大学物理下册复习题
- 格式:doc
- 大小:1.49 MB
- 文档页数:61
大学物理学下册考试题1 两根长度相同的细导线分别密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,2R r =,螺线管通过的电流相同为I ,螺线管中的磁感应强度大小R B 、r B ,满足 ( )(A )2R r B B = (B )R r B B = (C )2R r B B = (D )4R r B B =选择(c ) N N r N R N 222='⇒'=ππ2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为 ( ) (A )22r B π (B )2r B π (C )22cos r B πα (D )—2cos r B πα选择(D )3在图(a )和(b )中各有一半经相同的圆形回路1L 、2L ,圆周有电流1I 、2I ,其分布相同,且均在真空中,但在(b )图中2L 回路外有电流3I ,1P 、2P 为两圆形回路上的对应点,则 ( ) (A )1212,P P L L B dl B dl BB ⋅=⋅=⎰⎰ (B )1212,P P L L B dl B dl BB ⋅≠⋅=⎰⎰ (C )1212,P P L L B dl B dl BB ⋅=⋅≠⎰⎰ (D )1212,P P L L B dl B dl BB ⋅≠⋅≠⎰⎰选择(c )习题11图 习题13图1L1PL 2P3(a)(b)4 在磁感应强度为B的均匀磁场中,有一圆形载流导线,a、b、c、是其上三个长度相等的电流元,则它们所受安培力大小的关系为:选择(c)二,填空题1、如图5所示,几种载流导线在平面分布,电流均为I,他们在o点的磁感应强度分别为(a)(b)(c)图5(a)0()8IRμ向外(b)0()2IRμπ1(1-)向里(c)0()42IRμπ1(1+)向外2 已知一均匀磁场的磁感应强度B=2特斯拉,方向沿X轴正方向,如图所示,c点为原点,则通过bcfe面的磁通量0 ;通过adfe面的磁通量2x0.10x0.40=0.08Wb ,通过abcd面的磁通量0.08Wb 。
《大学物理》(下) 复习资料一、电磁感应与电磁场1. 感应电动势——总规律:法拉第电磁感应定律 dtd m i Φ-=ε , 多匝线圈dt d i ψ-=ε, m N Φ=ψ。
i ε方向即感应电流的方向,在电源内由负极指向正极。
由此可以根据计算结果判断一段导体中哪一端的电势高(正极)。
①对闭合回路,i ε方向由楞次定律判断; ②对一段导体,可以构建一个假想的回路(使添加的导线部分不产生i ε)(1) 动生电动势(B 不随t 变化,回路或导体L运动) 一般式:() d B v b ai ⋅⨯=ε⎰; 直导线:()⋅⨯=εB v i动生电动势的方向:B v ⨯方向,即正电荷所受的洛仑兹力方向。
(注意)一般取B v⨯方向为 d 方向。
如果B v ⊥,但导线方向与B v⨯不在一直线上(如习题十一填空2.2题),则上式写成标量式计算时要考虑洛仑兹力与线元方向的夹角。
(2) 感生电动势(回路或导体L不动,已知t /B ∂∂的值):⎰⋅∂∂-=s i s d t Bε,B与回路平面垂直时S t B i ⋅∂∂=ε 磁场的时变在空间激发涡旋电场i E :⎰⎰⋅∂∂-=⋅L s i s d t B d E(B增大时t B ∂∂[解题要点] 对电磁感应中的电动势问题,尽量采用法拉第定律求解——先求出t 时刻穿过回路的磁通量⎰⋅=ΦSm S d B ,再用dtd m i Φ-=ε求电动势,最后指出电动势的方向。
(不用法拉弟定律:①直导线切割磁力线;②L不动且已知t /B ∂∂的值)[注] ①此方法尤其适用动生、感生兼有的情况;②求m Φ时沿B 相同的方向取dS ,积分时t 作为常量;③长直电流r π2I μ=B r /;④i ε的结果是函数式时,根据“i ε>0即m Φ减小,感应电流的磁场方向与回路中原磁场同向,而i ε与感应电流同向”来表述电动势的方向:i ε>0时,沿回路的顺(或逆)时针方向。
2. 自感电动势dtdI Li -=ε,阻碍电流的变化.单匝:LI m=Φ;多匝线圈LI N =Φ=ψ;自感系数I N I L m Φ=ψ= 互感电动势dt dI M212-=ε,dtdIM 121-=ε。
大学力学专业《大学物理(下册)》期末考试试题含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一质点的加速度和位移的关系为且,则速度的最大值为_______________ 。
2、均匀细棒质量为,长度为,则对于通过棒的一端与棒垂直的轴的转动惯量为_____,对于通过棒的中点与棒垂直的轴的转动惯量_____。
3、两列简谐波发生干涉的条件是_______________,_______________,_______________。
4、某人站在匀速旋转的圆台中央,两手各握一个哑铃,双臂向两侧平伸与平台一起旋转。
当他把哑铃收到胸前时,人、哑铃和平台组成的系统转动角速度应变_____;转动惯量变_____。
5、一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度_____。
6、二质点的质量分别为、. 当它们之间的距离由a缩短到b时,万有引力所做的功为____________。
7、一长直导线旁有一长为,宽为的矩形线圈,线圈与导线共面,如图所示. 长直导线通有稳恒电流,则距长直导线为处的点的磁感应强度为___________;线圈与导线的互感系数为___________。
8、一束光线入射到单轴晶体后,成为两束光线,沿着不同方向折射.这样的现象称为双折射现象.其中一束折射光称为寻常光,它______________定律;另一束光线称为非常光,它___________定律。
9、一维保守力的势能曲线如图所示,则总能量为的粒子的运动范围为________;在________时,粒子的动能最大;________时,粒子的动能最小。
大学力学专业《大学物理(下册)》期末考试试卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、两个相同的刚性容器,一个盛有氧气,一个盛氦气(均视为刚性分子理想气体)。
开始他们的压强和温度都相同,现将3J的热量传给氦气,使之升高一定的温度。
若使氧气也升高同样的温度,则应向氧气传递的热量为_________J。
2、一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度与不透明部分宽度相等,则可能看到的衍射光谱的级次为____________。
3、如图所示,轴沿水平方向,轴竖直向下,在时刻将质量为的质点由a处静止释放,让它自由下落,则在任意时刻,质点所受的对点的力矩=________ ;在任意时刻,质点对原点的角动量=_____________。
4、一个力F作用在质量为 1.0 kg的质点上,使之沿x轴运动.已知在此力作用下质点的运动学方程为 (SI).在0到4 s的时间间隔内, (1) 力F的冲量大小I =__________________. (2) 力F对质点所作的功W =________________。
5、长为、质量为的均质杆可绕通过杆一端的水平光滑固定轴转动,转动惯量为,开始时杆竖直下垂,如图所示。
现有一质量为的子弹以水平速度射入杆上点,并嵌在杆中. ,则子弹射入后瞬间杆的角速度___________。
6、将热量Q传给一定量的理想气体:(1)若气体的体积不变,则热量转化为_____________________________。
(2)若气体的温度不变,则热量转化为_____________________________。
(3)若气体的压强不变,则热量转化为_____________________________。
例11-8 设在半径为R 的球体内,其电荷分布是对称的,电荷体密度 ρ= k r (0≤r ≤R ),ρ=0(r>R ),k 为一正的常量,用高斯定理求场强与r 的函数关系。
在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为r r kr V q d 4d d 2π⋅==ρ 在半径为r 的球面内包含的总电荷为403d 4kr r kr dV q rVπ=π==⎰⎰ρ(r ≤R)以该球面为高斯面,按高斯定理有0421/4εkr r E π=π⋅得到()0214/εkr E =,(r ≤R ) 方向沿径向向外。
按高斯定理有0422/4εkR r E π=π⋅得到()20424/r kR E ε=,(r >R )方向沿径向向外。
假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电例11-13假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电. (1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功?(2) 使球上电荷从零开场增加到Q 的过程中,外力共作多少功? (1) 令无限远处电势为零,那么带电荷为q 的导体球,其电势为RqU 04επ=将d q 从无限远处搬到球上过程中,外力作的功等于该电荷元在球上所具有的电势能q RqW A d 4d d 0επ==(2)带电球体的电荷从零增加到Q 的过程中,外力作功为⎰⎰==QR qq A A 004d d πεR Q 028επ=11-1 如下图,真空中一长为L 的均匀带电细直杆,总电荷为q ,试证明在直杆延长线上距杆的一端距离为d 的P 点的电场强度大小为:()d L d q+π=04E ε设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q /L , 在x 处取一电荷元d q =λd x = q d x /L , 它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L x q -+π=ε总场强为:⎰+π=Lx d L xL q E 020)(d 4-ε()d L d q +π=04ε 11-5 图中所示为一沿x 轴放置的长度为l 的不均匀带电细棒,其电荷线密度为λ=λ0 (x -a ),λ0为一常量.取无穷远处为电势零点,求坐标原点O 处的电势.解:在任意位置x 处取长度元d x ,其上带有电荷 d q =λ0 (x -a )d x 它在O 点产生的电势()xxa x U 004d d ελπ-=O 点总电势⎥⎦⎤⎢⎣⎡-π==⎰⎰⎰++l a a la a x x a x dU U d d 400ελ⎥⎦⎤⎢⎣⎡+-π=a l a a l ln 400ελ11-6 一半径R 的均匀带电圆盘,电荷面密度为σ.设无穷远处为电势零点.计算圆盘中心O 点电势 在圆盘上取一半径为r →r +d r X 围的同心圆环.其面积为 d S =2πr d r 其上电荷为 d q =2πσr d rLqx它在O 点产生的电势为002d 4d d εσεrr q U =π=总电势02d 2d εσεσRr U U RS ===⎰⎰ 11-7 在盖革计数器中有一直径为2.00 cm 的金属圆筒,在圆筒轴线上有一条直径为0.134 mm 的导线.如果在导线与圆筒之间加上850 V 的电压,试分别求: (1) 导线外表处 (2) 金属圆筒内外表处的电场强度的大小.设导线上的电荷线密度为λ,与导线同轴作单位长度的、半径为r 的(导线半径R 1<r <圆筒半径R 2)高斯圆柱面,那么 高斯定理有 2πrE =λ / ε0得到E = λ/ (2πε0r ) (R 1<r <R 2)方向沿半径指向圆筒.导线与圆筒之间的电势差⎰⎰⋅π==2121d 2d 012R R R R r rr E U ελ120ln 2R R ελπ=那么()1212/ln R R r U E = 代入数值,那么:(1) 导线外表处()121121/ln R R R U E ==2.54 ×106 V/m(2) 圆筒内外表处()122122/ln R R R U E ==1.70×104 V/m 11-8 在强度的大小为E ,方向竖直向上的匀强电场中,有一半径为R 的半球形光滑绝缘槽放在光滑水平面上(如图).槽的质量为M ,一质量m 带有电荷+q 的小球从槽的顶点A 处由静止释放.如果忽略空气阻力且质点受到的重力大于其所受电场力,求:(1) 小球由顶点A 滑至半球最低点B时相对地面的速度;(2) 小球通过B 点时,槽相对地面的速度.设小球滑到B 点时相对地的速度为v ,槽相对地的速度为V .小球从A →B 过程中球、槽组成的系统水平方向动量守恒 m v +MV =0 对该系统,由动能定理mgR -EqR =21m v 2+21MV 2② ①、②两式联立解出()()m M m qE mg MR +-=2v 方向水平向右.()()m M M qE mg mR M m V +--=-=2v 方向水平向左. 11-9 如下图,一半径为R 的均匀带正电圆环,其电荷线密度为λ.在其轴线上有A 、B 两点,它们与环心的距离分别为R OA 3=,R OB 8= . 一质量为m 、电荷为q 的粒子从A 点运动到B 点.求在此过程中电场力所作的功.设无穷远处为电势零点,那么A 、B 两点电势分别为0220432ελελ=+=R R RU A 0220682ελελ=+=R R R U B q 由A 点运动到B 点电场力作功()0001264ελελελq q U U q A B A =⎪⎪⎭⎫ ⎝⎛-=-= 11-10 电荷以一样的面密度σ 分布在半径为r 1=10 cm 和r 2=20 cm 的两个同心球面上.设无限远处电势为零,球心处的电势为U 0=300 V .(1) 求电荷面密度σ.(2) 要使球心处的电势也为零,外球面上应放掉多少电荷? (1) 球心处的电势为两个同心带电球面各自在球心处产生的电势的叠加,⎪⎪⎭⎫ ⎝⎛+π=22110041r q r q U ε⎪⎪⎭⎫ ⎝⎛π-ππ=22212104441r r r r σσε()210r r +=εσ2100r r U +=εσ=8.85×10-9C / m 2(2) 设外球面上放电后电荷面密度为σ',那么应有()21001r r U σσε'+='= 0即σσ21r r -='外球面上应变成带负电,共应放掉电荷()⎪⎪⎭⎫ ⎝⎛+π='-π='212222144r r r r q σσσ()20021244r U r r r εσπ=+π==6.67×10-9C 11-12 质量为m 、电荷为-q 的粒子沿一圆轨道绕电荷为+Q 的固定粒子运动,证明运动中两者间的距离的立方与运动周期的平方成正比. 设半径为r 、周期为T ,那么有r /m r4qQ220v =πε 因为v = r ω = r( 2π / T ) 所以qQ / (4πε0r 2) = mr (4π2 / T 2) M A m,q CBEEO ARλ R 3 R 8 B即得r 3 = Q qT 2 / (16π3ε0m )11-15 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量. 由题意知E x =200 N/C , E y =300 N/C ,E z =0平行于xOy 平面的两个面的电场强度通量01=±==⋅S E S E z eΦ 平行于yOz 平面的两个面的电场强度通量2002±=±==⋅S E S E xeΦb 2N ·m 2/C 平行于xOz 平面的两个面的电场强度通量3003±=±==⋅S E S E yeΦb 2 N ·m 2/C11-18 图示为一个均匀带电的球层,其电荷体密度为ρ,球层内外表半径为R 1,外外表半径为R 2.设无穷远处为电势零点,求空腔内任一点的电势.由高斯定理知空腔内E =0,故带电球层的空腔是等势区,各点电势均为U . 在球层内取半径为r →r +d r 的薄球层.其电荷为d q = ρ 4πr 2d r 该薄层电荷在球心处产生的电势()00/d 4/d d ερεr r r q U =π=整个带电球层在球心处产生的电势()212200002d d 21R R r r U U R R-===⎰⎰ερερ因为空腔内为等势区所以空腔内任一点的电势U 为()2122002R R U U -==ερ11-19 电荷Q (Q >0)均匀分布在长为L 的细棒上,在细棒的延长线上距细棒中心O 距离为a 的P 点处放一电荷为q (q >0)的点电荷,求带电细棒对该点电荷的静电力. 沿棒方向取坐标Ox ,原点O 在棒中心处.求P 点场强:()()20204d 4d d x a x x a q E -π=-π=ελε()⎰--π=2/2/204d L L x a x E ελ()2202/2/0414L a Qx a L L -π=-⋅π=-εελ解:令1B 、2B 、acb B 和ab B分别代表长直导线1、2和三角形框ac 、cb 边和ab 边中的电流在O 点产生的磁感强度ab acb B B B B B+++=211B :由于O 点在导线1的延长线上,所以1B= 0. 2B :由毕-萨定律)60sin 90(sin 402︒-︒π=dIB μ 式中6/330tan 21l l Oe d =︒⋅== )231(34602-⋅π=lI B μ)332(40-π=l I μ方向:垂直纸面向里.acb B 和ab B:由于ab 和acb 并联,有acb acb ab ab R I R I ⋅=⋅又由于电阻在三角框上均匀分布,有21=+=cb ac ab R R acb ab ∴acb ab I I 2= 由毕奥-萨伐尔定律,有ab acb B B =且方向相反.方向沿x 轴正向.点电荷受力:=F 例14-1在真空中,电流由长直导线b 点从三角形框流出,经长直导线求正三角形的中心点O 处的磁感强Oxzy bb b PO -L/2 L/2 d x d qa.∴)332(402-π==lIB B μ,B的方向垂直纸面向里.例14-2 如下图,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ ,求与平板共面并且距离平板一边为b 的任意点P 的磁感强度.利用无限长载流直导线的公式求解.(1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流x i d d δ=(2) 这载流长条在P 点产生的磁感应强度xiB π=2d d 0μxxπ=2d 0δμ方向垂直纸面向里.(3) 所有载流长条在P 点产生的磁感强度的方向都一样,所以载流平板在P 点产生的磁感强度==⎰B B d ⎰+πba bxdx 20δμb ba +π=ln 20δμ方向垂直纸面向里. 例14-3 如下图,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.λωR I =2/32230)(2y R R B B y +==λωμB的方向与y 轴正向一致.例14-4 平面闭合回路由半径为R 1及R 2 (R 1 > R 2 )的两个同心半圆弧和两个直导线段组成(如图).两个直导线段在两半圆弧中心O 处的磁感强度为零,且闭合载流回路在O 处产生的总的磁感强度B 与半径 为R 2的半圆弧在O 点产生的磁感强度B 2的关系为B = 2 B 2/3,求R 1与R 2的关 由毕奥-萨伐尔定律可得,设半径为R 1的载流半圆弧在O 点产生的磁感强度为B 1那么1014R IB μ=同理, 2024R IB μ=∵21R R >∴21B B <故磁感强度12B B B -=204R I μ=104R Iμ-206R I μ=∴213R R =例14-7 如图,一条任意形状的载流导线位于均匀磁场中,试证明导线a 到b 之间的一段上所受的安培力等于载同一电流的直导线ab 所受的安培力.由安培定律B l I f ⨯=d d ,ab 整曲线所受安培力为 ⎰⎰⨯==b aB l I f fd d 因整条导线中I 是一定的量,磁场又是均匀的,可以把I和B 提到积分号之外,即⎰⨯=b aB l I f d B l I ba⨯=⎰)d (B ab I⨯=载流一样、起点与终点一样的曲导线和直导线,处在均匀磁场中,所受安培力一样.例14-9 如下图,一半径为R 的均匀带电无限长直圆筒,面电荷密度为σ.该筒以角速度ω线匀速旋转.试求圆筒内部的磁感强度.如下图,圆筒旋转时相当于圆筒上具有同向的面电流密度i ,σωσωR R i =ππ=)2/(2作矩形有向闭合环路如右图中所示.从电流分布的对称性分析可知,在ab 上各点B且B 的方向平行于ab ,在bc 和fa 上各点B的方向与线元垂直,在de , cd fe ,0=B.应用安培环路定理∑⎰⋅=I l B 0d μ 可得ab i ab B 0μ=σωμμR i B 00==.均匀磁场,磁感强度的大小为σωμR B 0=,方向平行轴线朝右.14-4 如图,一半径为R 的带电塑料圆盘,其中半径为r 的阴影局部均匀带正电荷,面电荷密度为+σ ,其余局部均匀带负电荷,面电荷密度为-σ 当圆盘以角速度ω 旋转时,测得圆盘中心O 点的磁感强度为零,问R 与r 满足什么关系?带电圆盘转动时,可看作无数的电流圆环的磁场在O 点的叠加. 某一半径为ρ 的圆环的磁场为)2/(d d 0ρμi B =而ρσωρωρρσd )]2/([d 2d =π⋅π=i ∴ρσωμρρσωρμd 21)2/(d d 00==B正电局部产生的磁感强度为r B r2d 2000σωμρσωμ==⎰+负电局部产生的磁感强度为)(2d 200r R B Rr-==⎰-σωμρσωμ今-+=B B ∴r R 2=14-9 如下图,有两根平行放置的长直载流导线.它们的直径为a ,反向流过一样大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.解:建立坐标系,应用安培环路定理,左边电流产生的磁感应强度x 2IB 01πμ=; 方向向里 右边电流产生的磁感应强度)x a 3(2I B 02-πμ=; 方向向外 应用磁场叠加原理可得磁场分布为, )3(2200x a I x I B -π+π=μμ)252(a x a ≤≤B 的方向垂直x 轴及图面向里. 14-1 在一顶点为45°的扇形区域,有磁感强度为B方向垂直指向纸面内的均匀磁场,如图.今有一电子(质量为m ,电荷为-e )在底边距顶点O 为l 的地方,以垂直底边的速度v射入该磁场区域,假设要使电子不从上面边界跑出,电子的速度最大不应超过多少? 电子进入磁场作圆周运动,圆心在底边上.当电子轨迹与上面边界相切时,对应最大速度,此时有如下图情形.R R l =︒+45sin )(∴l l R )12()12/(+=-=由)/(eB m R v =,求出v 最大值为m leBm eBR )12(+==v14-2 一边长a =10 cm 的正方形铜线圈,放在均匀外磁场中,B 竖直向上,且B = 9.40×10-3 T ,线圈中电流为I =10 A .(1) 今使线圈平面保持竖直,问线圈所受的磁力矩为多少? (2) 假假设线圈能以某一条水平边为固定轴自由摆动,问线圈平衡时,线圈平面与竖直面夹角为多少?(铜线横截面积S = 2.00 mm 2,铜的密度ρ = 8.90 g/cm 3 )(1) 2Ia p m =,方向垂直于线圈平面.︒=⨯=90sin B p B p M mm = 9.40×10-4 N ·m (2) 设线圈绕AD 边转动,并且线圈稳定时,线圈平面与竖直平面夹角为θ ,那么磁场对线圈的力矩为)21sin(θ-π=⨯=B p B p M m m θcos B p m =重力矩:)sin 21(2sin θθa mg mga L +=θρsin 22g S a ==θcos B p m θρsin 22g S a 712.3)/(2ctg ==BI g S ρθ 于是θ = 15°14-3 试证明任一闭合载流平面线圈在均匀磁场中所受的合磁力恒等于零.由安培公式,电流元l Id 受磁场作用力为OrR ωIa a I xO2aIa aIxO 2a l 45° vBOOO ′R Rl45°B AC DImg mg mg n B)(21θ-.B l I F⨯=d d 那么闭合电流受总磁力为B l I B l I F F ⨯=⨯==⎰⎰⎰)d (d d 其中,因为B 为恒矢量,可提出积分号外而保持叉乘顺序不变.由于0d =⎰l (∵多边形矢量叠加法那么) ∴0=F(证毕)14-4一通有电流I 1 (方向如图)的长直导线,旁边有一个与它共面通有电流I 2 (方向如图)每边长为a 的正方形线圈,线圈的一对边和长直导线平行,),在维持它们的电流不变和保证共面的条件下,将它们的距离从2/3a 变为2/5a 形线圈所做的功.如图示位置,线圈所受安培力的合力为])(22[10102a x I xI aI F +π-π=μμ 方向向右 从x = a 到x = 2a 磁场所作的功为⎰+-π=aax ax x IaI A 2210d )11(2μ)3ln 2ln 2(2210-π=I aI μ例16-2 如下图,一电荷线密度为λ的长直带电线(与一正方形线圈共面并与其一对边平行)以变速率v =v (t )沿着其长度方向运动,正方形线圈中的总电阻为R ,求t 时刻方形线圈中感应电流i (t )的大小(不计线圈自身的自感)长直带电线运动相当于电流λ⋅=)(t I v .正方形线圈内的磁通量可如下求出x a x a I d 2d 0+⋅π=μΦ2ln 2d 2000⋅π=+π=⎰Ia x a x Ia a μμΦ2ln t d I d 2a t d d 0i πμ=-=εΦ2ln t d )t (d a 20v λπμ=2ln td )t (d a R 2R )t (i 0i v λπμ=ε=例16-3电荷Q 均匀分布在半径为a 、长为L ( L >>a )的绝缘薄壁长圆筒外表上,圆筒以角速度ω 心轴线旋转.一半径为2a 、电阻为R 的单匝圆形线圈套在圆筒上(如下图))/1(00t t -=ωω的规律(ω 0和t 0是常数)筒以ω旋转时,相当于外表单位长度上有环形电流π⋅2ωL Q ,它和通电流螺线管的nI 等效. 按长螺线管产生磁场的公式,筒内均匀磁场磁感强度为:LQ B π=20ωμ (方向沿筒的轴向)筒外磁场为零.穿过线圈的磁通量为:La Q B a 2202ωμΦ=π=在单匝线圈中产生感生电动势为=Φ-=εt d d )d d (220t L Qa ωμ-00202Lt Qa ωμ=感应电流i 为0020RLt 2Qa R i ωμ=ε=i 的流向与圆筒转向一致. 例16-5 一内外半径分别为R 1, R 2的均匀带电平面圆环,电荷面密度为σ,其中心有一半径为r 的导体小环(R 1 >>r ),二者同心共面如图.设带电圆环以变角速度ω =ω(t )绕垂直于环面的中心轴旋转,导体小环中的感应电流i 等于多少?方向如何(小环的电阻为R ')?带电平面圆环的旋转相当于圆环中通有电流I .在R 1与R 2之间取半径为R 、宽度为d R 的环带 带内有电流R t R I d )(d ωσ=d I 在圆心O 点处产生的磁场R t R I B d )(21/.d 21d 00σωμμ== 在中心产生的磁感应强度的大小为 ))((21120R R t B -=σωμI 2I 2a选逆时针方向为小环回路的正方向,那么小环中2120))((21r R R t π-≈σωμΦ t t R R r t i d )(d )(2d d 1220ωσμΦε-π-=-=tt R R R r R i i d )(d 2)(π1220ωσμε⋅'--='=例16-6 求长度为L 的金属杆在均匀磁场B中绕平行于磁场方向的定轴OO '转动时的动生电动势.杆相对于均匀磁场B的方位角为θ,杆的角速度为ω,转向如下图.在距O 点为l 处的d l 线元中的动生电动势为 d ε l Bd )(⋅⨯=v θωsin l =v∴⎰⎰⋅απ=⨯=εLv vd cos )21sin(B d )B (L⎰⎰θω=θω=ΛθL2d sin B sin d sin lB θω22sin 21BL =ε 的方向沿着杆指向上端.例16-9 两根平行无限长直导线相距为d ,载有大小相等方向相反的电流I ,电流变化率d I /d t =α >0.一个边长为d 的正方形线圈位于导线平面内与一根导线相距d ,如下图.求线圈中的感应电动势ε,并说明线圈中的感应电动势的方向.无限长载流直导线在与其相距为r 处产生的磁感强度为:)2/(0r I B π=μ以顺时针为线圈回路的正方向,与线圈相距较远和较近的导线在线圈中产生的磁通量为:23ln 2d 203201π=π⋅=⎰Idr r I d dd μμΦ2ln 2d 20202π-=π⋅-=⎰Id r r I d ddμμΦ总磁通量34ln 2021π-=+=Id μΦΦΦ感应电动势为:34ln 2d d )34(ln 2d d 00αμμεπ=π=-=d t I d t Φ由ε >0,所以ε 的绕向为顺时针方向,线圈中的感应电流亦是顺时针方向.16-2半径为R 的长直螺线管单位长度上密绕有n 匝线圈.在管外有一包围着螺线管、面积为S 的圆线圈,其平面垂直于螺线管轴线.螺线管中电流i 随时间作周期为T 的变化,如下图.求圆线圈中的感生电动势ε.画出ε─t 曲线,注明时间坐标. 螺线管中的磁感强度ni B 0μ=,通过圆线圈的磁通量i R n 20π=μΦ. 取圆线圈中感生电动势的正向与螺线管中电流正向一样,有td id R n t d d 20i πμ-=Φ-=ε. 在0 < t < T / 4内,TI T I t im m 44/d d ==,20i R n πμ-=εT I m 4=T I nR m /420μπ-=在T / 4 < t < 3T / 4内,T I T I t im m 42/2d d -=-=,=εi T /I nR 4m 20μπ. 在3T / 4 < t < T 内,TI T I t im m 44/d d ==,=εi T I nR m /420μπ-.ε ─t 曲线如图. 16-4 如下图,有一根长直导线,载有直流电流I ,近旁有一个两条对边与它平行并与它共面的矩形线圈,以匀速度v沿垂直于导线的方向离开导线.设t =0时,线圈位于图示位置,求:(1) 在任意时刻t 通过矩形线圈的磁通量Φ.(2) 在图示位置时矩形线圈中的电动势ε. 建立坐标系,x 处磁感应强度x2IB 0πμ=;方向向里在x 处取微元,高l 宽dx ,微元中的磁通量:OωBθLdI I εi tT /4 3T /4T /2 TOiI m -I T /4 T /23T /4Tta bvlxdx x 2I Bydx S d B d 0 πμ==⋅=Φ 磁通量:⎰⎰⋅πμ==S0x d r 2I S d B )t ( Φ⎰++πμ=tb t a 0x x d 2I v v t a t b ln 2I 0v v ++μ=π 感应电动势ab2)a b (I t d d 00t π-μ=-=ε=v Φ方向:顺时针 16-5在一长直密绕的螺线管中间放一正方形小线圈,假设螺线管长1 m ,绕了1000匝,通以电流I =10cos100πt (SI ),正方形小线圈每边长5 cm ,共 100匝,电阻为1 Ω,求线圈中感应电流的最大值(正方形线圈的法线方向与螺线管的轴线方向一致,μ0 =4π×10-7 T ·m/A .) n =1000 (匝/m) nI B 0μ=nI a B a 022μΦ=⋅=tI n Na t Nd d d d 02με-=Φ-==π2×10-1 sin 100 πt (SI) ==R I m m /επ2×10-1 A= 0.987 A16-8 两相互平行无限长的直导线载有大小相等方向相反的电流,长度为b 的金属杆CD 与两导线共面且垂直,相对位置如图.CD 杆以速度v平行直线电流运动,求CD 杆中的感应电动势,并判断C 、D 两端哪端电势较高?建立坐标(如图)那么:21B B B +=x I B π=201μ,)(202a x I B -π=μxIa x I B π--π=2)(200μμ,B 方向⊙ d εx x a x I x B d )11(2d 0--π==v v μ ⎰⎰--πμ=ε=ε+x d )x1a x 1(2I d ba 202av b a b a I ++π=2)(2ln20v μ感应电动势方向为C →D ,D 端电势较高.16-11两根平行长直导线,横截面的半径都是a ,中心线相距d ,属于同一回路.设两导线内部的磁通都略去不计,证明:这样一对导线单位长的自感系数为 aa d L -π=ln 0μ取长直导线之一的轴线上一点作坐标原点,设电流为I ,那么在两长直导线的平面上两线之间的区域中B 的分布为 rIB π=20μ)(20r d I-π+μ 穿过单位长的一对导线所围面积〔如图中阴影所示〕的磁通为==⎰⋅SS B d Φr rd r Iad ad )11(20⎰--+πμa a d I -π=ln0μa a d I L -π==ln 0μΦ例18-1在双缝干预实验中,波长λ=5.50×10-7m 的单色平行光垂直入射到缝间距a =2×10-4 m 的双缝上,屏到双缝的距离D=2 m .求:(1) 中央明纹两侧的两条第10级明纹中心的间距;(2) 用一厚度为e =6.6×10-5 m 、折射率为n =1.58的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?(1)∆x =20D λ / a =0.11 m(2) 覆盖云玻璃后,零级明纹应满足 (n -1)e +r 1=r 2设不盖玻璃片时,此点为第k 级明纹,那么应有r 2-r 1=k λ所以(n -1)e = k λk =(n -1) e / λ=6.96≈7零级明纹移到原第7级明纹处例18-6 图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸外表的曲率半 径是R =400 cm .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30cm .(1) 求入射光的波长.(2) 设图中OA =1.00 cm ,求在半径为OA 的X 围内可观察到的明环数目. a2a x +d x 2a +bII C Dv xOx2a drIIOr(1) 明环半径()2/12λ⋅-=R k r ()Rk r 1222-=λ=5×10-5 cm (或500 nm) (2) (2k -1)=2 r 2 / (R λ) 对于r =1.00 cm ,k =r 2 / (R λ)+0.5=50.5 故在OA X 围内可观察到的明环数目为50个. 18-3 薄钢片上有两条紧靠的平行细缝,用波长λ=546.1 nm (1 nm=10-9 m)的平面光波正入射到钢片上.屏幕距双缝的距离为D =2.00 m ,测得中央明条纹两侧的第五级明条纹间的距离为∆x =12.0 mm .(1) 求两缝间的距离. (2) 从任一明条纹(记作0)向一边数到第20条明条纹,共经过多大距离? (1) x = 2kD λ / dd = 2kD λ /∆x 此处k =5∴d =10 D λ / ∆x =0.910 mm (2) 共经过20个条纹间距,即经过的距离l =20 D λ / d =24 mm18-6 用波长为500 nm (1 nm=10-9 m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上.在观察反射光的干预现象中,距劈形膜棱边l = 1.56cm 的A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈形膜的劈尖角θ;(2) 改用600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干预条纹,A 处是明条纹还是暗条纹?(1) 棱边处是第一条暗纹中心,在膜厚度为e 2=λ/2处是第二条暗纹中心,依此可知第四条暗纹中心处,即A 处膜厚度e 4=2/3λ∴()l l e 2/3/4λθ===4.8×10-5 rad (2) 由上问可知A 处膜厚为e 4=3×500 / 2 nm =750 nm 对于λ'=600 nm 的光,连同附加光程差,在A 处两反射光的光程差为2/24λ'+e ,它与波长λ'之比为0.32/1/24=+'λe .所以A 处是明纹 18-8 曲率半径为R 的平凸透镜和平板玻璃之间形成空气薄层,如下图.波长为λ的平行单色光垂直入射,观察反射光形成的牛顿环.设平凸透镜与平板玻璃在中心O 点恰好接触.求: (1) 从中心向外数第k 个明环所对应的空气薄膜的厚度e k .(2) 第k 个明环的半径用r k ,(用R ,波长λ和正整数k 表示,R 远大于上一问的e k .) (1)第k 个明环,λλk e k =+2124/)12(λ-=k e k(2)(2)∵λλk e k ==212222)(k k e R r R -+=2222k k k e Re R r +-+=式中k e 为第k 级明纹所对应的空气膜厚度∵k e 很小,R e k <<,∴2k e 可略去,得)2/(2R r e k k =∴λλk R r k =+21)2/(222/)12(λR k r k -=(k =1, 2, 3 …)例19-3一双缝,缝距d =0.40 mm ,两缝宽度都是a =0.08 mm ,用波长为λ=480 nm (1 nm = 10-9 m) 的平行光垂直照射双缝,在双缝后放一焦距f =2.0 m 的透镜,求:〔1〕在透镜焦平面处的屏上,双缝干预条纹的间距;〔2〕在单缝衍射中央亮纹X 围内的双缝干预亮纹数目N 和相应的级数。
大学物理下考试题及答案一、选择题(每题2分,共20分)1. 根据麦克斯韦方程组,电磁波在真空中的传播速度是多少?A. 100m/sB. 300m/sC. 1000m/sD. 3×10^8 m/s答案:D2. 一个物体的动能是其势能的两倍,如果物体的总能量是E,那么它的势能U是多少?A. E/2B. E/3C. 2E/3D. E答案:B3. 在理想气体状态方程PV=nRT中,P代表的是:A. 温度B. 体积C. 压力D. 气体常数答案:C4. 下列哪个现象不是由量子力学效应引起的?A. 光电效应B. 原子光谱C. 超导现象D. 布朗运动答案:D5. 一个电子在电场中受到的电场力大小是1.6×10^-19 N,如果电子的电荷量是1.6×10^-19 C,那么电场强度E是多少?A. 1 N/CB. 10 N/CC. 100 N/CD. 1000 N/C答案:A6. 根据狭义相对论,一个物体的质量m与其静止质量m0之间的关系是:A. m = m0B. m = m0 / sqrt(1 - v^2/c^2)C. m = m0 * sqrt(1 - v^2/c^2)D. m = m0 * (1 - v^2/c^2)答案:C7. 一个物体从静止开始自由下落,其下落的高度h与时间t之间的关系是:A. h = 1/2 gt^2B. h = gt^2C. h = 2gtD. h = gt答案:A8. 在双缝干涉实验中,相邻的明亮条纹之间的距离是相等的,这种现象称为:A. 单缝衍射B. 多缝衍射C. 双缝干涉D. 薄膜干涉答案:C9. 一个电路中的电阻R1和R2并联,总电阻Rt可以用以下哪个公式计算?A. Rt = R1 + R2B. Rt = R1 * R2 / (R1 + R2)C. Rt = 1 / (1/R1 + 1/R2)D. Rt = (R1 * R2) / (R1 + R2)答案:C10. 根据热力学第一定律,一个系统吸收了100 J的热量,同时对外做了50 J的功,那么系统的内能增加了多少?A. 50 JB. 100 JC. 150 JD. 200 J答案:B二、填空题(每题2分,共20分)11. 光的粒子性质在________现象中得到了体现。
大学物理下复习题(附答案)第一章填空题自然界中只存在正负两种电荷,同种电荷相互排斥,异种电荷相互吸引。
()对自然界中只存在正负两种电荷,同种电荷相互吸引,异种电荷相互排斥。
()错电荷电量是量子化的。
()对物体所带电量可以连续地取任意值。
()错物体所带电量只能是电子电量的整数倍。
()对库仑定律只适用于真空中的点电荷。
()对电场线稀疏处的电场强度小。
()对电场线稀疏处的电场强度大。
()错静电场是有源场。
()对静电场是无源场。
()错静电场力是保守力。
()对静电场力是非保守力。
()错静电场是保守力场。
()对静电场是非保守力场。
()错电势是矢量。
()错电势是标量。
()对等势面上的电势一定相等。
()对沿着电场线的方向电势降落。
()对沿着电场线的方向电势升高。
()错电场中某点场强方向就是将点电荷放在该点处所受电场力的方向。
()错电场中某点场强方向就是将正点电荷放在该点处所受电场力的方向。
()对电场中某点场强方向就是将负点电荷放在该点处所受电场力的方向。
()错电荷在电场中某点受到电场力很大,该点场强E一定很大。
()错电荷在电场中某点受到电场力很大,该点场强E不一定很大。
()对在以点电荷为中心,r为半径的球面上,场强E处处相等。
()错在以点电荷为中心,r为半径的球面上,场强E大小处处相等。
()对如果在高斯面上的E处处为零,肯定此高斯面内一定没有净电荷。
()对根据场强与电势梯度的关系可知,在电势不变的空间电场强度为零。
()对如果高斯面内没有净电荷,肯定高斯面上的E处处为零。
()错正电荷由A移到B时,外力克服电场力做正功,则B点电势高。
对导体达到静电平衡时,导体内部的场强处处为零。
()对第一章填空题已一个电子所带的电量的绝对值e= C。
1.602*10-19或1.6*10-19真空中介电常数值为=0ε C 2.N -1.m -2。
8.85*10-12 真空中有一无限长带电直棒,电荷线密度为λ,其附近一点P 与棒的距离为a ,则P 点电场强度E 的大小为 。
大学物理下考试题及答案一、选择题(每题5分,共20分)1. 光在真空中的传播速度是:A. 3×10^8 m/sB. 2×10^8 m/sC. 1×10^8 m/sD. 4×10^8 m/s答案:A2. 根据牛顿第二定律,力和加速度的关系是:A. F=maB. F=mvC. F=m/aD. F=a/m答案:A3. 一个物体从静止开始做匀加速直线运动,其位移与时间的关系为:A. s = 1/2at^2B. s = 1/2vtC. s = 1/2atD. s = vt答案:A4. 在理想气体状态方程中,压强、体积、温度的关系是:A. PV = nRTB. PV = nTC. PV = nRD. PV = n答案:A二、填空题(每题5分,共20分)1. 根据能量守恒定律,一个物体的动能和势能之和在任何情况下都______。
答案:保持不变2. 电场强度的定义式为______。
答案:E = F/q3. 根据库仑定律,两点电荷之间的力与它们电荷量的乘积成正比,与它们距离的平方成反比,其公式为______。
答案:F = kQq/r^24. 光的折射定律表明,入射角和折射角之间的关系为______。
答案:n1sinθ1 = n2sinθ2三、简答题(每题10分,共40分)1. 简述波粒二象性的概念。
答案:波粒二象性是指微观粒子如电子、光子等,既表现出波动性,也表现出粒子性。
在某些实验条件下,它们表现出波动性,如干涉和衍射现象;而在另一些实验条件下,它们表现出粒子性,如光电效应和康普顿散射。
2. 什么是电磁感应定律?请给出其数学表达式。
答案:电磁感应定律描述了变化的磁场在导体中产生电动势的现象。
其数学表达式为ε = -dΦ/dt,其中ε是感应电动势,Φ是磁通量,t是时间。
3. 简述热力学第一定律的内容。
答案:热力学第一定律,也称为能量守恒定律,指出在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式。
xyoa•••a-(0,)P y qq-大学物理(下)练习题第三编 电场和磁场 第八章 真空中的静电场1.如图所示,在点((,0)a 处放置一个点电荷q +,在点(,0)a -处放置另一点电荷q -。
P 点在y 轴上,其坐标为(0,)y ,当y a ?时,该点场强的大小为(A) 204q y πε; (B) 202q y πε;(C)302qa y πε; (D)304qa y πε.[ ]2.将一细玻璃棒弯成半径为R 的半圆形,其上半部均匀分布有电量Q +, 下半部均匀分布有电量Q -,如图所示。
求圆心o 处的电场强度。
3.带电圆环的半径为R ,电荷线密度0cos λλφ=,式中00λ>,且为常数。
求圆心O 处的电场强度。
4.一均匀带电圆环的半径为R ,带电量为Q ,其轴线上任一点P 到圆心的距离为a 。
求P 点的场强。
5.关于高斯定理有下面几种说法,正确的是(A) 如果高斯面上E r处处为零,那么则该面内必无电荷;(B) 如果高斯面内无电荷,那么高斯面上E r处处为零;(C) 如果高斯面上E r处处不为零,那么高斯面内必有电荷;(D) 如果高斯面内有净电荷,那么通过高斯面的电通量必不为零; (E) 高斯定理仅适用于具有高度对称性的电场。
[ ]6.点电荷Q 被闭合曲面S 所包围,从无穷远处引入另一点电荷q 至曲面S 外一点,如图所示,则引入前后(A) 通过曲面S 的电通量不变,曲面上各点场强不变;(B) 通过曲面S 的电通量变化,曲面上各点场强不变;(C) 通过曲面S 的电通量变化,曲面上各点场强变化;(D) 通过曲面S 的电通量不变,曲面上各点场强变化。
[ ]7.如果将带电量为q 的点电荷置于立方体的一个顶角上,则通过与它不相邻的每个侧面的电场强度通量为xq g S Q g(A)06q ε; (B) 012q ε; (C) 024q ε; (D) 048q ε. [ ]8.如图所示,A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上的电荷面密度721.7718A C m σ--=-⨯⋅,B 面上的电荷面密度723.5418B C m σ--=⨯⋅。
大学物理下册复习题大学物理下册复习题大学物理是一门重要的学科,它涵盖了许多基础概念和原理,对于培养学生的科学思维和解决问题的能力至关重要。
下册的复习题是检验学生对所学知识的掌握程度的重要工具。
本文将对大学物理下册的复习题进行一些讨论和解答,希望能够帮助同学们更好地复习和理解物理知识。
第一章:电磁感应电磁感应是大学物理下册的重要内容之一。
在这一章中,我们学习了法拉第电磁感应定律和楞次定律,了解了电磁感应现象的产生和应用。
1. 简述法拉第电磁感应定律和楞次定律的内容及其应用。
法拉第电磁感应定律表明,当磁通量的变化率通过一个闭合回路时,该回路中会产生感应电动势。
楞次定律则说明,感应电动势的方向总是使得感应电流产生的磁场抵消磁通量的变化。
这两个定律常常被应用于发电机、变压器等电磁设备的设计和工作原理的解释。
2. 一个导体的一端以速度v进入磁感应强度为B的均匀磁场,另一端离开磁场。
求导体两端的感应电动势。
根据法拉第电磁感应定律,感应电动势与磁通量的变化率成正比。
当导体进入磁场时,磁通量逐渐增加,感应电动势的方向使得感应电流产生的磁场与外磁场相反,即感应电流的方向与导体运动方向相反。
当导体离开磁场时,磁通量逐渐减小,感应电动势的方向使得感应电流产生的磁场与外磁场同向,即感应电流的方向与导体运动方向相同。
因此,导体两端的感应电动势分别为正和负。
第二章:电磁波电磁波是一种传播电磁能量的波动现象,也是大学物理下册的重要内容之一。
在这一章中,我们学习了电磁波的特性、传播速度以及电磁波的谱系。
1. 什么是电磁波?它有哪些特性?电磁波是一种由电场和磁场相互作用而产生的波动现象。
它具有以下特性:- 电磁波是横波,即电场和磁场的振动方向垂直于波的传播方向。
- 电磁波在真空中的传播速度为光速,即299,792,458米/秒。
- 电磁波具有波长、频率和振幅等特性,它们之间的关系由光速公式c=λf给出。
2. 电磁波的谱系是什么?电磁波的谱系是根据其频率范围将电磁波分为不同类型的分类系统。
2013下学期总复习题(康颖教材第10-21章)第10章 真空中的静电场一 选择题3. 如图,电量为Q 的点电荷被曲面S 所包围,从无穷远处引另一电量为q 的点电荷至曲面外一点,则: ( )A.曲面S 的E 通量不变,曲面上各点场强不变 B.曲面S 的E 通量变化,曲面上各点场强不变 C.曲面S 的E 通量变化,曲面上各点场强变化D.曲面S 的E 通量不变,曲面上各点场强变化 解:根据高斯定理,应选(D)。
4. 两个同心均匀带电球面,半径分别为R a 和R b (R a <R b ),所带电量分别为Q a 和Q b ,设某点与球心相距r ,当R a <r< R b 时,该点的电场强度的大小为:( ) 202202020π41 D. π41C.π41B. π41A.r Q .) R Q r Q (r Q Q . r Q Q .a b b a b a b a εεεε+-+ 解:外球面上的电荷在其内部产生的场强为零,两球面间的场强仅由内球面电荷产生,故选(D )。
5. 图示为一具有球对称性分布的静电场的E -r 关系曲线,请指出该静电场是由下列哪种带电体产生的。
( )A . 半径为R 的均匀带电球面 B. 半径为R 的均匀带电球体C. 半径为R 、电荷体密度 =Ar (A 为常数)的非均匀带电球体D. 半径为R 、电荷体密度 =A/r (A 为常数)的非均匀带电球体解:根据计算可知,该电场为半径为R 、电荷体密度 =A/r (A 为常数)的非均匀带电球体所产生,故选(D )。
S . Q .q 选择题3图 Rr E =1/r 2EO 选择题5图 选择题6图 C O N M – q +q D q 0 P • • •6. 如图示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径圆弧,N 点有正电荷+q ,M 点有负电荷-q ,今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功( )(A) W <0且为有限常量; (B ) W >0且为有限常量;(C ) W = (D ) W = 0解:O 点的电势为零,O 点与无穷远处的电势差为零,所以将试验电荷+q 0从O 点出发沿任意路径移到无穷远处,电场力作功均为零,故本题应选(D )。
7. 在匀强电场中,将一负电荷从A 移到B ,如图所示,则:( )A. 电场力作正功,负电荷的电势能减少;B. 电场力作正功,负电荷的电势能增加;C. 电场力作负功,负电荷的电势能减少;D. 电场力作负功,负电荷的电势能增加解:根据图示,A 点的电势高于B 点的电势,所以负电荷在B 点的电势能高于A 点的电势能,电场力作负功。
应选(D 。
)8. 在点电荷q 的电场中,选取以q 为中心、R 为半径的球面上一点P 处作电势零点,则与点电荷q 距离为r 的P ’点的电势为 ( ))rR (q R)(r q )R r (q r q 11π4D. π4. C 11π4B. π4A.0000---εεεε 解:根据电势的定义可计算出P 点的电势应为)Rr (q 11π40-ε,故选(B )。
二 填空题4. 半径为R 的半球面置于场强为E 均匀电场中,其对称轴与场强方向一致,BEA选择题7图 P ’ q RP r选择题8图 E R 填空题4图 填空题5图S +q -q •• 填空题6图 Sq 4 • • • •q 2q 3 q 1如图所示,则通过该半球面的E 通量为 。
解:πR 2 E 5. 如图,点电荷q 和-q 被包围在高斯面S 内,则通过该高斯面的E 通量⎰⎰⋅S S E d = ,式中E 为 的场强。
解:0;高斯面S 上面积元d S 处。
6. 点电荷q 1,q 2,q 3和q 4在真空中的分布如图所示,图中S 为高斯面,则通过该高斯的E 通量⎰⎰⋅SS E d = 。
式中的E 是高斯面上任一点的场强,它等于点电荷 单独存在时在该点产生场强的矢量和。
解:(q 2 +q 4) /ε0 ,q 1 , q 2 ,q 3 ,q 47. 图中电场强度分量为E x = b x 1/2,E y = E z = 0,正立方体的边长为a ,则通过这正立方体的E 通量 = ,正方体内的总电荷Q = 。
解:25)12(ba -;25)12(ba o ε-8. 三个平行的“无限大”均匀带电平面,其电荷面密度是+σ,则A ,B ,C ,D 四个区域的电场强度分别为:E A = ,E B = ,E C = ,E D = 。
(设方向向右为正)解:每个无限大均匀带电平面产生的场强为 / (2εo ),根据场强的叠加原理可得:E A = -3 / (2εo );E B = - / (2εo );E C = / (2εo );E D =3 / (2εo )9. A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0 /3,方向如图。
则A 、B 两平面上电荷面密度分别为 A = , B = 。
解:根据上题可得:0000312,2E E A B A B=+=-εσσεσσ,解得: A = -2ε0 E 0 / 3; B = 4ε0 E 0 / 310. 真空中有一半径为R 的半圆细环,均匀带电Q ,如图所示,设无穷远处yo z a ax 填空题7图 +σ +σ +σA B C D填空题8图 E 0 /3 A B E 0 /3 E 0 填空题9图为电势零点,则圆心o 点的处的电势V 0 = ,若将一带电量为q 的点电荷从无穷远处移到圆心o 点,则电场力做功W = 。
解:V 0 = Q / (4πεo R );W = -q Q / (4πεo R )11. 图示BCD 是以o 点为圆心,以R 为半径的半圆弧,在A 点有一电量为+q 的点电荷,o 点有一电量为-q 的点电荷,线段BA = R ,现将一单位正电荷从B 点沿半径圆弧轨道BCD 移到D 点,则电场力所作的功为 。
解:0π4π400=-=Rq R q V B εε Rq R q R q V D 000π6π43(π4εεε-=-=) R qV V V D B BD 0π6ε=-= R qW BD 0π6ε=∴12. 质量为m 电量为q 的小球从电势V A 的A 点运动到电势为V B 的B 点,如果小球在B 点的速率为v B ,则小球在A 点的速率v A = 。
解:由能量守恒可求得v A =212])(2[m V V q mv B A B --三 计算题2. 如图所示,在x y 平面内有与y 轴平行、位于x = a / 2和x = - a / 2处的两条无限长平行的均匀带电细线,电荷线密度分别为和,求z 轴上任一点的电场强度。
解:过z 轴上任一点(0,0,z )分别以两条带电细线为轴作单位长度的圆柱形高斯面,如图所示,按高斯定理求出两带电直线分别在该处产生的场强为 填空题10图R o Q填空题11图 A B o D+q -q R C • • z xy o -a /2 a /2 -λ 计算题2图E + - = ±/ ( 2πε0 r )式中正负号分别表示场强方向沿径向朝外朝里,如图所示,按场强叠加原理,该处合场强的大小为)4(2 2/.cos 22200z a a r a r E E +===+πελπελθ 方向如图所示或用矢量表示i E )4(2220z a a +-=πελ 3. 一段半径为a 的细圆弧,对圆心所张的角为θ0,其上均匀分布有正电荷q ,试用a 、q 、θ0表示出圆心o 处的电场强度。
解:取坐标xoy 如图,由对称性可知: 0d ==⎰x x E E θθπελθπελθπεd cos 4cos 4d cos 4d d 202020a a a l a q E y ⋅=== 2sin 2d cos 400202121000θθπεθθπελθθa q a E E y ===⎰- j E 2sin 20020θθπεa q-=∴θ+ ++ o q x y+第11章 静电场中的导体和电介质一 选择题1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。
设无限远处的电势为零,则导体球的电势为 ( ) 20200π4 . D )(π4 . C π4 . B π4 .A R)(a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势⎰⎰'±'±='='='q q q R R q V 0d π41π4d 00εε 点电荷q 在球心处的电势为 aq V 0π4ε= 据电势叠加原理,球心处的电势aq V V V 00π4ε='+=。
所以选(A ) 2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为 ,如图所示,则板外两侧的电场强度的大小为 ( )00002 . D . C 2 . B 2 .A εd E=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0εσ=E 。
所以选(C )4. 半径分别为R 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电,在忽略导线的影响下,两球表面的电荷面密度之比R /r 为 ( )A . R /r B. R 2 / r 2 C. r 2 / R 2 D. r / R 解:两球相连,当静电平衡时,两球带电量分别为Q 、q ,因两球相距很远,所以电荷在两球上均匀分布,且两球电势相等,取无穷远为电势零点,则r q R Q 00π4π4εε= 即 rR q Q = 选择题2图 dR r r q R Q r R ==22 4/4/ππσσ 所以选(D )5. 一导体球外充满相对介质电常数为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度为 ( )A. ε0 EB. ε0εr EC. εr ED. (ε0εr -ε0) E 解:根据有介质情况下的高斯定理⎰⎰∑=⋅q S D d ,取导体球面为高斯面,则有S S D ⋅=⋅σ,即E D r 0εεσ==。
所以选(B )9. 一空气平行板电容器,极板间距为d ,电容为c 。
若在两板中间平行地插入一块厚度为d / 3的金属板,则其电容值变为 ( )A. CB. 2C /3C. 3 C /2D. 2C 解:平行板电容器插入的金属板中的场强为零,极板上电荷量不变,此时两极板间的电势差变为:0 32)3(εσεσd d d d E U =-='= 其电容值变为: C d S S U Q C 23233d 2 00===='εεσσ 所以选(C )10. 一平板电容器充电后保持与电源连接,若改变两极板间的距离,则下述物理量中哪个保持不变?( )A. 电容器的电容量B. 两极板间的场强C. 电容器储存的能量D. 两极板间的电势差解:平板电容器充电后保持与电源连接,则两极板间的电势差不变;平行板电容器的电容dS C ε=,改变两极板间的距离d ,则电容C 发生变化;两极板间的场强d U E =,U 不变,d 变化,则场强发生变化;电容器储存的能量2e 21CU W =,U 不变,d 变化,导致电容C 发生变化,则电容器储存的能量也要发生变化。