矢量分析总结
- 格式:doc
- 大小:731.50 KB
- 文档页数:7
第1章 矢量分析§1.1 标量场与矢量场一、场的概念如果某物理量在空间每一时刻和每一位置都有一个确定的值,则称在此空间中确定了该物理量的场。
二、标量场与矢量场标量场:若所研究的物理量是一个标量,则称该物理量的场为标量场,例如:温度场、密度场、电位场。
),(t r u u =矢量场:若所研究的物理量是一个矢量,则称该物理量的场为矢量场,例如:力场、速度场、电场。
),(t r A A =三、静态场和时变场静态场:若物理量不随时间变化,则称该物理量所确定的场为静态场。
)(r u u =)(r A A =时变场:若物理量随时间变化,则称该物理量所确定的场称为动态场或时变场。
),(t r u u=),(t r A A =标量场在空间的变化规律由其梯度来描述,矢量场在空间的变化规律由矢量场的散度和旋度来描述。
§1.2 矢量场的通量 散度一、矢量线 矢量场的通量 1、矢量线(1)矢量场的表示在矢量场中,各点的场量是随空间位置变化的矢量。
矢量场可以用一个矢量函数)(r A来表示。
在直角坐标系中表示为:),,()(z y x A r A=(2)矢量线在矢量场中,为了形象直观地描述矢量在空间的分布状况,引入了矢量线的概念。
矢量线:是一条空间曲线,在它上面每一点的场矢量都与其相切,并且用箭头来表示矢量线的正方向。
例如,静电场中的电力线、磁场中的磁力线等。
(3)矢量线方程0)(=⨯r A r d在直角坐标系下为:)()()(r A dzr A dy r A dx z y x == 2、矢量场的通量 通过面积元的通量:S d r A d⋅=Φ)(通过有限面积的通量:⎰⋅=ΦSS d r A)(通过闭合曲面的通量:⎰⋅=ΦS S d r A)(二、矢量场的散度 1、散度的定义在矢量场)(r A中的任意一点M 处作一个包围该点的任意闭合曲面S ,所限定的体积为τ∆。
矢量场)(r A 在点M 处的散度记作A div,其定义为:ττ∆⋅=⎰→∆SS d r A A div)(lim 0 2、散度在坐标系下的表示A A div ⋅∇=定义哈密顿算符:ze y e x e z y x ∂∂+∂∂+∂∂=∇(1)在直角坐标系中的表示zu y u x u A ∂∂+∂∂+∂∂=⋅∇(2)在圆柱坐标系中的表示()zA A A A z ∂∂+∂∂+∂∂=⋅∇φρρρρφρ11 (3)在球坐标系中的表示()()φθθθθφθ∂∂+∂∂+∂∂=⋅∇A r A r A r r r A r sin 1sin sin 11223、散度的性质(1)散度是通量源的密度;0>⋅∇A表示该点有发出通量线的正通量源; 0<⋅∇A表示该点有接收通量线的负通量源;0=⋅∇A表示该点无通量源。
矢 量 分 析一:定义标量:只有大小,没有方向的物理量。
如质量,时间,温度等矢量:即有大小,又有方向的物理量。
如力,位移,速度等 二:矢量表示法线段的长度表示矢量的大小箭头的指向表示矢量的方向 记为:A或x o三:矢量的模和单位矢量模: 矢量的大小,记为A单位矢量:若矢量0A的模为1,且方向与 A 相同,则称0A 为A方向上的单位矢量。
有A =A0A----大小和方向分离表示四:矢量运算相等:两个大小相等且方向相同的矢量相等。
平移:矢量平移后,大小和方向均保持不变。
负矢量:大小相等,方向相反的矢量,记为-A加法:既矢量合成,服从平行四边形法则=A+ BA可演化成三角形法则多矢量合成服从多边形法则减法:既矢量的分解,是加法的逆运算)(BABAC-+=-=大小Am数乘:AmAm=⨯方向: m>0 与A同向m<0 与A反向五:矢量的坐标表示222ZY X Z Y X A A A A kA j A i A A ++=++= 令 两矢量kB j B i B B kA j A i A A Z Y X Z Y X++=++=则有kmA j mA i mA k A j A i A m A m k B A j B A i B A B A z y x z y x z z y y x x ++=++=±+±+±=±)()()()( B A = 当且仅当 z z y y x x B A B A B A===六:标积(点积)两矢量相乘得到一个标量A B Cos B A B A C⋅==⋅=θ c由定义可知当θ=0时 C οS θ=1 BA B A=⋅ B当θ=π/2时 C οS θ=00=⋅B A七:矢积(叉积)A两矢量相乘得到一个矢量B A C⨯= 大小: ),(B A Sin B A Sin B A =θ方向: 右手系由定义可知当θ=0时 Sin θ=0 0=⨯B A当θ=π/2时 Sin θ=1 B A B A=⨯)(A B B A⨯-=⨯ 不服从交换律八:矢量的求导令存在矢量 k t A j t A i t A t A z y x )()()()(++=则有:k dtt dA j dt t dA i dt t dA dt t A d z y x)()()()(++=例: 一人字原点出发,先向东走了30米,又向南走了10米,再向西北走了18米,求合位移的大小和方向。
重要的知识点1 矢性函数,矢径,坐标表示方法2 矢端曲线,可表示为曲线方程或参数方程3 矢性函数的极限、导数、微分、不定积分与定积分,基本运算法则4 矢性函数导数、微分的几何意义(物理意义)。
圆函数5 数量场、矢量场6 数量场的等值面、等值线7 如何求等值面方程8 数量场的方向导数、梯度,二者的关系,其基本运算公式9 数量场对弧长的导数10 矢量场的矢量线(区别于矢端曲线)11 如何求矢量线方程12 矢量场的通量、散度,基本运算公式,高斯公式(二维为格林公式)13 正源与负源14 环量、环量面密度、旋度,基本运算,斯托克斯公式15 环量面密度、旋度的关系16 有势场、无旋场、保守场、梯度场,充要条件17 势函数的求解法18 无源场、管形场、旋度场,充要条件19 矢势量的求解方法20 调和场,无旋无源场,调和函数,拉普拉斯方程(二维/平面调和场的势函数与力函数, 共轭调和函数)21 哈密顿算子,拉普拉斯算子基本表示方法22 梯度、散度、旋度的算子表示方法, 基本运算法则()[()]'()grad uv vgradu ugradvgrad f u f u gradv =+=()div uA udivA A gradu=+⋅ ()rot uA urotA gradu A =+⨯拉普拉斯算子 :x y z ∂∂∂∆++∂∂∂222222 , div grad() , ()∇⋅∇ , ∇2p55.2 p55.5求穿过非封闭曲面的通量解题思路:计算散度,如果散度为常数,则尝试高斯公式。
对于非封闭曲面,可考虑先用形状简单的曲面,将其补偿为封闭面。
如果散度不是常数或在一些区域无定义,则不考虑高斯公式,直接采用通量的一般计算式(p51例3)p81.1求势函数的两种方法p82.2判断矢量场是否保守(有势),并计算曲线积分解题思路:计算该矢量场的旋度。
若无旋,则根据有势场充要条件(p68定理1),该场保守、有势,积分与路径无关,然后任意选取最简捷的路径计算曲线积分;如果有旋度,则按曲线积分一般方法进行计算。
矢量分析报告简介矢量分析是地理信息系统(GIS)中常用的一种分析方法,通过对矢量数据进行处理和分析,从中提取有用的信息并得出结论。
本文档将介绍矢量分析的基本概念和方法,并以实际案例解释如何应用矢量分析来解决各种问题。
什么是矢量数据?在GIS中,矢量数据是用于表示现实世界中的地理对象的一种数据模型。
它利用矢量空间来描述和存储地理对象,在计算机中以点、线和面的形式表示。
矢量数据具有以下特点: - 离散性:矢量数据以离散的点、线和面对象形式存储。
- 拓扑性:矢量数据中的要素之间具有拓扑关系,可以通过空间关系进行分析。
- 位置和属性:矢量数据不仅包含地理位置信息,还包含与之相关的属性数据。
矢量数据的基本属性矢量数据包含两个基本属性:几何属性和属性数据。
几何属性几何属性描述了地理对象的位置和形状。
在矢量数据中,几何属性可以是点、线或面。
•点(Point):在地理空间中的一个离散位置。
点没有长度或面积,仅有一个坐标位置。
•线(Line):由一系列连接的点组成的几何对象。
线可以表示道路、河流或边界等。
•面(Polygon):由一系列闭合的线组成的几何对象。
面可以表示土地使用类型、行政区划等。
属性数据属性数据是与几何对象相关联的数据。
它描述了地理对象的特征和属性。
属性数据可以是任何类型的信息,如名称、面积、人口数量等。
这些属性数据通常以表格的形式存储,其中每一行代表一个地理对象,每一列代表一个属性。
矢量分析方法矢量分析基于矢量数据进行,可以帮助我们理解和解释地理现象,从而做出决策。
以下是常用的矢量分析方法:缓冲区分析缓冲区分析用于确定距离某个地理对象一定范围内的其他地理对象。
它可以帮助我们分析空间关系、评估风险和规划用地。
缓冲区分析的步骤如下:1.选择要进行缓冲区分析的对象。
2.指定缓冲区的半径或距离单位。
3.进行缓冲区分析并可视化结果。
叠加分析叠加分析用于确定两个或多个矢量对象之间的空间关系。
通过叠加分析,我们可以识别出重叠、相交、包含和邻近等关系。
矢量分析的知识点总结一、矢量的定义和表示1.1 矢量的定义矢量是指在空间中具有大小和方向的量,它可以用来表示物理量的大小和方向,如力、速度等。
矢量通常用箭头表示,箭头的长度表示矢量的大小,箭头的方向表示矢量的方向。
1.2 矢量的表示矢量可以用不同的方式表示,常见的表示方法有坐标表示和分量表示。
坐标表示是指用矢量所在空间的坐标系来表示矢量,分量表示是指将矢量在坐标系中的投影表示为一组数值。
1.3 矢量的运算矢量的运算包括加法、减法、数量乘法和点乘等。
加法和减法的运算结果是一个新的矢量,数量乘法是指将矢量的长度进行缩放,点乘是指将两个矢量的长度和夹角进行运算得到一个标量。
二、矢量的微积分2.1 矢量的导数矢量的导数是指对矢量的每个分量分别求导,得到的是一个新的矢量。
矢量的导数在物理学中有着广泛的应用,如速度、加速度等物理量都可以用矢量的导数来表示。
2.2 矢量场矢量场是指在空间中的每个点都有一个矢量与之对应的场,它可以用来描述流体的速度场、电场、磁场等。
矢量场的微积分可以用来研究矢量场的性质和行为。
2.3 曲线积分曲线积分是指对沿着曲线的矢量场进行积分,得到的是一个标量。
曲线积分在物理学中有着重要的应用,如对力沿着曲线的功的计算等。
2.4 曲面积分曲面积分是指对矢量场在曲面上的投影进行积分,得到的是一个标量。
曲面积分在物理学中也有着广泛的应用,如对电场在闭合曲面上的通量计算等。
三、矢量分析的应用3.1 物理学中的应用矢量分析在物理学中有着广泛的应用,如在力学中用于描述力、速度、加速度等物理量;在电磁学中用于描述电场、磁场等物理量。
3.2 工程学中的应用矢量分析在工程学中也有很多应用,如在流体力学中用于描述流体的速度场、压力场等;在航空航天工程中用于描述飞行器的运动状态、姿态等。
3.3 计算机科学中的应用矢量分析在计算机科学中也有着重要的应用,如在图形学中用于描述图像的旋转、平移等运动;在机器学习中用于描述数据的特征、相似度等。
第1章 矢量分析 在矢量代数中,曾经讨论过模和方向都保持不变的矢量,这种矢量称为常矢。
然而,在科学和技术的许多问题中,也常遇到模和方向改变或其中之一会改变的矢量,这种矢量称为变矢。
如非等速及非直线运动物体的速度就是变矢量的典型例子。
变矢量是矢量分析研究的重要对象。
本章主要讨论变矢与数性变量之间的对应关系——矢函数及微分、积分和它们的一些主要性质。
§1.1 矢函数与普通数量函数的定义类似,我们引进矢性函数(简称矢函数)的概念,进而结出矢函数的极限与连续性等概念。
1、矢函数的概念定义1.1.1 设有数性变量t 和变矢A ,如果对于t 在某个范围D 内的每一个数值,A 都以一个确定的矢量和它对应,则称A 为数性变量t 的矢量函数,记作A =A)(t(1.1.1)并称D 为矢函数A 的定义域。
在Oxyz 直角坐标系中,用矢量的坐标表示法,矢函数可写成 A {})(),(),()(t A t A t A t z y x =(1.1.2)其中)(),(),(t A t A t A z y x 都是变量t 的数性函数,可见一个矢函数和三个有序的数性函数构成一一对应关系。
即在空间直角坐标系下,一个矢函数相当于三个数性函数。
本章所讲的矢量均指自由矢量,所以,以后总可以把A )(t 的起点取在坐标原点。
这样当t 变化时,A )(t 的终点M 就描绘出一条曲线l (图1.1),这样的曲线称为矢函数A )(t 的矢端曲线,也称为矢函数A )(t 的图形。
同时称(1.1.1)式或(1.1.2)式为此曲线的矢量方程。
愿点O 也称为矢端曲线的极。
由于终点为),,(z y x M 的矢量OM 对于原点O 的矢径为zk yj xi r ++==当把A )(t 的起点取在坐标原点时,A )(t 实际上就成为其终点),,(z y x M 的矢径,因此)(t A 的三个坐标)(),(),(t A t A t A z y x 就对应地等于其终点M 的三个坐标z y x ,,,即)(),(),(t A z t A y t A x z y x ===(1.1.3)此式就是曲线l 的参数方程。
只是模变化而方向不变的矢量,它的矢端曲线是通过记得射线。
只改变方向而模不变的矢量,它的矢锻曲线是位于以极为中心模为半径的球面上的某一曲线。
2、矢函数的极限和连续性定义1.1.2 设矢函数A )(t 在点o t 的某个领域内有定义(但在o t 处可以无定义),A 0为一常矢。
若对于任意给定的正数ε,都存在一个正数δ,使当t 满足δ<-<00t t 时,就有|A )(t -A 0|< ε成立,则称A 0为A )(t 当0t t →时的极限,记作l i mt t →A )(t =A(1.1.4)矢函数的极限定义与数性函数的极限定义完全类似。
因此矢函数也就有类似于数性函数极限的运算法则。
如)(lim t t t u →A )(t =0)(lim t t t u →·0lim t t →A )(t(1.1.5)lim t t →[A )(t ±B )(t ]=0lim t t →A )(t ±0lim t t →B )(t(1.1.6)lim t t →[A )(t ·B )(t ]=0lim t t →A )(t ·0lim t t →B )(t(1.1.7)lim t t →[A )(t ×B )(t ]=0lim t t →A )(t ×0lim t t →B )(t(1.1.8)其中)(t u 为数性函数,A )(t ,B )(t 为矢函数;且0t t →时,)(t u ,A )(t ,B )(t 的极限均存在。
若设A )(t = )(t A x i+ )(t A y j+)(t A z k 则由法则(1.1.6)与(1.1.5)有0lim t t →A )(t =0lim t t →)(t A x i+0lim t t →)(t A y j+0lim t t →)(t A z k (1.1.9)即求一个矢函数的极限可以归结为求三个数性函数的极限。
定义 1.1.3 若矢函数A )(t 在o t 的某个邻域内有定义,且有lim t t →A )(t =A )(0t (1.1.10) 则称A )(t 在0t t =处连续。
即矢函数A )(t 在o t 处连续的充分必要条件是它的三个坐标函数)(),(),(t A t A t A z y x 都在o t 处连续。
若矢函数A )(t 在某个区间内的每一点处都连续,则称函数A )(t 在该区间内连续。
或称A )(t 是该区间内的连续函数。
§1.2 矢函数的导数与微分矢函数的微分法是矢量分析的重要内容,在空间直角坐标系中,一个矢量与三个数量(坐标)构成一一对应关系,因而矢函数也有类似于数性函数的导数,微分概念及运算法则。
1、矢函数的导数设有起点在原点O 的矢函数A )(t ,当数性变量t 在其定义域内从t 变到)0(≠∆∆t t 时,对应的矢量分别为A t =)( A t t =∆+)( 如图1.2.1,则A t t =∆+)(-A )(t =称为矢函数A )(t 的增量,记作∆A )(t ,即∆A )(t =A )(t t ∆+- A )(t(1.21.) 据此,我们给出矢函数的导数定义。
定义1.2.1 设矢函数A )(t 在点t 的某一个邻域内有定义,并设t t ∆+也在这邻域内,若A )(t 对应于t∆的增量∆A )(t 与t ∆之比tt A t t A t t A ∆-∆+=∆∆)()()( 当0→∆t 时,其极限存在,则称此极限为矢函数A )(t 在点t 处的导数(简称导矢),记作dtt dA )(,或)(t A ',即tt A t t A t t A dt t dA t t ∆-∆+=∆∆=→∆→∆)()(lim )(lim )(00(1.2.2)若kt A j t A i t A t A z y x )()()()(++=,且函数)(),(),(t A t A t A z y x 在点t 可导,则有k dtdAj dt dA i dt dA k tt A j t t A i t t A t t A dtt dA z y x z t y t x t t ++=∆∆+∆∆+∆∆=∆∆=→∆→∆→∆→∆)(lim )(lim )(lim )(lim )(0000 即kt A j t A i t A t A z y x )()()()('+'+'='(1.2.3)矢函数的导数计算转化为三个数性函数的导数计算。
例 1.2.1 已知k e tj e ti e t r t t t ++='sin cos )(,求导矢)(t r '。
解 ke j t t e i t t e ke j t e i t e t r tttt t t +++-=+'+'=')c o s (s i n )s i n (c o s )s i n ()c o s ()(例1.2.2设j i e j i e ϕϕϕϕϕϕcos sin )(,sin cos )(1+-=+= 证明)()(),()(11ϕϕϕϕe e e e -='=',及)()(1ϕϕe e ⊥ 证)(cos sin )(sin )(cos )(1ϕϕϕϕϕϕe ji ji e =+-='+'=' )(sin cos )(cos )sin ()(1ϕϕϕϕϕϕe ii j i e -=--='+'-='又cos sin )sin (cos )()(1=+-=∙ϕϕϕϕϕϕe e所以)()(1ϕϕe e ⊥。
容易看出,)(ϕe 为一单位矢量,故其矢端曲线为一单位圆,因此)(ϕe 又叫圆函数;与之相伴出现的)(1ϕe 亦为单位矢量,其矢端曲线亦为单位圆,如图1.2.2。
2、导矢的几何意义如图1.2.1,设l 为)(t A 的矢端曲线,tt A ∆∆)(是l 的割线MN 上的一个矢量。
当0>∆t 时,其指向与)(t A ∆一致,指向对应t 值增大的一方;当0<∆t 时,其指向与)(t A ∆相反,如图1.2.3,但此时)(t A ∆指向对应t 值减少的一方,从而tt A ∆∆)(仍指向对应t 值增大的一方。
当0→∆t 时,由于割线MN 绕点M 转动,且以点M 处的切线为其极限位置,此时,割线上矢量t t A ∆∆)(的极限位置,也就在此切线上,这就是说,导矢tt A t A t ∆∆='→∆)(lim )(0当其不为零时,是在点M 处的切线上,且方向恒指向对应t 值增大的一方。
因此,导矢在几何上为一矢端曲线的切向量,指向对应t 值增大的一方。
3、矢函数的导数公式设矢函数)()(t 、B t A 及数性函数)(t u 在t 的某范围内可导,则在该范围内成立下列公式(1)0)(=C dt d(C 为常矢);(2)dt dBdt dA B A dt d ±=±)(;(3)dt dA k kA dt d =)(口否认 (k 为常数);(4)dt dAu A dt du uA dt d +=)(;(5)B dt dAdt dB A B A dt d ∙+∙=∙)(; 特别dt dA A A dt d ∙=22,(其中A A A ∙=2);(6)B dt dAdt dB A B A dt d ⨯+⨯=⨯)(; (7)复合函数求导公式:若)(),(t u u u A A ==,则dtdu du dA dt dA = 这些公式的证明方法,与微积分中数性函数的类似公式的证法完全相同。
例如(6)的证法如下BA B A B A BA B A BA B A B A BA B B A A B A ∆⨯∆+⨯∆+∆⨯=⨯-∆⨯∆+⨯∆+∆⨯+⨯=⨯-∆+⨯∆+=⨯∆)()()(以t ∆除上式两端,有 t BA B t A t B A t B A ∆∆⨯∆+⨯∆∆+∆∆⨯=∆⨯∆)( 再令0→∆t ,求极限可得 B dtdAdt dB A dt B A d ⨯+⨯=⨯)( 例 1.2.3 证明定长矢量与其导矢互相垂直。
证 假定=|)(|t A 常数,则有==∙2|)(|)()(t A t A t A 常数 两端对t 求导,得0)()(2=∙dtt dA t A这说明矢量)(t A 与dtt dA )(的数量积等于零,而这只有两者互相垂直时才有可能,故dtt dA t A )()(⊥反之,若有0=∙dt dAA , 则有 02=A dtd , 从而 ==22||A A 常数。