大学物理练习册答案(下册)
- 格式:pptx
- 大小:4.67 MB
- 文档页数:7
练习一1、C ,2、C ,3、C ,4、D,5、()j y a qy2/322042+πε, (j 为y 方向单位矢量), 2/a ± ,6、()30220824R qdd R R qd εεπ≈-ππ,从O 点指向缺口中心点. 7、解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L , 它在P 点的场强: ()204d d x d L q E -+π=ε()204d x d L L x q -+π=ε总场强为 ⎰+π=Lx d L xL q E 020)(d 4-ε()d L d q +π=04ε 方向沿x 轴,即杆的延长线方向.8、解:把所有电荷都当作正电荷处理. 在θ处取微小电荷 d q = λd l = 2Q d θ / π它在O 处产生场强θεεd 24d d 20220RQR q E π=π=按θ 角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202R Q E E x π==,θθεθd cos 2cos d d 202R Q E E y π-=-=对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =02022/2/0202d cos d cos 2R Q R Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰ 所以 j R Q j E i E E y x202επ-=+=练习二1、D ,2、C ,3、A ,4、C,5、不变、变,6、-3σ / (2ε0) ,-σ / (2ε0), 3σ / (2ε0)7、解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E . 作一柱形高斯面垂直于平面.其底面大小为S ,如图所示. 按高斯定理∑⎰=⋅0ε/d q S E S,即22d d 12εερεkSbx x kSx S SE bb===⎰⎰得到 E = kb 2 / (4ε0) (板外两侧) (2)过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示. 按高斯定理有 ()022εεkSbxdx kSS E E x==+'⎰xS P SEESSEd x b E 'd qR O xyθd θθPLdd q x (L+d -x )d ExO得到 ⎪⎪⎭⎫ ⎝⎛-='22220b x k E ε (0≤x ≤b ) (3) E '=0,必须是0222=-b x , 可得2/b x = 6、解:挖去电荷体密度为ρ 的小球,以形成球腔时的求电场问题,可在不挖时求出电场1E,而另在挖去处放上电荷体密度为-ρ的同样大小的球体,求出电场2E,并令任意点的场强为此二者的叠加,即可得 210E E E +=在图(a)中,以O 点为球心,d 为半径作球面为高斯面S ,则可求出O '与P 处场强的大小.ρε302113414d d d E S E S π⋅=π⋅=⋅⎰ 有 E 1O’=E 1P =d E 013ερ= 方向分别如图所示. 在图(b)中,以O '点为小球体的球心,可知在O '点E 2=0. 又以O ' 为心,2d 为半径作球面为高斯面S '可求得P 点场强E 2P()032223/)(4)(24d ερ-π=π⋅='⋅⎰'r d E S E S203212dr E P ερ-= (1) 求O '点的场强'O E. 由图(a)、(b)可得 E O ’ = E 1O’ =03ερd, 方向如图(c)所示.(2) 设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r则3ερr E PO =, 03ερr E O P '-=' , ∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.练习三1、D ,2、B ,3、C,4、C,5、q / (6πε0R )6、负,增加7、解:由高斯定理可得场强分布为:E =-σ / ε0 (-a <x <a ) E = 0 (-∞<x <-a ,a <x <+∞=E 1P ρ PE 2P E P 图(d) O O ' P E 1O’ ρ 图(a) O ρO ' d E O’=E 1 图(c)O P E 2P -ρ O 'r E 2O’=0图(b)E 1P由此可求电势分布:在-∞<x ≤-a 区间⎰⎰⎰---+==000/d d 0d aa xxx x x E U εσ0/εσa -=在-a ≤x ≤a 区间 00d d εσεσxx x E U x x =-==⎰⎰ 在a ≤x <∞区间 0000d d 0d εσεσax x x E U a a x x =-+==⎰⎰⎰8、解:设x 轴沿细线方向,原点在球心处,在x 处取线元d x ,其上电荷为x q d d λ=', 该线元在带电球面的电场中所受电场力为: d F = q λd x / (4πε0 x 2) 整个细线所受电场力为: ()l r r lq x x q F l r r +π=π=⎰+00024d 400ελελ 方向沿x 正方向.电荷元在球面电荷电场中具有电势能: d W = (q λd x ) / (4πε0 x ) 整个线电荷在电场中具有电势能: ⎪⎪⎭⎫ ⎝⎛+π=π=⎰+0000ln 4d 400r l r q x x q W l r r ελελ练习四1、D ,2、D ,3、B ,4、C ,5、U C C C C C q U C C C C C 21212221211)(,)(+-=+-,6、r εεσσ0,, 7、解:金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r -+=εεε8、解:令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ∵ AB AC U U =,即-a +a O x UO R x r 0 r 0+ld xx∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C 10172-⨯-=-=S q B σ (2)301103.2d d ⨯===AC AC AC A E U εσV练习五1、πR 2c2、 5.00×10-5 T , 3、20d 4a lI πμ , 平行z 轴负向 ; 4、)11(4120R R I -μ,垂直纸面向外 ,2/122210)11(4R R I+μ ,12arctg R R +π21,5、)3231(40ππμ-+R I , 6、C, 7、解:因为金属片无限长,所以圆柱轴线上任一点P 的磁感应强度方向都在圆柱截面上,取坐标如图所示,取宽为l d 的一无限长直电流l R II d d π=,在轴上P 点产生B d 与R 垂直,大小为RI R R R I R I B 20002d 2d 2d d πθμ=πθπμ=πμ= RI B B x 202d cos cos d d πθθμ=θ=RI B B y 202d sin )2cos(d d πθθμ-=θ+π=∴ 520202221037.6)]2sin(2[sin 22d cos -ππ-⨯=πμ=π--ππμ=πθθμ=⎰RI R I R I B x T 0)2d sin (2220=πθθμ-=⎰ππ-RI B y∴ i B51037.6-⨯= T8、解:(1) 对r ~r +d r 段,电荷 d q = λ d r ,旋转形成圆电流.则 r dq I d 22d π=π=λωω 它在O 点的磁感强度rrr IB d 42d d 000π==λωμμ⎰⎰+π==b a a r r B B d 4d 000λωμa ba +π=ln 40λωμ 方向垂直纸面向内. r r I r p m d 21d d 22λω=π=⎰⎰+==ba am m r r p p d 21d 2λω 6/])[(33a b a -+=λω 方向垂直纸面向内.练习六1、B2、)2(120I I -μ3、320μI , 4、Rihπμ20,5、)2/(210R rI πμ ,0 6、解:取同轴闭合圆环r l π2= )(b r a <<则 ⎰π=⋅lr B l B 2d2222)(a b Ia r I ππππ--=∑∴ )(2)(22220a b r a r I B --=πμ 7、解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小, 由安培环路定律可得:)(220R r r R IB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RIRd 2020⎰π=μπ=40I μ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r I R Rd 220⎰π=μ2ln 20π=Iμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+IμOarbd r ω1、A ,2、B ,3、)/(cos 2eB m θv π, )/(sin eB m θv ,4、alB 2,5、铁磁质,顺磁质,抗磁质,6、 0.226 T ,300 A/m7、解: (1) 0=⨯=B l I F bcB l I F ab⨯= 方向⊥纸面向外,大小为866.0120sin ==︒IlB F ab NB l I F ca⨯=方向⊥纸面向里,大小866.0120sin ==︒IlB F ca N(2)IS P m =B P M m⨯= 沿O O '方向,大小为221033.443-⨯===B l I ISB M m N ⋅(3)磁力功 )(12ΦΦ-=I A∵ 01=Φ B l 2243=Φ ∴ 221033.443-⨯==B l IA J 8、解:在直线电流2I 上任意取一个小电流元dl I 2,此电流元到长直线 的距离为x ,无限长直线电流1I 在小电流元处产生的磁感应强度 xI B πμ210=21021060cos 22dxx I I dl x I I dF ⋅==πμπμ ab I I dxx I I F ba ln 60cos 22100210πμπμ=⋅=⎰1、D ,2、C ,3、A ,4、0.40 V , 0.5 m 2/s ,5、 5×10-4 Wb ,6、解:2IB xμπ=ln 22d adIl Id a ldx x dμμππ++Φ=⋅=⎰0l n c o s 2N I l d d a Nt dt dμωεωπΦ+=-=- 7、解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.练习九1、28/104.0s m ⨯顺时针 2、 πBnR 2 ,O 3、dtdBR221π, 4、等于零,不等于零;不等于零,等于零 5、RBfr 22π6、解: 作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμ M 点电势高于N 点电势,即ba ba Iv U U N M -+=-ln 20πμ 7、解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε=-=t abd d 2ΦεtB R B R t d d 12π]12π[d d 22=--∴ tBR R acd d ]12π43[22+=ε ∵0d d >tB∴ 0>ac ε即ε从c a →练习十1、C ,2、C ,3、0,4、 垂直纸面向里 , 垂直OP 连线向下 ,5、(4)(2)(1) 5、解:圆柱形电容器电容 12ln 2R R lC πε=12ln 2R R lUCU q πε== 1212ln ln 22R R r U R R r lU S q D εππε===∴ 12ln R R r ktDj ε=∂∂=6、如图10-17图所示,取r l S d d = 则 ⎰⎰-----=--=-+=ad aad aad da a d Il r r r Ilr l r Ir πI)ln (ln 2πd )d 11(π2d ))d (π22(0000μμμμΦ aad Il-=lnπ0μ ∴ aad lIL -==lnπ0μΦ练习十一1、A2、 B3、B ,4、D ,5、2π (n -1) e / λ , 4×103 ;6、解: (1)由λk d D x =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm7、解:(1) ∆x =20 D λ / a =0.11 m(2) 覆盖云玻璃后,零级明纹应满足 (n -1)e +r 1=r 2设不盖玻璃片时,此点为第k 级明纹,则应有 r 2-r 1=k λ所以 (n -1)e = k λk =(n -1) e / λ=6.96≈7 零级明纹移到原第7级明纹处练习十二1、A ,2、 C ,3、C ,4、 1.40 ,5、0.6mm 。
大学物理学答案【下】北京邮电大学出版社习题99.1选择题(1) 正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零,则Q与q的关系为:()(A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q[答案:A](2) 下面说法正确的是:()(A)若高斯面上的电场强度处处为零,则该面内必定没有电荷;(B)若高斯面内没有电荷,则该面上的电场强度必定处处为零;(C)若高斯面上的电场强度处处不为零,则该面内必定有电荷;(D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。
[答案:D](3) 一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度()(A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0[答案:C](4) 在电场中的导体内部的()(A)电场和电势均为零;(B)电场不为零,电势均为零;(C)电势和表面电势相等;(D)电势低于表面电势。
[答案:C]9.2填空题(1) 在静电场中,电势不变的区域,场强必定为[答案:相同](2) 一个点电荷q放在立方体中心,则穿过某一表面的电通量为若将点电荷由中心向外移动至无限远,则总通量将。
[答案:q/6ε0, 将为零](3) 电介质在电容器中作用(a)——(b)——。
[答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命](4) 电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比[答案:5:6]9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系解: 如题9.3图示(1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷1q212cos30︒=4πε0a24πε0qq'(2a)3解得q'=-q 3(2)与三角形边长无关.题9.3图题9.4图9.4 两小球的质量都是m,都用长为l的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题9.4图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题9.4图示Tcosθ=mg⎧⎪q2 ⎨Tsinθ=F=1e⎪4πε0(2lsinθ)2⎩解得q=2lsinθ40mgtan9.5 根据点电荷场强公式E=q4πε0r2,当被考察的场点距源点电荷很近(r→0)时,则场强→∞,这是没有物理意义的,对此应如何理解ϖ解: E=q4πε0r2ϖr0仅对点电荷成立,当r→0时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6 在真空中有A,B两平行板,相对距离为d,板面积为S,其带电量分别为+q和-q.则这两板之间有相互作用力f,有人说f=q2 4πε0d2,又有人说,因为f=qE,E=q,所ε0Sq2以f=.试问这两种说法对吗?为什么? f到底应等于多少ε0S解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强E=q看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个ε0Sqqq2=板的电场为E=,另一板受它的作用力f=q,这是两板间相互作用2ε0S2ε0S2ε0S的电场力.-19.7 长的直导线AB上均匀地分布着线密度λ=5.0x10-的正电荷.试求:(1)在导线的延长线上与导线B端相距a1=5.0cm处P点的场强;(2)在导线的垂直平分线上与导线中点相距d2=5.0cm 处Q点的场强.解:如题9.7图所示(1) 在带电直线上取线元dx,其上电量dq在P点产生场强为dEP=1λdx 24πε0(a-x)λEP=⎰dEP=4πε0⎰l2l-2dx 题9.7图2(a-x)=λ11[-] ll4πε0a-a+22=用l=15cm,λ=5.0⨯10-9λlπε0(4a2-l2) C⋅m-1, a=12.5cm代入得EP=6.74⨯102N⋅C-1 方向水平向右(2)同理=由于对称性dEQxl1λdx 方向如题9.7图所示4πε0x2+d22ϖ=0,即EQ 只有y分量,1λdx=4πε0x2+d22d2x+d222⎰∵dEQyEQy=⎰dEQyldλ=24πε2⎰l2l-2dx(x2+d22)32 =-9λl2πε0l+4d222以λ=5.0⨯10C⋅cm-1, l=15cm,d2=5cm代入得EQ=EQy=14.96⨯102N⋅C-1,方向沿y轴正向9.8 一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强.解: 如9.8图在圆上取dl=Rdϕ题9.8图dq=λdl=Rλdϕ,它在O点产生场强大小为dE=λRdϕ方向沿半径向外4πε0R2则dEx=dEsinϕ=λsinϕdϕ4πε0R-λcosϕdϕ4πε0Rπ-ϕ)= dEy=dEcos(积分Ex=⎰π0λλsinϕdϕ=4πε0R2πε0REy=⎰π0-λcosϕdϕ=0 4πε0R∴E=Ex=λ,方向沿x轴正向.2πε0R9.9 均匀带电的细线弯成正方形,边长为l,总电量为q.(1)求这正方形轴线上离中心为r处的场强E;(2)证明:在r>>l处,它相当于点电荷q产生的场强E.解: 如9.9图示,正方形一条边上电荷ϖq在P点产生物强dEP方向如图,大小为4dEP=λ(cosθ1-cosθ2)4πε0r2+l42∵cosθ1=lr2+l22cosθ2=-cosθ1∴dEP=λ4πε0r2+l42lr2+l22ϖdEP在垂直于平面上的分量dE⊥=dEPcosβ∴dE⊥=λl4πε0r2+l42rr2+l22r2+l42题9.9图由于对称性,P点场强沿OP方向,大小为EP=4⨯dE⊥=4λlr4πε0(r2+ll)r2+4222∵λ=∴EP=q 4l2qr4πε0(r2+ll)r2+422 方向沿9.10 (1)点电荷q位于一边长为a的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?ϖϖq 解: (1)由高斯定理E⋅dS= sε0立方体六个面,当q在立方体中心时,每个面上电通量相等∴各面电通量Φe=q.6ε0(2)电荷在顶点时,将立方体延伸为边长2a的立方体,使q处于边长2a的立方体中心,则边长2a的正方形上电通量Φe=q 6ε0 对于边长a的正方形,如果它不包含q所在的顶点,则Φe=如果它包含q所在顶点则Φe=0.q,24ε0如题9.10图所示.题9.10 图9.11 均匀带电球壳内半径6cm,外半径10cm,电荷体密度为2×108cm ,12cm 各点的场强.解: 高斯定理E⋅dS=s-5C·m求距球心5cm,-3ϖϖ∑q,E4πrε02=∑q ε0 ϖ当r=5cm时,∑q=0,E=0r=8cm时,∑q=p4π33) (r -r内3ρ∴E=4π32r-r内≈3.48⨯104N⋅C-1,方向沿半径向外.24πε0r()r=12cm时,∑q=ρ4π33)(r外-r内3ρ∴E=4π33r外-r内3≈4.10⨯104 N⋅C-1 沿半径向外. 24πε0r()9.12 半径为R1和R2(R2 >R1)的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r<R1;(2) R1<r<R2;(3) r>R2处各点的场强.ϖϖ解: 高斯定理E⋅dS=sq ε0取同轴圆柱形高斯面,侧面积S=2πrlϖϖ则E⋅dS=E2πrl S对(1) r<R1 ∑q=0,E=0∑q=lλ (2) R1<r<R2∴E=λ沿径向向外2πε0r(3) r>R2 ∑q=0∴E=0题9.13图9.13 两个无限大的平行平面都均匀带电,电荷的面密度分别为σ1和σ2,试求空间各处场强.解: 如题9.13图示,两带电平面均匀带电,电荷面密度分别为σ1与σ2,两面间,E=ϖ1ϖ(σ1-σ2)n 2ε0ϖ1ϖ(σ1+σ2)n σ1面外,E=-2ε0σ2面外,E=ϖ1ϖ(σ1+σ2)n 2ε0ϖn:垂直于两平面由σ1面指为σ2面.9.14 半径为R的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r<R的小球体,如题9.14图所示.试求:两球心O与O'点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电-ρ的均匀小球的组合,见题9.14图(a).ϖ(1) +ρ球在O点产生电场E10=0,ϖ-ρ球在O点产生电场E2043πrρ=OO' 4πε0d3ϖr3ρ;∴O点电场E0=3ε0d343πdρϖ(2) +ρ在O'产生电场E10'=34πε0dϖ-ρ球在O'产生电场E20'=0ϖρOO∴O'点电场E0'=3ε0题9.14图(a) 题9.14图(b) ϖϖ(3)设空腔任一点P相对O'的位矢为r',相对O点位矢为r (如题8-13(b)图)ϖϖρr则EPO=,3ε0ϖϖρr'EPO'=-, 3ε0ϖϖϖϖρϖϖρρd(r-r')=OO'=∴EP=EPO+EPO'= 3ε03ε03ε0∴腔内场强是均匀的.-69.15 一电偶极子由的两个异号点电荷组成,两电荷距离d=0.2cm,把这电偶极子放在的外电场中,求外电场作用于电偶极子上的最大力矩.-1解: ∵电偶极子p在外场E中受力矩ϖϖϖ M=p⨯E∴Mmax=pE=qlE代入数字Mmax=1.0⨯10-6⨯2⨯10-3⨯1.0⨯105=2.0⨯10-4N⋅m9.16 两点电荷q1=1.5×10C,q2=3.0×10C,相距r1=42cm,要把它们之间的距离变为-8-8r2=25cm,需作多少功解: A=⎰r2r1ϖϖr2qqdrqq11F⋅dr=⎰122=12(-) r24πεr4πε0r1r20=-6.55⨯10-6J外力需作的功A'=-A=-6.55⨯10 J-6题9.17图9.17 如题9.17图所示,在A,B两点处放有电量分别为+q,-q的点电荷,AB间距离为2R,现将另一正试验点电荷q0从O点经过半圆弧移到C点,求移动过程中电场力作的功.解: 如题9.17图示UO=1qq(-)=0 4πε0RRUO=1qqq (-)=-4πε03RR6πε0Rqoq 6πε0R∴A=q0(UO-UC)=9.18 如题9.18图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R.试求环中心O点处的场强和电势.。
I电磁学DC7・ 1 |如图所示,一电子经过Uo = 1 >10 7m / s o(1) 欲使这电子沿半圆自A 至C 运动,试求所需的磁场 大小和方向;(2) 求电子自A 运动到C 所需的时间。
9解:(1)电子所受洛仑兹力提供向心力 evoB = m —Rmv o 9.1 lx 10~ x IX 10 ?3_得出 B 二 = _i9= 1./10 TeR 1 .6X 10 - x 0 .05磁场方向应该垂直纸面向里。
(2) 所需的时间为 t =# =药-=兀0. 05 = 1 .6 X 10 rs22 vo l x 107血工地2.0怡2的一个正电子,射入磁感应强度B 二0.1T 的匀强磁场中,其速 度矢量与B 成89角,路径成螺旋线,其轴在B 的方向。
试求这螺旋线运动的周 期T 、螺距h 和半径r o解:正电子的速率为I /XX X X - v ==1 ------- 2~~10 ' 110 19 = 2 .6x 10 7 m/s* m *9.1 1X 10做螺旋运动的周期为2 Jim 2 K X 9.1 丈 1(T 31T = ---------- = -------------- --- --------- = 3 ,6X 10 SeB 1 .6X 10一 X 0.1螺距为 h = vcos 89 °T =2.6 * 10 7 X cos 89 0 :<3. 6 X 10 10 = 1 .6^ lO^m317ZX _X X X_丰径为 r = mv sin 89 = 9.11 ~F02 .6⑴ TO Sih 89 = 1 .5 ^103 Hlx — xeBL6 10'0.1磁力A 点时,具有速率V0 /0 10cmA h -----------------DC7・3加1图所示,一铜片厚为d二1.0mm,放在B=1.5T的磁场中,磁场方向与铜片表面垂直。
已知铜片里每立方厘米有8.4^ 1022个自由电子,每个电子的电荷C - = -1.6 19T,当铜片中有I=200A的电流流通时,(1)求铜片两侧的电势差Uaa' ;(2)铜片宽度b对Uaa,有无影响?为什么?/// B i ////Z/-------- 28 — = -2.23 X 10_ V,8/ 10X「1.6 ¥o f X 1 .0 X 10一负号表示『侧电势高。
大学物理练习册下答案问题1:描述牛顿第二定律的数学表达式,并给出一个例子说明如何使用它来解决实际问题。
答案:牛顿第二定律的数学表达式是 \( F = ma \),其中 \( F \)是作用在物体上的合力,\( m \) 是物体的质量,\( a \) 是物体的加速度。
例如,如果一个质量为5kg的物体受到10N的力,那么根据牛顿第二定律,物体的加速度 \( a \) 将是 \( 10N / 5kg = 2m/s^2 \)。
问题2:说明什么是能量守恒定律,并给出一个物理系统的例子来展示这一定律。
答案:能量守恒定律表明,在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式,但总量保持不变。
例如,当一个自由落体的物体从一定高度下落时,它的势能转化为动能。
如果忽略空气阻力,下落过程中总能量是守恒的。
问题3:解释什么是波的干涉,并给出一个实验设置来观察这一现象。
答案:波的干涉是指两个或多个波相遇时,它们的振幅相加形成一个新的波形的现象。
当两个波的相位相同(相长干涉)或相反(相消干涉)时,干涉效果最为明显。
观察干涉的一个简单实验设置是使用两个相干光源,它们发出的波在空间中相遇,形成明暗相间的干涉条纹。
问题4:描述电磁感应的基本原理,并解释法拉第电磁感应定律。
答案:电磁感应是当一个导体在变化的磁场中移动时,导体中产生电动势的现象。
法拉第电磁感应定律表明,导体中产生的电动势与穿过导体回路的磁通量的变化率成正比。
数学表达式为 \( \varepsilon = -d\Phi_B/dt \),其中 \( \varepsilon \) 是感应电动势,\( \Phi_B \) 是磁通量,\( t \) 是时间。
问题5:简述量子力学的基本原理,并解释海森堡不确定性原理。
答案:量子力学是描述微观粒子行为的物理学分支,其基本原理包括波粒二象性、量子态的叠加以及量子态的演化遵循薛定谔方程等。
海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,它们的不确定性的乘积至少等于普朗克常数的一半。
班级_____________ 学号___________姓名________________ 简谐振动1. 一质点作谐振动, 振动方程为X=6COS (8πt+π/5) cm, 则t=2秒时的周相为:π5116, 质点第一次回到平衡位置所需要的时间为:s 0375.0.2. 一弹簧振子振动周期为T 0, 若将弹簧剪去一半, 则此弹簧振子振动周期T 和原有周期T 0之间的关系是:022T T =.3. 如图为以余弦函数表示的谐振动的振动曲线, 则其初周相φ=3π-,P 时刻的周相为:0.4. 一个沿X 轴作谐振动的弹簧振子, 振幅为A , 周期为T , 其振动方程用余弦函数表示, 如果在t=0时, 质点的状态分别是:(A) X 0=-A; (B) 过平衡位置向正向运动;(C) 过X=A/2 处向负向运动; (D) 过A x 22-= 处向正向运动.2 1 0 P t(s) X(m)试求出相应的初周相之值, 并写出振动方程.)2cos()(ππ+=t TA x A ; )22cos()(ππ-=t T A x B)32cos()(ππ+=t T A x C ; )452cos()(ππ+=t T A x D5.一质量为0.2kg 的质点作谐振动,其运动议程为:X=0.60 COS(5t -π/2)(SI)。
求(1)质点的初速度;(2)质点在正向最大的位移一半处所受的力。
解(1))5sin(00.32π--==t dtdxv 10.00.3,0-==s m v t(2)x x dtdv a 2520-=-==ω 22.5.7,30.0--===s m a m x AN ma F 5.1-==班级_____________ 学号___________姓名________________简谐振动的合成1. 两个不同的轻质弹簧分别挂上质量相同的物体1和2, 若它们的振幅之比A 2 /A 1=2, 周期之比T 2 / T 1=2, 则它们的总振动能量之比E 2 / E 1 是( A )(A) 1 (B) 1/4 (C) 4/1 (D) 2/11)()(;)(2222221122112=⋅==A A T T E E T A m E π2.有两个同方向的谐振动分别为X 1=4COS(3t+π/4)cm ,X 2 =3COS(3t -3π/4)cm, 则合振动的振幅为:cm A 1=, 初周相为:4πφ=. 3. 一质点同时参与两个同方向, 同频率的谐振动, 已知其中一个分振动的方程为X 1=4COS3t cm, 其合振动的方程为分振动的振幅为A 2 =cm 44. 动方程分别为X 1=A COS(ωt+π/3), X 2 =A COS (ωt+5π/3), X 3 =A COS(ω程为:)6cos(3πω+=t A x5. 频率为v 1和v 2的两个音叉同时振动时,可以听到拍音,可以听到拍音,若v 1>v 2,则拍的频率是(B )(A)v 1+v 2 (B)v 1-v 2 (C)(v 1+v 2)/2 (D)(v 1-v 2)/26.有两个同方向,同频率的谐振动,其合成振动的振幅为0.20m ,周相与第一振动周相差为π/6。
大学物理学第二版下册习题解答第一章:力学1.1 力学基本概念1.1.1 力的概念问题:什么是力?力的种类有哪些?解答:力是物体之间相互作用导致的物体运动或形变的原因。
力可以分为以下几种:•接触力:当两个物体接触时产生的力,如弹簧力、摩擦力等。
•引力:天体之间由于引力而产生的力,如地球引力、行星引力等。
•重力:地球上物体受到的引力,是一种特殊的引力。
•弹力:当物体被弹性体拉伸或压缩时,物体回复原状所产生的力。
•阻力:物体在流体中运动时受到的阻碍力,如空气阻力、水阻力等。
1.1.2 力的合成与分解问题:什么是力的合成与分解?如何进行力的合成与分解?解答:力的合成是指将多个力按照一定的规律合成为一个力的过程。
力的分解是指将一个力按照一定的规律分解为多个力的过程。
力的合成可以使用力的三角法进行。
假设有两个力F₁、F₂,其方向分别为α₁、α₂,大小分别为|F₁|、|F₂|,则合力F的大小可以通过以下公式计算:F = √(F₁² + F₂² + 2F₁F₂cos(α₁-α₂))合力F的方向则可以通过以下公式计算:tan(θ) = (F₂sin(α₁-α₂))/(F₁+F₂cos(α₁-α₂))力的分解可以使用力的正弦法和余弦法进行。
假设有一个力F,其大小为|F|,方向为α,要将该力分解为水平方向的力F x和竖直方向的力F x,可以通过以下公式计算:Fₓ = |F|cosα, Fᵧ = |F|sinα1.2 牛顿定律与惯性1.2.1 牛顿第一定律问题:什么是牛顿第一定律?牛顿第一定律适用于哪些情况?解答:牛顿第一定律,也称为惯性定律,指的是:物体在没有受到外力或受到的合外力为零时,物体保持静止或匀速直线运动的状态。
牛顿第一定律适用于只有一个物体或多个物体之间相互独立运动的情况。
当物体受到外力时,按照该定律,物体会发生运动或停止运动。
1.2.2 牛顿第二定律问题:什么是牛顿第二定律?如何计算物体所受合外力和加速度的关系?解答:牛顿第二定律指的是:物体所受合外力等于物体的质量乘以加速度。