EB=AH∶HD,所以EH∥BD.又CF∶FB=CG∶GD,所以FG∥BD.所以EH∥FG.所以E,F,G,H四点共面.(2)当EH∥FG,且EH=FG时,四边形EFGH为平行四边形.因为EHBD=AEAE+EB=mm+1,所以EH=mm+1BD.同理可得FG=nn+1BD,由EH=FG,得m=n.故当m=n时,四边形EFGH为平行四边形.(3)证明:当m=n时,AE∶EB=CF∶FB.所以EF∥AC.又EH∥BD,所以∠FEH是AC与BD所成的角(或其补角),因为AC⊥BD,所以∠FEH=90°.从而平行四边形EFGH为矩形,所以EG=FH.14.在正方体ABCD-A1B1C1D1中,P,Q分别为AD1,B1C上的动点,且满足AP=B1Q,则下列4个命题中,所有正确命题的序号是( )①存在P,Q的某一位置,使AB∥PQ②△BPQ的面积为定值③当PA>0时,直线PB1与直线AQ一定异面④无论P,Q运动到何位置,均有BC⊥PQA.①②④B.①③C.②④D.①③④D [如图,①当P,Q分别是AD与B1C的中点时,AB∥PQ,①正确;②设正方体棱长为2,当P在A处时,Q在B1处,△BPQ的面积为2,当P在AD1的中点,Q在B1C的中点时,△BPQ的面积为2,故②错误;③当PA>0时,设直线PB1与AQ是共面直线,则AP与B1Q共面,矛盾,故假设不成立,所以直线PB1与AQ是异面直线,③正确;④当P与A重合或P与D1重合时,易证BC⊥PQ.当P不与A,D1重合时,设点P在平面ABCD内的射影为M,点Q在平面ABCD 内的射影为N,连接PM,QN,MN,PQ,由AP=B1Q知,AM=BN,故BC⊥MN,又QN⊥BC,MN∩QN=N,所以BC⊥平面PMNQ,所以BC⊥PQ,故④正确.综上所述,正确命题的序号是①③④.]15.如图,已知多面体PABCDE的底面ABCD是边长为1的正方形,PA⊥平面ABCD,ED∥PA,且PA=3ED=3AB,现将△CDE以直线DE为轴旋转一周后,则直线BP与动直线CE所成角的范围是________.解析: 如图所示,将PB平移到EB1的位置,C1点在以D为圆心,半径为1的圆上运动.则∠B1EC1就是所求线线角,根据三角形中,大角对大边,EB1,EC1为定值,故最值由B 1C 1来确定,故当C 1在C 处线线角最小,在C 2处线线角最大.由于PA =3ED =3AB ,故∠PBA =∠EB 1D =π3. 而DE =DC =1,故∠ECD =π4, 所以∠CEB 1=π3-π4=π12.而∠EC 2D =∠ECD =π4,故∠B 1EC 2=π-π4-π3=5π12.所以所求线线角的取值范围是[π12,5π12].答案: [π12,5π12]。
空间几何中的点直线平面的位置关系在我们的日常生活中,空间几何的概念无处不在。
从我们居住的房屋结构,到道路的布局,再到各种建筑的设计,都离不开空间几何的知识。
而在空间几何中,点、直线和平面是最基本的元素,它们之间的位置关系也是我们理解和解决空间几何问题的关键。
首先,让我们来认识一下点。
点,是空间中最基本的单位,它没有大小,只有位置。
可以把点想象成是宇宙中的一颗星星,在浩瀚的空间中有着自己独特的坐标。
在数学中,我们通常用一个坐标来表示一个点的位置,比如在二维空间中,点可以用(x,y)来表示;在三维空间中,点则用(x,y,z)来表示。
接下来是直线。
直线是由无数个点组成的,它可以向两端无限延伸。
想象一下,在晴朗的夜晚,我们看到的笔直的星光,那就是一种近似于直线的存在。
直线在空间几何中有着重要的地位,它的特点是没有弯曲,没有尽头。
我们可以用一个点和直线的方向向量来确定一条直线,也可以用两个不同的点来确定一条直线。
然后是平面。
平面就像是一张无限延展的平坦的纸,它没有厚度。
比如我们脚下的大地,如果忽略其起伏和凹凸不平,就可以近似地看作一个平面。
平面可以用一个点以及平面的法向量来表示,也可以用三个不共线的点来确定一个平面。
了解了点、直线和平面的基本概念后,接下来我们看看它们之间的位置关系。
点与直线的位置关系相对简单,点要么在直线上,要么不在直线上。
如果点在直线上,那么这个点的坐标满足直线的方程;如果点不在直线上,那么它的坐标就不满足直线的方程。
点与平面的位置关系也是类似,点要么在平面内,要么在平面外。
如果点在平面内,那么这个点的坐标满足平面的方程;如果点在平面外,那么它的坐标就不满足平面的方程。
直线与直线的位置关系就稍微复杂一些。
两条直线可能平行,也就是它们的方向向量相同,但位置不同,它们永远不会相交;两条直线也可能相交,即它们在空间中有一个共同的交点;还有一种特殊情况,就是两条直线重合,此时它们的方程完全相同,所有的点都相同。
空间点、直线、平面之间的位置关系一、基础知识1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系(1)空间中两直线的位置关系⎩⎪⎨⎪⎧ 共面直线⎩⎨⎧ 平行相交异面直线:不同在任何一个 平面内(2)异面直线所成的角 ①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝ ⎛⎦⎥⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.直线l和平面α相交、直线l和平面α平行统称为直线l在平面α外,记作l⊄α.(2)平面与平面的位置关系有平行、相交两种情况.二、常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.考点一平面的基本性质及应用B1C1D1中,E,F分[典例]如图所示,在正方体ABCD-A别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈DA,∴CE,D1F,DA三线共点.[变透练清]1.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是()解析:选D A,B,C图中四点一定共面,D中四点不共面.2.(变结论)若本例中平面BB1D1D与A1C交于点M,求证:B,M,D1共线.证明:连接BD1(图略),因为BD1与A1C均为正方体ABCD-A1B1C1D1的对角线,故BD1与A1C相交,则令BD1与A1C的交点为O,则B,O,D1共线,因为BD1⊂平面BB1D1D,故A1C与平面BB1D1D的交点为O,与M重合,故B,M,D1共线.考点二空间两直线的位置关系[典例](1)(优质试题·郑州模拟)已知直线a和平面α,β,α∩β=l,a⊄α,a ⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是() A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面(2)G,N,M,H分别是下图中正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形的是________.(填序号)[解析](1)如图,取平面ABCD为α,平面ABFE为β.若直线CH为a,则a在α,β内的射影分别为CD,BE,此时CD,BE异面,即b,c异面,排除A;若直线GH为a,则a在α,β内的射影分别为CD,EF,此时CD,EF平行,即b,c平行,排除B;若直线BH为a,则a在α,β内的射影分别为BD,BE,此时BD,BE相交,即b,c 相交,排除C.综上所述选D.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.[答案](1)D(2)②④[题组训练]1.下列结论中正确的是()①在空间中,若两条直线不相交,则它们一定平行;②与同一直线都相交的三条平行线在同一平面内;③一条直线与两条平行直线中的一条相交,那么它也与另一条相交;④空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c.A.①②③B.②④C.③④D.②③解析:选B①错,两条直线不相交,则它们可能平行,也可能异面;②显然正确;③错,若一条直线和两条平行直线中的一条相交,则它和另一条直线可能相交,也可能异面;④由平行直线的传递性可知正确.故选B.2.如图,在正方体ABCD -A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确结论的序号为________.解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,所以①②错误.点B,B1,N在平面BB1C1C中,点M在此平面外,所以BN,MB1是异面直线.同理AM,DD1也是异面直线.答案:③④[课时跟踪检测]1.(优质试题·衡阳模拟)若直线l与平面α相交,则()A.平面α内存在直线与l异面B.平面α内存在唯一一条直线与l平行C.平面α内存在唯一一条直线与l垂直D.平面α内的直线与l都相交解析:选A当直线l与平面α相交时,这条直线与该平面内任意一条不过交点的直线均为异面直线,故A正确;该平面内不存在与直线l平行的直线,故B错误;该平面内有无数条直线与直线l垂直,所以C错误,平面α内的直线与l可能异面,故D错误,故选A.2.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直解析:选A由BC綊AD,AD綊A1D1,知BC綊A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1BCD1,EF∩D1C=F,故A1B与EF相交.3.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选B直线a,b分别在两个不同的平面α,β内,则由“直线a和直线b相交”可得“平面α和平面β相交”,反之不成立.所以“直线a和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选B.4.设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥(如图),使得截面四边形是平行四边形,则这样的平面α()A.不存在B.只有1个C.恰有4个D.有无数多个解析:选D设四棱锥的两组不相邻的侧面的交线为m,n,直线m,n确定了一个平面β.作与β平行的平面α,与四棱锥的各个侧面相交,则截得的四边形必为平行四边形,而这样的平面α有无数多个.5.在空间四边形ABCD各边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF,GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外解析:选A如图,因为EF⊂平面ABC,而GH⊂平面ADC,且EF和GH 相交于点P,所以点P在两平面的交线上,因为AC是两平面的交线,所以点P 必在直线AC上.6.如图,在平行六面体ABCD-A1B1C1D1中,既与AB共面又与CC1共面的棱有________条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.答案:57.在四棱锥P-ABCD中,底面ABCD为平行四边形,E,F分别为侧棱PC,PB的中点,则EF与平面P AD的位置关系为________,平面AEF与平面ABCD 的交线是________.解析:由题易知EF ∥BC ,BC ∥AD ,所以EF ∥AD ,故EF ∥平面P AD ,因为EF ∥AD ,所以E ,F ,A ,D 四点共面,所以AD 为平面AEF 与平面ABCD 的交线. 答案:平行 AD8.如图所示,在空间四边形ABCD 中,点E ,H 分别是边AB ,AD 的中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23,有以下四个结论.①EF 与GH 平行;②EF 与GH 异面;③EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上; ④EF 与GH 的交点M 一定在直线AC 上.其中正确结论的序号为________.解析:如图所示.连接EH ,FG ,依题意,可得EH ∥BD ,FG ∥BD ,故EH ∥FG ,所以E ,F ,G ,H 共面.因为EH =12BD ,FG =23BD ,故EH ≠FG ,所以EFGH 是梯形,EF 与GH 必相交,设交点为M .因为点M 在EF 上, 故点M 在平面ACB 上.同理,点M 在平面ACD 上,所以点M 是平面ACB 与平面ACD 的交点,又AC 是这两个平面的交线,所以点M 一定在直线AC 上.答案:④9.如图所示,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是A 1B 1,B 1C 1的中点.(1)AM 和CN 是否共面?说明理由;。
课时作业43 空间点、直线、平面之间的位置关系一、选择题1.在下列命题中,不是公理的是( A ) A .平行于同一个平面的两个平面相互平行 B .过不在同一条直线上的三点,有且只有一个平面C .如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D .如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 解析:选项A 是面面平行的性质定理,是由公理推证出来的,而公理是不需要证明的. 2.若空间三条直线a ,b ,c 满足a ⊥b ,b ∥c ,则直线a 与c ( D ) A .一定平行 B .一定相交 C .一定是异面直线 D .一定垂直解析:两条平行线中一条与第三条直线垂直,另一条直线也与第三条直线垂直.故选D.3.空间四边形两对角线的长分别为6和8,所成的角为45°,连接各边中点所得四边形的面积是( A )A .6 2B .12C .12 2D .24 2 解析:如图,已知空间四边形ABCD ,对角线AC =6,BD =8,易证四边形EFGH 为平行四边形,∠EFG 或∠FGH 为AC 与BD 所成的角,大小为45°,故S 四边形EFGH =3×4×sin45°=6 2.故选A.4.(2019·南宁市摸底联考)在如图所示的正方体ABCD A 1B 1C 1D 1中,E ,F 分别是棱B 1B ,AD 的中点,异面直线BF 与D 1E 所成角的余弦值为( D )A.147 B.57 C.105D.255解析:如图,过点E 作EM ∥AB ,过M 点作MN ∥AD ,取MN 的中点G ,连接NE ,D 1G ,所以平面EMN ∥平面ABCD ,易知EG ∥BF ,所以异面直线BF 与D 1E 的夹角为∠D 1EG ,不妨设正方体的棱长为2,则GE =5,D 1G =2,D 1E =3,在△D 1EG 中,cos ∠D 1EG =D 1E 2+GE 2-D 1G 22D 1E ·GE=255,故选D.5.已知异面直线a ,b 分别在平面α,β内,且α∩β=c ,那么直线c 一定( C ) A .与a ,b 都相交 B .只能与a ,b 中的一条相交 C .至少与a ,b 中的一条相交 D .与a ,b 都平行解析:如果c 与a 、b 都平行,那么由平行线的传递性知a 、b 平行,与异面矛盾.故选C.6.到空间不共面的四点距离相等的平面的个数为( C ) A .1 B .4 C .7 D .8解析:当空间四点不共面时,则四点构成一个三棱锥.①当平面一侧有一点,另一侧有三点时,如图 1.令截面与四棱锥的四个面之一平行,第四个顶点到这个截面的距离与其相对的面到此截面的距离相等,这样的平面有4个;②当平面一侧有两点,另一侧有两点时,如图2,当平面过AB ,BD ,CD ,AC 的中点时,满足条件.因为三棱锥的相对棱有三对,则此时满足条件的平面有3个.所以满足条件的平面共有7个,故选C.二、填空题7.三条直线可以确定三个平面,这三条直线的公共点个数是0或1.解析:因三条直线可以确定三个平面,所以这三条直线有两种情况:一是两两相交,有1个交点;二是互相平行,没有交点.8.(2019·武汉调研)在正四面体ABCD 中,M ,N 分别是BC 和DA 的中点,则异面直线MN 和CD 所成角的余弦值为22.解析:取AC 的中点E ,连接NE ,ME ,由E ,N 分别为AC ,AD 的中点,知NE ∥CD ,故MN 与CD 所成的角即MN 与NE 的夹角,即∠MNE .设正四面体的棱长为2,可得NE =1,ME =1,MN =2,故cos ∠MNE =NE 2+MN 2-ME 22NE ·MN =22.9.如图所示,在空间四边形ABCD 中,点E ,H 分别是边AB ,AD 的中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23,则下列说法正确的是④.(填写所有正确说法的序号)①EF 与GH 平行; ②EF 与GH 异面;③EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上; ④EF 与GH 的交点M 一定在直线AC 上.解析:连接EH ,FG (图略),依题意,可得EH ∥BD ,FG ∥BD ,故EH ∥FG ,所以E ,F ,G ,H 共面.因为EH =12BD ,FG =23BD ,故EH ≠FG ,所以EFGH 是梯形,EF 与GH 必相交,设交点为M .因为点M 在EF 上,故点M 在平面ACB 上.同理,点M 在平面ACD 上, ∴点M 是平面ACB 与平面ACD 的交点,又AC 是这两个平面的交线,所以点M 一定在直线AC 上. 三、解答题10.如图所示,在正方体ABCD A 1B 1C 1D 1中,M ,N 分别是A 1B 1,B 1C 1的中点.问:(1)AM 与CN 是否是异面直线?说明理由; (2)D 1B 与CC 1是否是异面直线?说明理由. 解:(1)AM 与CN 不是异面直线.理由如下: 如图,连接MN ,A 1C 1,AC .因为M ,N 分别是A 1B 1,B 1C 1的中点,所以MN ∥A 1C 1.又因为A 1A 綊C 1C , 所以四边形A 1ACC 1为平行四边形, 所以A 1C 1∥AC ,所以MN ∥AC , 所以A ,M ,N ,C 在同一平面内, 故AM 和CN 不是异面直线.(2)D 1B 与CC 1是异面直线.理由如下: 因为ABCD A 1B 1C 1D 1是正方体, 所以B ,C ,C 1,D 1不共面.假设D 1B 与CC 1不是异面直线,则存在平面α,使D 1B ⊂平面α,CC 1⊂平面α, 所以D 1,B ,C ,C 1∈α, 这与B ,C ,C 1,D 1不共面矛盾.所以假设不成立,即D 1B 与CC 1是异面直线.11.如图,在三棱锥P ABC 中,PA ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,PA =2.求:(1)三棱锥P ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解:(1)S △ABC =12×2×23=23,三棱锥P ABC 的体积为V =13S △ABC ·PA =13×23×2=433. (2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =22+22-22×2×2=34.故异面直线BC 与AD 所成角的余弦值为34.12.如图是三棱锥D ABC 的三视图,点O 在三个视图中都是所在边的中点,则异面直线DO 和AB 所成角的余弦值等于( A )A.33B.12C. 3D.22解析:由三视图及题意得如图所示的直观图,从A 出发的三条线段AB ,AC ,AD 两两垂直且AB =AC =2,AD =1,O 是BC 中点,取AC 中点E ,连接DE ,DO ,OE ,则OE =1,又可知AE =1,由于OE ∥AB ,故∠DOE 即为所求两异面直线所成的角或其补角.在直角三角形DAE中,DE =2,由于O 是BC 的中点,在直角三角形ABC 中可以求得AO =2,在直角三角形DAO 中可以求得DO = 3.在三角形DOE 中,由余弦定理得cos ∠DOE =1+3-22×1×3=33,故所求异面直线DO 与AB 所成角的余弦值为33.13.正方体ABCD A 1B 1C 1D 1中,E 为线段B 1D 1上的一个动点,则下列结论中正确的是①②③(填序号).①AC ⊥BE ; ②B 1E ∥平面ABCD ;③三棱锥E ABC 的体积为定值; ④直线B 1E ⊥直线BC 1.解析:因AC ⊥平面BDD 1B 1,故①正确;因B 1D 1∥平面ABCD ,故②正确;记正方体的体积为V ,则V E ABC =16V ,为定值,故③正确;B 1E 与BC 1不垂直,故④错误.14.如图所示,在三棱柱ABC A 1B 1C 1中,底面是边长为2的正三角形,侧棱A 1A ⊥底面ABC ,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB =2.(1)当点M 在何位置时,BM ∥平面AEF?(2)若BM ∥平面AEF ,判断BM 与EF 的位置关系,说明理由;并求BM 与EF 所成的角的余弦值.解:(1)解法1:如图所示,取AE 的中点O ,连接OF ,过点O 作OM ⊥AC 于点M .因为侧棱A 1A ⊥底面ABC , 所以侧面A 1ACC 1⊥底面ABC . 又因为EC =2FB =2,所以OM ∥EC ∥FB 且OM =12EC =FB ,所以四边形OMBF 为矩形,BM ∥OF . 因为OF ⊂平面AEF ,BM ⊄平面AEF , 故BM ∥平面AEF ,此时点M 为AC 的中点.解法2:如图所示,取EC 的中点P ,AC 的中点Q ,连接PQ ,PB ,BQ .因为EC =2FB =2,所以PE 綊BF , 所以PQ ∥AE ,PB ∥EF ,所以PQ ∥平面AFE ,PB ∥平面AEF ,因为PB ∩PQ =P ,PB ⊂平面PBQ ,PQ ⊂平面PBQ ,所以平面PBQ ∥平面AEF . 又因为BQ ⊂平面PBQ , 所以BQ ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.(2)由(1)知,BM 与EF 异面,∠OFE (或∠MBP )就是异面直线BM 与EF 所成的角或其补角. 易求AF =EF =5,MB =OF =3,OF ⊥AE ,所以cos ∠OFE =OF EF=35=155, 所以BM 与EF 所成的角的余弦值为155. 尖子生小题库——供重点班学生使用,普通班学生慎用15.平面α过正方体ABCD A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( A )A.32B.22C.33D.13解析:如图所示,设平面CB1D1∩平面ABCD=m1,因为α∥平面CB1D1,所以m1∥m,又平面ABCD∥平面A1B1C1D1,且平面B1D1C∩平面A1B1C1D1=B1D1,所以B1D1∥m1,故B1D1∥m.因为平面ABB1A1∥平面DCC1D1,且平面CB1D1∩平面DCC1D1=CD1,同理可证CD1∥n.故m,n所成角即直线B1D1与CD1所成角,在正方体ABCDA1B1C1D1中,△CB1D1是正三角形,故直线B1D1与CD1所成角为60°,其正弦值为3 2.16.(2019·成都诊断性检测)在长方体ABCDA1B1C1D1中,已知底面ABCD为正方形,P 为A1D1的中点,AD=2,AA1=3,点Q是正方形ABCD所在平面内的一个动点,且QC=2QP,则线段BQ的长度的最大值为6.解析:以D为坐标原点,分别以DA,DC,DD1所在直线为x轴、y轴、z轴,建立空间直角坐标系,则P(1,0,3),C(0,2,0),B(2,2,0),Q(x,y,0),因为QC=2QP,所以x2+y-2=2x-2+y2+3⇒(x-2)2+(y+2)2=4,所以(y+2)2=4-(x-2)2≤4⇒|y+2|≤2⇒-4≤y≤0,BQ =x-2+y-2=4-y+2+y-2=4-8y,根据-4≤y≤0可得4≤4-8y≤36,所以2≤BQ≤6,故线段BQ的长度的最大值为6.。
空间点直线平面之间的位置关系例题空间几何是数学中一个非常重要的分支,在空间几何中,点、直线和平面是最基本的元素。
它们之间的位置关系既复杂又深刻,需要我们用深度和广度兼具的方式进行全面评估。
在本文中,我们将从简到繁,由浅入深地探讨空间点、直线和平面之间的位置关系,以及解决一些典型的例题。
一、空间点、直线和平面的基本概念1. 点:在几何中,点是最基本的概念,它是没有大小,没有形状,只有位置的。
点在空间中是唯一的,通过坐标来表示。
2. 直线:直线是由无数个点组成的,在空间中是一条无限延伸的路径。
直线有方向和长度,可以根据方向向量来表示。
3. 平面:平面是由无数个点和直线组成的,在空间中是没有边界的二维图形。
平面可以通过点和法向量来表示。
二、点、直线和平面之间的位置关系1. 点和直线的位置关系:(1)点是否在直线上:给定点P(x,y,z),直线L:Ax+By+Cz+D=0,要判断点P是否在直线L上,可以将点P的坐标代入直线方程,若等式成立,则点P在直线L上。
(2)点到直线的距离:点P到直线L的距离可以通过点到直线的公式来计算,即d=|Ax0+By0+Cz0+D|/√(A^2+B^2+C^2)。
(3)点和直线的位置关系还包括点在直线的上、下、左、右、内、外等方面。
2. 点、直线和平面的位置关系:(1)点是否在平面上:给定点P(x,y,z),平面π:Ax+By+Cz+D=0,要判断点P是否在平面π上,可以将点P的坐标代入平面方程,若等式成立,则点P在平面π上。
(2)点到平面的距离:点P到平面π的距离可以通过点到平面的公式来计算,即d=|Ax0+By0+Cz0+D|/√(A^2+B^2+C^2)。
(3)点和平面的位置关系还包括点在平面的前、后、内、外等方面。
三、例题解析:空间点、直线、平面的位置关系1. 例题一:已知点A(1,2,3)、直线L:2x-3y+z+4=0和平面π:3x+y-2z-7=0,判断点A是否在直线L上和平面π上,若不在,求点A到直线L和平面π的距离。
空间点、直线、平面之间的位置关系(讲义)➢知识点睛一、平面的基本性质公理 1 公理 2 公理 3自然语言如果一条直线上的在一个平面内,那么这条直线在此平面内过的三点,有且只有一个平面如果两个不重合的平面有一个公共点,那么它们有且只有过该点的公共直线图示符号语言∵∴l⊂α∵A,B,C 三点不共线∴有且只有一个平面α,使∵∴α∩β=l,P∈l公理 2 相关推论推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.二、位置关系位置关系符号语言图示点、线点在直线上点在直线外点、面点在平面内点在平面外位置关系符号语言 图示线、线同一平面相交平行不同一平面异面线、面 线在平面内线在平面外相交 平行面、面平行相交三、线线位置关系 1.公理 4:平行于 的两条直线互相平行.定理:空间中如果两个角的两边分别对应平行,那么这两个角 .2.异面直线所成的角①定义:设 a ,b 是两条异面直线,经过空间任一点 O 作直线a' ∥a ,b' ∥b ,把a' 与b' 所成的 叫做异面直线a ,b 所成的角(或夹角). ②异面直线所成角θ的范围: .③ 如果两条异面直线所成的角是直角, 那这两条直线.两条互相垂直的异面直线 a ,b ,记作.④图示. 3.求角的处理步骤①构造:根据异面直线的定义,用平移法作出角; ②证明:证明说理;③计算:求角度,常利用三角形求解;④结论:若求出的角是锐角或直角,则其即为所求角,若求出的角是是钝角,则其补角为所求角.四、证明三线共点、三点共线的方法1.三线共点处理思路:先证两条直线相交于一点,再证第三条直线是经过这两条直线的两个平面的交线,利用公理 3 可证.2.三点共线处理思路:先找两个平面,证明这三点都是这两个平面的公共点,利用公理3,三点都在交线上.➢精讲精练1.下列四个命题:①不共面的四点中,其中任意三点不共线;②若点A,B,C,D 共面,点A,B,C,E 共面,则点A,B,C,D,E 共面;③若直线a,b 共面,直线a,c 共面,则直线b,c 共面;④依次首尾相接的四条线段必共面.其中正确的有()A.0 个B.1 个C.2 个D.3 个2.设P 表示一个点,a,b 表示两条直线,α,β表示两个平面,给出下列四个命题:①P∈a,P∈α⇒a⊂α;②a∩b=P,b⊂β⇒a⊂β;③a∥b,a⊂α,P∈b,P∈α⇒b⊂α;④α∩β=b,P∈α,P∈β⇒P∈b.其中正确的是()A.①②B.③④C.①④D.②③3.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C 三点的平面记作γ,则γ与β的交线必通过()A.点A B.点BC.点C 但不过点M D.点C 和点M4.下列说法正确的是()A.若a⊂α,b⊂β,则a 与b 是异面直线B.若a 与b 异面,b 与c 异面,则a 与c 异面C.若a,b 不同在平面α内,则a 与b 异面D.若a,b 不同在任何一个平面内,则a 与b 异面5.在直四棱柱ABCD-A1B1C1D1 中,既与AB 共面也与CC1 共面的棱有()条.A.3 B.4C.5 D.66.在下图中,G,N,M,H 分别是三棱柱的顶点或所在棱的中点,其中表示直线GH,MN 是异面直线的图形是.(填上所有正确答案的序号)7.如图,在正方体ABCD-A1B1C1D1 中,M,N 分别是BC1,CD1的中点,则下列判断错误的是()A.MN 与A1B1 平行B.MN 与AC 垂直C.MN 与BD 平行D.MN 与CC1 垂直8.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB⊥EF;②AB 与CM 所成的角为60°;③EF 与MN 是异面直线;④MN∥CD.以上四个命题中,正确命题的序号是.9.如图,在空间四边形ABCD 中,对角线AC=24,BD=10,M,N 分别是AB,CD 的中点,且MN=13,则异面直线AC 和BD 所成角的度数为()A.90°B.60°C.45°D.30°10.如图,在正方体ABCD-A1B1C1D1 中,(1)求AC 与A1D 所成角的大小;(2)若E,F 分别为AB,AD 的中点,求A1C1 与EF 所成角的大小.11.如图,已知平面α,β,且α∩β=l.在梯形ABCD 中,AD∥BC,且AB⊂α,CD⊂β.求证:AB,CD,l 共点(相交于一点).12.如图,在正方体ABCD-A1B1C1D1 中,E,F 分别是AB,AA1的中点.求证:(1)E,C,D1,F 四点共面;(2)CE,D1F,DA 三线共点.【参考答案】➢知识点睛一、平面的基本性质公理1:两点,A∈l ,B ∈l ,A∈α,B ∈α公理2:不在一条直线上,A∈α,B ∈α,C ∈α公理3:一条,P ∈α,P ∈β二、位置关系点、线:A∈l ,B ∉l点、面:A∈α,B ∉α线、线: a n =A ,a∥b线、面:a ⊂α,m α=A,b / /α面、面:α/ /β,α γ=n,β γ=m,三、线线位置关系1. 同一条直线,相等或互补2. ①锐角或直角;② 0︒<θ≤90︒;③互相垂直,a⊥b ➢精讲精练1. B2. B3. D4. D5. C6. ②④7. A8. ①③9. A10. (1)60°;(2)90°11.略12.略。
2.1《空间点,直线,平面之间的位置关系》教案(新人教必修2).(共7页)-本页仅作为预览文档封面,使用时请删除本页-§平面一、教学目标:1、知识与技能(1)利用生活中的实物对平面进行描述;(2)掌握平面的表示法及水平放置的直观图;(3)掌握平面的基本性质及作用;(4)培养学生的空间想象能力。
2、过程与方法(1)通过师生的共同讨论,使学生对平面有了感性认识;(2)让学生归纳整理本节所学知识。
3、情感与价值使用学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣。
二、教学重点、难点重点:1、平面的概念及表示;2、平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言。
难点:平面基本性质的掌握与运用。
三、学法与教学用具1、学法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地完成本节课的教学目标。
2、教学用具:投影仪、投影片、正(长)方形模型、三角板四、教学思想(一)实物引入、揭示课题师:生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象,你们能举出更多例子吗?引导学生观察、思考、举例和互相交流。
与此同时,教师对学生的活动给予评价。
师:那么,平面的含义是什么呢?这就是我们这节课所要学习的内容。
(二)研探新知1、平面含义师:以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出来的,但是,几何里的平面是无限延展的。
2、平面的画法及表示师:在平面几何中,怎样画直线(一学生上黑板画)之后教师加以肯定,解说、类比,将知识迁移,得出平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)D CαBA平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成虚线或不画(打出投影片)课本P41 图 说明 平面内有无数个点,平面可以看成点的集合。
课时作业(四十二)空间点、直线、平面之间的位置关系一、选择题1.(2015·三亚一模)空间四边形ABCD中,AB=CD,AD=BC,AB≠AD,M,N分别是对角线AC与BD的中点,则MN与()A.AC,BD之一垂直B.AC,BD都垂直C.AC,BD都不垂直D.AC,BD不一定垂直答案:B解析:连接AN,CN,∵AD=BC,AB=CD,BD=BD,∴△ABD≌△CDB,则AN=CN,在等腰△ANC中,由M为AC的中点知MN⊥AC.同理可证MN⊥BD.故应选B.2.(2015·台州模拟)有以下四个命题:①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.正确命题的个数是()A.0B.1C.2D.3答案:B解析:①显然是正确的;②中,若A,B,C三点共线则A,B,C,D,E五点不一定共面;③构造长方体或正方体(如图),显然b,c异面,故不正确;④中,空间四边形中四条线段不共面,故只有①正确.3.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过()A.点AB.点BC.点C但不过点MD.点C和点M答案:D解析:∵AB⊂γ,M∈AB,∴M∈γ.又α∩β=l,则M∈β,根据公理3,可知M在γ与β的交线上.同理可知,点C也在γ与β的交线上.故应选D.4.(2015·北京东城区模拟)设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是()A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD=BCD.若AB=AC,DB=DC,则AD⊥BC答案:C解析:A中,若AC与BD共面,则A,B,C,D四点共面,则AD与BC共面;B中,若AC与BD是异面直线,则A,B,C,D四点不共面,则AD与BC是异面直线;C中,若AB=AC,DB=DC,AD不一定等于BC;D中,若AB=AC,DB=DC,可以证明AD⊥BC.5.如图是一正方体的表面展开图,MN和PB是两条面对角线,则在正方体中,直线MN与直线PB的位置关系为()A.相交B.平行C.异面D.重合答案:C解析:将表面展开图折起还原为正方体,如图,故MN与PB异面.6.已知空间中有三条线段AB,BC和CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是()A .AB ∥CD B .AB 与CD 异面C .AB 与CD 相交D .AB ∥CD 或AB 与CD 异面或AB 与CD 相交 答案:D解析:若三条线段共面,如果AB ,BC ,CD 构成等腰三角形,则直线AB 与CD 相交,否则直线AB 与CD 平行;若不共面,则直线AB 与CD 是异面直线,故应选D.7.(2015·天津和平区模拟)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 是AA 1的中点,则异面直线D 1C 与BE 所成角的余弦值为( )A.15 B .31010C .1010D .35答案:B解析:连接A1B .由题意知A 1D 1∥BC .所以四边形A 1D 1CB 故D 1C ∥A 1B .所以∠A 1BE 为异面直线D 1C 与BE 所成的角.不妨设AA 1=2AB =2,则A 1E =1,BE =2,A 1B =5,在△A 1BE 中,cos ∠A 1BE =A 1B 2+EB 2-A 1E 22A 1B ·EB =5+2-12×5×2=31010,故应选B.8.已知空间四边形ABCD 中,M ,N 分别为AB ,CD 的中点,则下列判断: ①MN ≥12(AC +BD );②MN >12(AC +BD );③MN =12(AC +BD );④MN <12(AC +BD ).其中正确的是( ) A .①③ B .②④ C .② D .④答案:D解析:如图,取BC 的中点O ,连接MO ,NO ,则OM =12AC ,ON =12BD .在△MON 中,MN <OM +ON =12(AC +BD ),所以④正确.9.(2015·北京西城区4月)如图所示,在空间四边形ABCD 中,点E ,H 分别是边AB ,AD 的中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23,则( )A .EF 与GH 平行B .EF 与GH 异面C .EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上D .EF 与GH 的交点M 一定在直线AC 上 答案:D解析:依题意,可得EH ∥BD ,FG ∥BD ,故EH ∥FG ,所以E ,F ,G ,H 共面.因为EH =12BD ,FG =23BD ,故EH ≠FG ,所以EFGH 是梯形,EF 与GH 必相交,设交点为M .因为点M 在EF 上,故点M 在平面ACB 上.同理,点M 在平面ACD 上,即点M 是平面ACB 与平面ACD 的交点,而AC 是这两个平面的交线,所以点M 一定在直线AC 上.10.(2015·惠州模拟)如图是三棱锥D -ABC 的三视图,点O 在三个视图中都是所在边的中点,则异面直线DO 和AB 所成角的余弦值等于( )A.33B .12C . 3D .22答案:A解析:由题意得如图所示的直观图,从A 出发的三条线段AB ,AC ,AD 两两垂直且AB =AC =2,AD =1,O 是BC 中点,取AC 中点E ,连接DE ,DO ,OE ,则OE =1.又可知AE =1,由于OE ∥AB ,故∠DOE 即为所求两异面直线所成的角或其补角,在直角三角形DAE 中,DE =2,由于O 是中点,在直角三角形ABC 中可以求得AO = 2.在直角三角形DAO 中可以求得DO= 3.在三角形DOE中,由余弦定理,得cos∠DOE=1+3-22×1×3=33,故所求余弦值为33.故应选A.二、填空题11.正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么,正方体的过P,Q,R的截面图形是________边形.答案:六解析:延长PQ(或QP)分别交BC延长线于E,交CD延长线于F,取C1D1中点M,连接RM,连接RE交BB1于S,连接MF交DD1于N,连接NQ,PS,则六边形PQNMRS即为正方体ABCD-A1B1C1D1的过P,Q,R三点的截面图形.12.对于四面体ABCD,下列命题正确的是________.(写出所有正确命题的编号)①相对棱AB与CD所在直线异面;②由顶点A作四面体的高,其垂足是△BCD三条高线的交点;③若分别作△ABC和△ABD的边AB上的高,则这两条高所在的直线异面;④分别作三组相对棱中点的连线,所得的三条线段相交于一点.答案:①④解析:由四面体的概念,可知AB与CD所在的直线为异面直线,故①正确;由顶点A作四面体的高,当四面体ABCD的对棱互相垂直时,其垂足是△BCD的三条高线的交点,故②错误;当DA=DB,CA=CB时,这两条高线共面,故③错误;设AB,BC, CD,DA的中点依次为E,F,M,N,易证四边形EFMN为平行四边形,所以EM与FN相交于一点,易证另一组对棱中点的连线也过它们的交点,故④正确.13.(2015·北京海淀区模拟)若两条异面直线所成的角为60°,则称这对异面直线为“黄金异面直线对”,在连接正方体各顶点的所有直线中,“黄金异面直线对”共有________对.答案:24解析:正方体如图,若要出现所成的角为60°的异面直线,则直线为面对角线,以AC 为例,与之构成“黄金异面直线对”的直线有4条,分别是A ′B ,BC ′,A ′D ,C ′D ,正方体的面对角线有12条,所以所求的“黄金异面直线对”共有12×42=24(对).14.已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为BB 1,CC 1的中点,那么异面直线AE 与D 1F 所成角的余弦值为________.答案:35解析:连接DF ,如图所示,则AE ∥DF ,∴∠D 1FD 即为异面直线AE 与D 1F 所成的角. 设正方体棱长为a ,则D 1D =a ,DF =52a ,D 1F =52a , ∴cos ∠D 1FD =⎝⎛⎭⎫52a 2+⎝⎛⎭⎫52a 2-a 22·52a ·52a =35.15.(2013·安徽)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为BC 的中点,Q 为线段CC 1上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S .则下列命题正确的是________.(写出所有正确命题的编号)①当0<CQ <12时,S 为四边形;②当CQ =12时,S 为等腰梯形;③当CQ =34时,S 与C 1D 1的交点R 满足C 1R =13;④当34<CQ <1时,S 为六边形;⑤当CQ =1时,S 的面积为62. 答案:①②③⑤解析:过A 作AM ∥PQ 交DD 1或A 1D 1于M .当0<CQ <12时,M 在DD 1上,连接MQ ,则截面为AMQP ,故①正确.当CQ =12时,M 与D 1重合,截面为AD 1QP ,显然为等腰梯形,②正确.当CQ =34时,M 在A 1D 1上,且D 1M =13.过M 作MR ∥AP 交C 1D 1于R ,则△MD 1R ∽△PBA ,从而D 1R =23,即C 1R =13,故③正确.当34<CQ <1时,截面为AMRQP ,为五边形,即④错误. 当CQ =1时,M 为A 1D 1的中点,截面AMC 1P 为菱形,而AC 1=3,PM =2,故面积为12×3×2=62,⑤正确.。
课时作业43空间点、直线、平面之间的位置关系
时间:45分钟分值:100分
一、选择题(每小题5分,共30分)
1.若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件
解析:若两条直线无公共点,则两条直线可能异面,也可能平行.若两条直线是异面直线,则两条直线必无公共点.
答案:A
2.若两条直线和一个平面相交成等角,则这两条直线的位置关系是()
A.平行B.异面
C.相交D.平行、异面或相交
解析:经验证,当平行、异面或相交时,均有两条直线和一个平面相交成等角的情况出现,故选D.
答案:D
3.以下四个命题中,正确命题的个数是()
①不共面的四点中,其中任意三点不共线;
②若点A、B、C、D共面,点A、B、C、E共面,则A、B、C、
D、E共面;
③若直线a、b共面,直线a、c共面,则直线b、c共面;
④依次首尾相接的四条线段必共面.
A.0 B.1
C.2 D.3
解析:①正确,可以用反证法证明;②从条件看出两平面有三个公共点A、B、C,但是若A、B、C共线,则结论不正确;③不正确,共面不具有传递性;④不正确,因为此时所得的四边形四条边可以不在一个平面上.
答案:B
4.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定()
A.与a,b都相交
B.只能与a,b中的一条相交
C.至少与a,b中的一条相交
D.与a,b都平行
解析:若c与a,b都不相交,则c与a,b都平行,则a∥b与a,b异面相矛盾.
答案:C
5.若空间三条直线a,b,c满足a⊥b,b⊥c,则直线a与c() A.一定平行
B.一定相交
C.一定是异面直线
D.平行、相交、异面都有可能
解析:如图,在正方体ABCD —A 1B 1C 1D 1中,设AA 1=b ,A 1D 1=a ,当A 1B 1=c 时,a 与c 相交;当AD =c 时,a 与c 平行;当AB =c 时,a 与c 异面.
答案:D
6.如图在底面为正方形,侧棱垂直于底面的四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为( )
A.15
B.25
C.35
D.45
解析:连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,设AB =1,则AA 1=2,A 1C 1=2,A 1B
=BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5
=45. 答案:D
二、填空题(每小题5分,共15分)
7.已知正方体ABCD —A 1B 1C 1D 1中,E 、F 分别为BB 1、CC 1的中点,那么异面直线AE 与D 1F 所成角的余弦值为________.
解析:
如图,连接DF ,因为DF 与AE 平行,所以∠DFD 1即为异面直线AE 与D 1F 所成角的平面角,设正方体的棱长为2,则FD 1=FD =
5,由余弦定理得cos ∠DFD 1=(5)2+(5)2-222×(5)
2=35. 答案:35
8.已知E ,F ,G ,H 是空间四点,命题甲:E ,F ,G ,H 四点不共面,命题乙:直线EF 和GH 不相交,则甲是乙成立的________条件.
解析:E ,F ,G ,H 四点不共面时,EF ,GH 一定不相交,否则,由于两条相交直线共面,则E ,F ,G ,H 四点共面,与已知矛盾,
故甲可以推出乙;反之,EF,GH不相交,含有EF,GH平行和异面两种情况,当EF,GH平行时,E,F,G,H四点共面,故乙不能推出甲.即甲是乙的充分不必要条件.
答案:充分不必要
9.(2013·江西卷)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.
解析:在正四面体中取CD的中点G,连结FG,EG,作FH⊥平面CDE于点H.因为正四面体的高FH在平面EFG内,且FH平行于正方体的高,∴可证得平面EFG平行于正方体的左、右两个侧面,故直线EF仅与正方体的六个面中的上、下两个平面及前、后两个平面相交,共4个.
答案:4
三、解答题(共55分,解答应写出必要的文字说明、演算步骤或证明过程)
10.(15分)如图所示,四边形ABEF 和ABCD 都是直角梯形,∠
BAD =∠F AB =90°,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的
中点.
(1)证明:四边形BCHG 是平行四边形;
(2)C 、D 、F 、E 四点是否共面?为什么?
解:(1)证明:由已知FG =GA ,FH =HD ,可得GH 綊12AD .又
BC 綊12AD ,∴GH 綊BC ,
∴四边形BCHG 为平行四边形.
(2)由BE 綊12AF ,G 为F A 中点知,BE 綊FG ,
∴四边形BEFG 为平行四边形,∴EF ∥BG .
由(1)知BG 綊CH ,∴EF ∥CH ,
∴EF 与CH 共面.
又D ∈FH ,∴C 、D 、F 、E 四点共面.
11.(20分)如图所示,三棱锥P —ABC 中,P A ⊥平面ABC ,∠
BAC =60°,P A =AB =AC =2,E 是PC 的中点.
(1)求证AE 与PB 是异面直线;
(2)求异面直线AE 和PB 所成角的余弦值.
解:(1)证明:假设AE 与PB 共面,设平面为α,
∵A ∈α,B ∈α,E ∈α,
∴平面α即为平面ABE ,
∴P ∈平面ABE ,
这与P ∉平面ABE 矛盾,
所以AE 与PB 是异面直线.
(2)取BC 的中点F ,连接EF 、AF ,则EF ∥PB ,所以∠AEF 或其补角就是异面直线AE 和PB 所成角,
∵∠BAC =60°,P A =AB =AC =2,P A ⊥平面ABC ,
∴AF =3,AE =2,EF =2;
cos ∠AEF =2+2-32×2×2
=14, 所以异面直线AE 和PB 所成角的余弦值为14.
——创新应用——
12.(20分)如右图,在四棱锥P—ABCD中,底面ABCD是矩形,P A⊥底面ABCD,E是PC的中点,已知AB=2,AD=22,P A=2,求:
(1)三角形PCD的面积;
(2)异面直线BC与AE所成的角的大小.
解:(1)∵P A⊥底面ABCD,∴P A⊥CD.
又AD⊥CD,∴CD⊥平面P AD,从而CD⊥PD.
∵PD=22+(22)2=23,CD=2,
∴S△PCD=1
2×2×23=2 3.
(2)取PB中点F,连接EF,AF,则EF∥BC,从而∠AEF(或其补角)是异面直线BC与AE所成的角.
在△AEF 中,由EF =2,AF =2,AE =2.
∴△AEF 是等腰直角三角形,∴∠AEF =π4.
因此,异面直线BC 与AE 所成角的大小为π4.。