药理学第8章整理
- 格式:docx
- 大小:17.35 KB
- 文档页数:3
药理学第二章药效学药物效应动力学(药效学):是研究药物对机体的作用及作用机制的生物资源科学。
药物的不良反应:1、副作用:在治疗剂量时出现的与治疗无关的不适反应,可以预知但是难以避免。
2、毒性反应:药物剂量过大或蓄积过多时机体发生的危害性反应,比较严重,可以预知避免。
3、后遗效应:停药后机体血药浓度已降至阈值以下量残存的药理效应。
4、停药反应:突然停药后原有疾病的加剧现象,双称反跳反应。
5、变态反应:机体接受药物刺激后发生的不正常的免疫反应,又称过敏反应。
6、特异性反应:受体:能与受体特异性结合的物质称为配体,能激活受体的配体称为激动药,能阻断受体活性的配体称为拮抗药。
激动药:既有亲和力双有内在活性。
拮抗药:有较强的亲和力,但缺乏内在活性。
分竞争性和非竞争性。
第二信使:环磷腺苷(cAMP)、环磷鸟苷( cGMP)、肌醇磷脂、钙离子、廿烯类第三章药动学药物代谢动力学(药动学):研究机体对药物的处置,即药物在体内的吸收、分布、代谢、排泄。
解离型药物极性大,脂溶性小,难以扩散;而非解离型药物极性小,脂溶性大,易跨膜扩散。
第六章胆碱受体激动药一、M、N胆碱受体激动药:乙酰胆碱(ACH) 作用:1、M样作用:心率减慢、血管扩张、心肌收缩力减弱,扩张几乎所有血管,血压下降,胃肠道、泌尿道及支气管等平滑肌兴奋,腺体分泌增加,眼瞳孔括约肌和睫状收缩。
2、N样作用:激动N1胆碱受体,表现为消化道、膀胱等处的平滑肌收缩加强,腺体分泌增加,心肌收缩力加强和小血管收缩,血压上升。
过大剂量由兴奋转入抑制。
激动N2胆碱受体,使骨骼肌收缩。
3、中枢作用:不易透过血脑屏障另有:氨甲酰胆碱二、M胆碱受体激动药:毛果芸香碱作用:1、眼:表现为缩瞳、降低眼内压调节痉挛。
2、腺体:分泌增加尤以汗腺和唾液腺。
应用:1、青光眼2、缩瞳另有:氨甲酰甲胆碱三、N胆碱受体激动药:烟碱、洛贝林第七章抗胆碱酯酶药和胆碱酯酶复活药一、易逆性胆碱酯酶抑制剂:新斯的明:口服吸收小而不规则,不表现中枢作用。
药理学第八版笔记整理名词解释药理学:研究药物与机体相互作用及作用规律的学科,既研究药物对机体的作用及作用机制,即药物效应动力学,也研究药物在机体的影响下所发生的变化及其规律,即药物代谢动力学。
药物:指可以改变或查明机体的生理卫生功能及病理状态,可用以预防、诊断和治疗疾病的化学物质。
药物吸收:指药物自用药部位进入血液循环的过程。
首过消除:从胃肠道吸收入门静脉系统的药物在到达全身血循环前必先通过肝脏,如果肝脏对其代谢能力很强,或由胆汁排泄的量大,则使进入全身血循环内的有效药物量明显减少,这种作用称为首过消除。
药物分布:指药物吸收后从血循环到达机体各个部位和组织的过程。
药物代谢:指体内药物在酶的作用下发生结构变化,以便消除;是药物消除的重要途径。
排药物泄:指药物及其代谢物排出体外的过程。
一级消除动力学:体内药物按瞬时血药浓度以恒定的百分比消除,称一级动力学消除,又称恒比消除。
微分方程:dC/dt =-k.C1,血浆药物浓度高,单位时间内消除的药物多,血浆药物浓度降低时,单位时间内消除的药物也相应降低,多数药物以一级动力学消除。
零级消除动力学:药物在体内以恒定的速率消除,即不论血浆药物浓度高低,单位时间内消除的药物量不变。
血浆半衰期:指血浆药物浓度下降一半所需的时间。
生物利用度:指药物吸收进入体循环的相对量,是评价药物制剂质量的重要指标。
公式:F=A/D*100% A:进入体循环的量 D:服药剂量对因治疗:指用药目的在于消除原发致病因子,彻底治愈疾病的治疗作用。
对症治疗:指用药目的在于改善症状的治疗作用。
对症治疗不能根除病因,但对病因未明暂时无法根治的疾病却是必不可少的。
副反应:由于选择性低,药理效应涉及多个器官,当某一效应用做治疗目的时,其他效应就称为副反应(通常也称副作用)。
治疗剂量下与治疗目的无关的作用毒性反应:指在剂量过大或药物在体内蓄积过多时发生的危害性反应,一般比较严重。
毒性反应一般是可以预知的,应该避免发生。
第1章绪言1.什么是药效动力学药效动力学(Pharmacodynamics),又称“药效学”,是研究药物对机体的作用、作用原理及作用规律的一门分支科学2.什么是药代动力学药代动力学,全称“药物代谢动力学“,是研究药物在人体内代谢过程的学科。
比如药物的吸收、分布、代谢转化、排泄过程等。
第2章药效学1、什么是不良反应凡与用药目的无关,并为病人带来不适或痛苦的反应统称为药物不良反应。
2、效能与效价强度的异同效能指药物的最大效应浓度,对单一药物而言;效价强度指能引起等效反应的相对浓度或剂量,对多种药物相互比较而言。
3、何谓治疗指数,有何意义通常将药物的半效致死量与半效有效量的比值称为治疗指数,用以表示药物的安全性。
治疗指数越大越安全。
4、受体激动剂与受体拮抗剂激动剂:为既有亲和力又有内在活性的药物,它们能与受体结合并激动受体而产生效应,分为完全激动药和部分激动药。
拮抗剂:能与受体结合,具有较强亲和力而无内在活性的药物。
第3章药代动力学1、试述被动转运和主动转运的特点药物分子借助于流体静压或渗透压随体液通过细胞膜的水性通道由细胞膜的一侧到达另一侧称为滤过,为被动转运。
主动转运特点:1、需要载体。
2、消耗能量。
3、转运时有饱和现象。
4、有竞争现象。
5、当一侧药物转韵完毕后,转运停止。
2、试述血浆半衰期及其临床意义血浆半衰期是指血浆中药的浓度下降一半所需时间,临床意义:可以预计连续给药后达到稳态血浆药物浓度的时间和停药后药物从体内消除所需要的时间。
3、简述药酶诱导剂及其临床意义凡能诱导药酶活性增加或加速药酶合成的药物称为药酶诱导剂,酶诱导可引起合用的底物药物代谢速率加快,因而药理作用和毒性反应增强或减弱。
4、简述生物利用度及临床意义生物利用度是指经任何给药途径给于一定剂量的药物后到达全身血循环内药物的百分率。
有绝对生物利用度和相对生物利用度之分。
意义:反映药物制剂被机体吸收利用程度;评价药物质量的指标。
5、简述首关消除及临床意义首关消除(首过消除):口服药物在胃肠道吸收后,首先进入门静脉,某些药物在通过肠粘圝膜及肝脏时,部分药物受到灭活代谢,使进入体循环的有效药量明显减少。
《药理学》各章节基础知识整理,速记提分!第1章药理学总论——绪⾔名词解释药理学:研究药物与机体(包括病原体)相互作⽤的规律及其原理的科学。
包括药动学和药效学。
药动学:即药物代谢动⼒学,研究药物在机体影响下所发⽣的变化及其规律。
药效学:即药物效应学,研究药物对机体的作⽤及作⽤机制。
第2章药物代谢动⼒学名词解释⾸过消除:从胃肠道吸收⼊门静脉系统的药物在到达全⾝⾎循环前必先通过肝脏,使进⼊全⾝⾎循环内的有效药物良明显减少,这种作⽤称⾸过消除。
肝肠循环:被分泌到胆汁内的药物及其代谢产物经由胆道及胆总管进⼊肠腔,然后随粪便排泄出去,经胆汁排⼊肠腔的药物部分再经⼩肠上⽪细胞吸收经肝脏进⼊⾎液循环。
这种肝脏、胆汁、⼩肠间的循环称肝肠循环。
再分布:药物先分布于⾎流量⼤的组织器官,随后向其他组织器官转移的这种现象称为再分布。
如静脉⿇醉药硫喷妥钠(pentothal sodium)先向⾎流量⼤的脑组织分布,药物浓度迅速升⾼⽽产⽣⿇醉效应,但脑组织中的药物很快随⾎流再向脂肪组织转移,浓度迅速下降⽽⿇醉效应消失。
药酶的诱导:有些药物所诱导的药物代谢酶的底物,因此在反复应⽤后,药物代谢酶的活性增⾼,其⾃⾝代谢也加快,这⼀作⽤称诱导,导致酶活性增⾼。
药酶的抑制:有些药物可抑制肝微粒体酶的活性导致同时应⽤的⼀些药物代谢减慢。
这类抑制物和药物代谢酶结合,竞争性抑制其他底物代谢。
T1/2:即药物消除半衰期,是⾎浆药物浓度下降⼀半所需要的时间。
表观分布容积:当⾎浆和组织内药物分布到达平衡后,体内药物按此时的⾎浆药物浓度在体内分布时所需体液容积称表观分布容积(V d)清除率:是机体消除器官在单位时间内清除药物的⾎浆容积,也就是单位时间内有多少毫升⾎浆中所含药物被机体清除。
⽣物利⽤度:经任何给药途径给予⼀定剂量的药物后到达全⾝⾎循环内药物的百分率,以及药物进⼊全⾝循环的速度称⽣物利⽤度。
药物的体内过程包括哪⼏个⽅⾯?药物体内过程( ADME)包括:1、吸收(absorption)2、分布(distribution)3、代谢(metabolism)4、排泄(excretion)第3章药物效应动⼒学名词解释效能:随着药物剂量或浓度的增加,效应也增加,当效应增加到⼀定程度后,若继续增加药物浓度或剂量⽽其效应不在继续增加,这⼀药理效应的极限称为最⼤效应,也称效能。
药理学各章重点总结
本文档旨在对药理学的各个章节进行重点总结,以帮助读者更好地理解和记忆相关知识。
第一章:药理学概述
- 药理学的定义及其研究对象
- 药物的种类与分类
- 药物的吸收、分布、代谢和排泄
第二章:药物的作用机制
- 药物与受体的结合
- 药物的激动作用和抑制作用
- 药物的调节作用和替代作用
第三章:药物动力学
- 药物在体内的动态变化
- 药物的吸收速度和吸收程度
- 药物的分布与脱散
第四章:药物代谢与排泄- 药物在体内的代谢途径
- 药物在体内的消除方式
- 药物代谢与排泄的影响因素
第五章:药物的药效学- 药物的活性和选择性
- 药物的剂量和效应关系
- 药物的时效和持续时间
第六章:免疫药理学
- 免疫系统的基本概念
- 免疫药物的分类和作用机制- 免疫药物的临床应用
第七章:神经药理学
- 神经系统的基本结构和功能- 神经递质和神经传递的机制- 神经药物的分类和作用方式
第八章:心血管药理学
- 心血管系统的结构和功能
- 心血管药物的分类和作用机制
- 心血管药物的临床应用
第九章:消化系统药理学
- 消化系统的结构和功能
- 消化系统药物的分类和作用机制
- 消化系统药物的临床应用
第十章:呼吸系统药理学
- 呼吸系统的结构和功能
- 呼吸系统药物的分类和作用机制
- 呼吸系统药物的临床应用
以上是药理学各章的重点总结,希望能为您对药理学的学习提供帮助。
第八章氨基糖苷类抗生素一、A1、耳、肾毒性最低的药物是A、西索米星B、庆大霉素C、妥布霉素D、阿米卡星E、奈替米星2、氨基糖苷类药物的不良反应不含A、耳毒性B、肝毒性C、肾毒性D、神经肌肉阻断作用E、过敏反应3、抢救链霉素过敏性休克宜选用的药物是A、葡萄糖酸钙B、地高辛C、苯海拉明D、地塞米松E、去甲肾上腺素4、治疗鼠疫的首选药物是A、氯霉素B、四环素C、罗红霉素D、链霉素E、头孢他啶5、氨基糖苷类抗生素的副作用不包括A、神经肌肉阻断作用B、过敏反应C、二重感染D、肾毒性E、耳毒性6、氨基糖苷类抗生素的消除途径是A、被单胺氧化酶代谢B、以原形经肾小球滤过排出C、以原形经肾小管分泌排出D、经肝药酶氧化E、与葡萄糖醛酸结合后排出7、氨基糖苷类抗生素的作用机制是A、干扰细菌的叶酸代谢B、作用于细菌核蛋白体50S亚基,干扰蛋白质的合成C、作用于细菌核蛋白体30S亚基,干扰蛋白质的合成D、干扰细菌DNA的合成E、抑制细菌细胞壁的合成8、氨基糖苷类抗生素的作用机制是A、阻碍细菌细胞壁的合成B、增加细胞膜的通透性C、阻碍细菌蛋白质的合成D、抑制RNA合成E、抑制叶酸合成9、氨基糖苷类抗生素对哪类细菌无效A、需氧革兰阴性菌B、耐甲氧西林金葡菌C、沙门菌属D、厌氧菌和肠球菌E、革兰阳性菌10、氨基糖苷类抗生素的作用机制是A、干扰细菌的叶酸代谢B、作用于细菌核蛋白体50S亚基,干扰蛋白质的合成C、作用于细菌核蛋白体30S亚基,干扰蛋白质的合成D、干扰细菌DNA的合成E、抑制细菌细胞壁的合成11、氨基糖苷类抗生素的消除途径是A、被单胺氧化酶代谢B、以原形经肾小球滤过排出C、以原形经肾小管分泌排出D、经肝药酶氧化E、与葡萄糖醛酸结合后排出12、氨基糖苷类抗生素的副作用不包括A、神经肌肉阻断作用B、过敏反应C、二重感染D、肾毒性E、耳毒性13、耳、肾毒性最低的药物是A、西索米星B、庆大霉素C、妥布霉素D、阿米卡星E、奈替米星14、引起耳蜗神经损伤发生率最高氨基糖苷类药物的是A、卡那霉素B、链霉素C、阿米卡星D、妥布霉素E、西索米星15、下列哪类药物属于快速杀菌药A、氨基糖苷类B、红霉素C、氯霉素类D、多黏菌素BE、四环素类16、下列不属于阿米卡星的特点是A、抗菌谱广B、血浆蛋白结合率低C、不易透过血脑屏障D、不能与β-内酰胺类药物合用E、对多数常见的革兰阴性菌有效二、B1、A.链霉素B.阿米卡星C.庆大霉素D.妥布霉素E.卡那霉素<1> 、治疗革兰阴性杆菌感染如败血症的首选药物是<2> 、氨基糖苷类抗生素中抗菌谱最广的是<3> 、治疗兔热病(土拉菌病)的首选药物是2、A.链霉素B.庆大霉素C.大观霉素D.卡那霉素E.阿米卡星<1> 、耳毒性最大的氨基糖苷类药物<2> 、临床常用于治疗结核病的药物是<3> 、首选用于沙雷菌属的氨基糖苷类药物的是3、A.庆大霉素B.链霉素C.奈替米星D.妥布霉素E.小诺米星<1> 、与其他抗结核病药联合应用的是<2> 、口服可用于肠道感染的药物是<3> 、对多种氨基糖苷类钝化酶稳定的药物是三、X1、常见肾毒性不良反应的药物有A、庆大霉素B、卡那霉素C、链霉素D、万古霉素E、新霉素2、关于庆大霉素的作用,正确的有A、口服用于肠道杀菌B、是治疗鼠疫的首选药C、对铜绿假单胞菌有效D、抗菌谱广,对革兰阴性菌和阳性菌均有杀灭作用E、治疗各种革兰阴性杆菌的主要药物3、易引起过敏性休克等变态反应的是A、罗红霉素B、青霉素C、庆大霉素D、阿米卡星E、链霉素4、氨基糖苷类抗生素的作用机制A、阻止70S核蛋白体解离B、附着于细菌体表面使细胞壁通透性增加,导致细菌死亡C、抑制70S始动复合物的形成D、选择性地与30S亚基结合E、阻止终止因子与核蛋白体A位结合,已合成肽链不能释放5、氨基糖苷类抗生素影响蛋白质合成的环节包括A、抑制核蛋白体的70S亚基始动复合物的形成B、与核蛋白体的30S亚基上的靶蛋白结合,导致无功能的蛋白质合成C、阻碍药物与细菌核蛋白体的50S亚基结合D、使细菌细胞膜缺损,细胞内重要物质外漏E、阻碍已合成肽链的释放6、符合庆大霉素的叙述是A、口服吸收少B、主要用于革兰阴性杆菌感染C、对铜绿假单胞菌无效D、在碱性环境中抗菌活性增强E、口服给药可用于肠道感染7、氨基糖苷类抗生素的作用机制A、阻止70S核蛋白体解离B、附着于细菌体表面使细胞壁通透性增加,导致细菌死亡C、抑制70S始动复合物的形成D、选择性地与30S亚基结合E、阻止终止因子与核蛋白体A位结合,已合成肽链不能释放8、氨基糖苷类抗生素的共性有A、由氨基环醇和氨基糖分子结合而成B、口服难吸收C、易进入细胞D、主要用于需氧革兰阴性杆菌感染E、主要消除途径为肝代谢答案部分一、A1、【正确答案】E【答案解析】奈替米星的耳、肾毒性发生率在常用氨基糖苷类中最低,损伤程度也较轻。
第八章氨基糖苷类抗生素一、A1、耳、肾毒性最低的药物是A、西索米星B、庆大霉素C、妥布霉素D、阿米卡星E、奈替米星2、氨基糖苷类药物的不良反应不含A、耳毒性B、肝毒性C、肾毒性D、神经肌肉阻断作用E、过敏反应3、抢救链霉素过敏性休克宜选用的药物是A、葡萄糖酸钙B、地高辛C、苯海拉明D、地塞米松E、去甲肾上腺素4、治疗鼠疫的首选药物是A、氯霉素B、四环素C、罗红霉素D、链霉素E、头孢他啶5、氨基糖苷类抗生素的副作用不包括A、神经肌肉阻断作用B、过敏反应C、二重感染D、肾毒性E、耳毒性6、氨基糖苷类抗生素的消除途径是A、被单胺氧化酶代谢B、以原形经肾小球滤过排出C、以原形经肾小管分泌排出D、经肝药酶氧化E、与葡萄糖醛酸结合后排出7、氨基糖苷类抗生素的作用机制是A、干扰细菌的叶酸代谢B、作用于细菌核蛋白体50S亚基,干扰蛋白质的合成C、作用于细菌核蛋白体30S亚基,干扰蛋白质的合成D、干扰细菌DNA的合成E、抑制细菌细胞壁的合成8、氨基糖苷类抗生素的作用机制是A、阻碍细菌细胞壁的合成B、增加细胞膜的通透性C、阻碍细菌蛋白质的合成D、抑制RNA合成E、抑制叶酸合成9、氨基糖苷类抗生素对哪类细菌无效A、需氧革兰阴性菌B、耐甲氧西林金葡菌C、沙门菌属D、厌氧菌和肠球菌E、革兰阳性菌10、氨基糖苷类抗生素的作用机制是A、干扰细菌的叶酸代谢B、作用于细菌核蛋白体50S亚基,干扰蛋白质的合成C、作用于细菌核蛋白体30S亚基,干扰蛋白质的合成D、干扰细菌DNA的合成E、抑制细菌细胞壁的合成11、氨基糖苷类抗生素的消除途径是A、被单胺氧化酶代谢B、以原形经肾小球滤过排出C、以原形经肾小管分泌排出D、经肝药酶氧化E、与葡萄糖醛酸结合后排出12、氨基糖苷类抗生素的副作用不包括A、神经肌肉阻断作用B、过敏反应C、二重感染D、肾毒性E、耳毒性13、耳、肾毒性最低的药物是A、西索米星B、庆大霉素C、妥布霉素D、阿米卡星E、奈替米星14、引起耳蜗神经损伤发生率最高氨基糖苷类药物的是A、卡那霉素B、链霉素C、阿米卡星D、妥布霉素E、西索米星15、下列哪类药物属于快速杀菌药A、氨基糖苷类B、红霉素C、氯霉素类D、多黏菌素BE、四环素类16、下列不属于阿米卡星的特点是A、抗菌谱广B、血浆蛋白结合率低C、不易透过血脑屏障D、不能与β-内酰胺类药物合用E、对多数常见的革兰阴性菌有效二、B1、A.链霉素B.阿米卡星C。
执业药师药理学第八章氨基糖苷类抗生素习题及答案执业药师药理学第八章氨基糖苷类抗生素习题及答案1、耳、肾毒性最低的药物是A、西索米星B、庆大霉素C、妥布霉素D、阿米卡星E、奈替米星2、氨基糖苷类药物的不良反应不含A、耳毒性B、肝毒性C、肾毒性D、神经肌肉阻断作用E、过敏反应3、抢救链霉素过敏性休克宜选用的药物是A、葡萄糖酸钙B、地高辛C、苯海拉明D、地塞米松E、去甲肾上腺素4、治疗鼠疫的首选药物是A、氯霉素B、四环素C、罗红霉素D、链霉素E、头孢他啶5、氨基糖苷类抗生素的副作用不包括A、神经肌肉阻断作用B、过敏反应C、二重感染D、肾毒性E、耳毒性6、氨基糖苷类抗生素的消除途径是A、被单胺氧化酶代谢B、以原形经肾小球滤过排出C、以原形经肾小管分泌排出D、经肝药酶氧化E、与葡萄糖醛酸结合后排出7、氨基糖苷类抗生素的作用机制是A、干扰细菌的叶酸代谢B、作用于细菌核蛋白体50S亚基,干扰蛋白质的合成C、作用于细菌核蛋白体30S亚基,干扰蛋白质的合成D、干扰细菌DNA的合成E、抑制细菌细胞壁的合成8、氨基糖苷类抗生素的作用机制是A、阻碍细菌细胞壁的合成B、增加细胞膜的通透性C、阻碍细菌蛋白质的合成D、抑制RNA合成E、抑制叶酸合成9、氨基糖苷类抗生素对哪类细菌无效A、需氧革兰阴性菌B、耐甲氧西林金葡菌C、沙门菌属D、厌氧菌和肠球菌E、革兰阳性菌10、氨基糖苷类抗生素的作用机制是A、干扰细菌的叶酸代谢B、作用于细菌核蛋白体50S亚基,干扰蛋白质的合成C、作用于细菌核蛋白体30S亚基,干扰蛋白质的合成D、干扰细菌DNA的合成E、抑制细菌细胞壁的合成11、氨基糖苷类抗生素的消除途径是A、被单胺氧化酶代谢B、以原形经肾小球滤过排出C、以原形经肾小管分泌排出D、经肝药酶氧化E、与葡萄糖醛酸结合后排出12、氨基糖苷类抗生素的副作用不包括A、神经肌肉阻断作用B、过敏反应C、二重感染D、肾毒性E、耳毒性13、耳、肾毒性最低的药物是A、西索米星B、庆大霉素C、妥布霉素D、阿米卡星E、奈替米星14、引起耳蜗神经损伤发生率最高氨基糖苷类药物的是A、卡那霉素B、链霉素C、阿米卡星D、妥布霉素E、西索米星15、下列哪类药物属于快速杀菌药A、氨基糖苷类B、红霉素C、氯霉素类D、多黏菌素 BE、四环素类16、下列不属于阿米卡星的特点是A、抗菌谱广B、血浆蛋白结合率低C、不易透过血脑屏障D、不能与β-内酰胺类药物合用E、对多数常见的革兰阴性菌有效二、B1、A.链霉素B.阿米卡星C.庆大霉素D.妥布霉素E.卡那霉素、治疗革兰阴性杆菌感染如败血症的首选药物是、氨基糖苷类抗生素中抗菌谱最广的是、治疗兔热病(土拉菌病)的首选药物是2、A.链霉素B.庆大霉素C.大观霉素D.卡那霉素E.阿米卡星、耳毒性最大的氨基糖苷类药物、临床常用于治疗结核病的药物是、首选用于沙雷菌属的氨基糖苷类药物的是3、A.庆大霉素 B.链霉素 C.奈替米星 D.妥布霉素 E.小诺米星、与其他抗结核病药联合应用的是、口服可用于肠道感染的药物是、对多种氨基糖苷类钝化酶稳定的药物是三、X1、常见肾毒性不良反应的药物有A、庆大霉素B、卡那霉素C、链霉素D、万古霉素E、新霉素2、关于庆大霉素的作用,正确的有A、口服用于肠道杀菌B、是治疗鼠疫的首选药C、对铜绿假单胞菌有效D、抗菌谱广,对革兰阴性菌和阳性菌均有杀灭作用E、治疗各种革兰阴性杆菌的主要药物3、易引起过敏性休克等变态反应的是A、罗红霉素B、青霉素C、庆大霉素D、阿米卡星E、链霉素4、氨基糖苷类抗生素的作用机制A、阻止70S核蛋白体解离B、附着于细菌体表面使细胞壁通透性增加,导致细菌死亡C、抑制70S始动复合物的形成D、选择性地与30S亚基结合E、阻止终止因子与核蛋白体A位结合,已合成肽链不能释放5、氨基糖苷类抗生素影响蛋白质合成的环节包括A、抑制核蛋白体的70S亚基始动复合物的形成B、与核蛋白体的30S亚基上的靶蛋白结合,导致无功能的蛋白质合成C、阻碍药物与细菌核蛋白体的50S亚基结合D、使细菌细胞膜缺损,细胞内重要物质外漏E、阻碍已合成肽链的释放6、符合庆大霉素的叙述是A、口服吸收少B、主要用于革兰阴性杆菌感染C、对铜绿假单胞菌无效D、在碱性环境中抗菌活性增强E、口服给药可用于肠道感染7、氨基糖苷类抗生素的作用机制A、阻止70S核蛋白体解离B、附着于细菌体表面使细胞壁通透性增加,导致细菌死亡C、抑制70S始动复合物的形成D、选择性地与30S亚基结合E、阻止终止因子与核蛋白体A位结合,已合成肽链不能释放8、氨基糖苷类抗生素的共性有A、由氨基环醇和氨基糖分子结合而成B、口服难吸收C、易进入细胞D、主要用于需氧革兰阴性杆菌感染E、主要消除途径为肝代谢答案部分一、A1、【正确答案】 E【答案解析】奈替米星的耳、肾毒性发生率在常用氨基糖苷类中最低,损伤程度也较轻。
第八章氨基糖苷类抗生素1、耳、肾毒性最低的药物是A、西索米星B、庆大霉素C、妥布霉素D、阿米卡星E、奈替米星2、氨基糖苷类药物的不良反应不含A、耳毒性B、肝毒性C、肾毒性D、神经肌肉阻断作用E、过敏反应3、抢救链霉素过敏性休克宜选用的药物是A、葡萄糖酸钙B、地高辛C、苯海拉明D、地塞米松E、去甲肾上腺素4、治疗鼠疫的首选药物是A、氯霉素B、四环素C、罗红霉素D、链霉素E、头孢他啶5、氨基糖苷类抗生素的副作用不包括A、神经肌肉阻断作用B、过敏反应C、二重感染D、肾毒性E、耳毒性6、氨基糖苷类抗生素的消除途径是A、被单胺氧化酶代谢B、以原形经肾小球滤过排出C、以原形经肾小管分泌排出D、经肝药酶氧化E、与葡萄糖醛酸结合后排出7、氨基糖苷类抗生素的作用机制是A、干扰细菌的叶酸代谢B、作用于细菌核蛋白体50S亚基,干扰蛋白质的合成C、作用于细菌核蛋白体30S亚基,干扰蛋白质的合成D、干扰细菌DNA的合成E、抑制细菌细胞壁的合成8、氨基糖苷类抗生素的作用机制是A、阻碍细菌细胞壁的合成B、增加细胞膜的通透性C、阻碍细菌蛋白质的合成D、抑制RNA合成E、抑制叶酸合成9、氨基糖苷类抗生素对哪类细菌无效A、需氧革兰阴性菌B、耐甲氧西林金葡菌C、沙门菌属D、厌氧菌和肠球菌E、革兰阳性菌10、氨基糖苷类抗生素的作用机制是A、干扰细菌的叶酸代谢B、作用于细菌核蛋白体50S亚基,干扰蛋白质的合成C、作用于细菌核蛋白体30S亚基,干扰蛋白质的合成D、干扰细菌DNA的合成E、抑制细菌细胞壁的合成11、氨基糖苷类抗生素的消除途径是A、被单胺氧化酶代谢B、以原形经肾小球滤过排出C、以原形经肾小管分泌排出D、经肝药酶氧化E、与葡萄糖醛酸结合后排出12、氨基糖苷类抗生素的副作用不包括A、神经肌肉阻断作用B、过敏反应C、二重感染D、肾毒性E、耳毒性13、耳、肾毒性最低的药物是A、西索米星B、庆大霉素C、妥布霉素D、阿米卡星E、奈替米星14、引起耳蜗神经损伤发生率最高氨基糖苷类药物的是A、卡那霉素B、链霉素C、阿米卡星D、妥布霉素E、西索米星15、下列哪类药物属于快速杀菌药A、氨基糖苷类B、红霉素C、氯霉素类D、多黏菌素BE、四环素类16、下列不属于阿米卡星的特点是A、抗菌谱广B、血浆蛋白结合率低C、不易透过血脑屏障D、不能与伊内酰胺类药物合用E、对多数常见的革兰阴性菌有效二、B1、A.链霉素B.阿米卡星C.庆大霉素D.妥布霉素E.卡那霉素<1>、治疗革兰阴性杆菌感染如败血症的首选药物是<2>、氨基糖苷类抗生素中抗菌谱最广的是<3>、治疗兔热病(土拉菌病)的首选药物是2、A.链霉素B.庆大霉素C.大观霉素D.卡那霉素E.阿米卡星<1>、耳毒性最大的氨基糖苷类药物<2>、临床常用于治疗结核病的药物是<3>、首选用于沙雷菌属的氨基糖苷类药物的是3、A.庆大霉素B.链霉素C.奈替米星D.妥布霉素E.小诺米星<1>、与其他抗结核病药联合应用的是<2>、口服可用于肠道感染的药物是<3>、对多种氨基糖苷类钝化酶稳定的药物是三、X1、常见肾毒性不良反应的药物有A、庆大霉素B、卡那霉素C、链霉素D、万古霉素E、新霉素2、关于庆大霉素的作用,正确的有A、口服用于肠道杀菌B、是治疗鼠疫的首选药C、对铜绿假单胞菌有效D、抗菌谱广,对革兰阴性菌和阳性菌均有杀灭作用E、治疗各种革兰阴性杆菌的主要药物3、易引起过敏性休克等变态反应的是A、罗红霉素B、青霉素C、庆大霉素D、阿米卡星E、链霉素4、氨基糖苷类抗生素的作用机制A、阻止70S核蛋白体解离B、附着于细菌体表面使细胞壁通透性增加,导致细菌死亡C、抑制70S始动复合物的形成D、选择性地与30S亚基结合E、阻止终止因子与核蛋白体A位结合,已合成肽链不能释放5、氨基糖苷类抗生素影响蛋白质合成的环节包括A、抑制核蛋白体的70S亚基始动复合物的形成B、与核蛋白体的30S亚基上的靶蛋白结合,导致无功能的蛋白质合成C、阻碍药物与细菌核蛋白体的50S亚基结合D、使细菌细胞膜缺损,细胞内重要物质外漏E、阻碍已合成肽链的释放6、符合庆大霉素的叙述是A、口服吸收少B、主要用于革兰阴性杆菌感染C、对铜绿假单胞菌无效D、在碱性环境中抗菌活性增强E、口服给药可用于肠道感染7、氨基糖苷类抗生素的作用机制A、阻止70S核蛋白体解离B、附着于细菌体表面使细胞壁通透性增加,导致细菌死亡C、抑制70S始动复合物的形成D、选择性地与30S亚基结合E、阻止终止因子与核蛋白体A位结合,已合成肽链不能释放8、氨基糖苷类抗生素的共性有A、由氨基环醇和氨基糖分子结合而成B、口服难吸收C、易进入细胞D、主要用于需氧革兰阴性杆菌感染E、主要消除途径为肝代谢答案部分一、A1、【正确答案】E【答案解析】奈替米星的耳、肾毒性发生率在常用氨基糖苷类中最低,损伤程度也较轻。
第八章胆碱受体阻断药(Ⅰ)——M胆碱受体阻断药
M胆碱受体阻断药能阻碍乙酰胆碱(ACh)或胆碱受体激动药与平滑肌、心肌、腺体、外周神经节和中枢神经系统的M胆碱受体结合,而拮抗其拟胆碱作用,表现出胆碱能神经被阻断或抑制的效应,但通常对N胆碱受体兴奋作用影响较小。
第一节阿托品及其类似生物碱
本类药物包括阿托品、东莨碱和山莨若碱等。
天然存在的生物碱为不稳定的左旋莨若碱,在提取过程中可得到稳定的消旋莨若碱,即为阿托品。
东莨若碱为左旋体,其抗ACh作用较右旋体强许多倍。
【体内过程】
吸收:天然生物碱和大多数叔胺类M胆碱受体阻断药极易从肠道吸收,还可透过眼结膜。
阿托品为叔胺类生物碱,口服后由胃肠道迅速吸收,阿托品皮肤吸收差。
相反,季铵类M胆碱受体阻断药由于极性高、脂溶性低,肠道吸收差,口服吸收率仅为10%-30%。
分布:阿托品及其他叔胺类M胆碱受体阻断药吸收后可广泛分布于全身组织,口服30-60分钟后,中枢神经系统可达较高的药物浓度,尤其是东莨蓉碱,可迅速、大量地进入中枢神经系统,故其中枢作用强于其他药物。
而季铵类药物较难通过血脑屏障,中枢作用较弱。
排泄:50%-60%的阿托品以原形经尿排泄,其余可被水解,并与葡萄糖醛酸结合后从尿排出。
作用特点:阿托品用药后,其对副交感神经功能的拮抗作用可维持3~4小时,但对眼(虹膜和睫状肌)的作用可持续72小时或更久。
阿托品
【药理作用及机制】
阿托品为竞争性M胆碱受体阻断药,与M胆碱受体有较高亲和力,但内在活性小,一般不产生激动作用,却能阻断ACh或胆碱受体激动药与受体结合,拮抗其对M受体的激动效应。
阿托品对M受体有较高选择性,但对M受体各亚型的选择性较低。
大剂量阿托品对神经节的N受体也有阻断作用。
阿托品对外源性胆碱酯类的拮抗作用远强于其对节后胆碱能神经所释放的内源性ACh的拮抗作用,在神经效应器接头内高浓度的ACh可拮抗阿托品的作用。
1.腺体
阿托品能阻断腺体细胞膜上M胆碱受体,使腺体分泌减少。
对唾液腺(M3受体亚型)和汗腺的作用最为明显。
同时泪腺及呼吸道腺体分泌也明显减少
较大剂量也减少胃液分泌,因为胃酸的分泌尚受组胺、促胃液素等的影响,阿托品可同时抑制胃HCO3-的分泌,故对胃酸浓度影响较小。
2.眼
(1)扩瞳:阿托品能阻断瞳孔括约肌上的M受体,致瞳孔括约肌松弛,使肾上腺素能神经支配的瞳孔开大肌功能占优势,瞳孔扩大。
(2)眼压升高:由于瞳孔扩大,虹膜退向四周边缘,使前房角间隙变窄,阻碍房水回流进入巩膜静脉窦,造成眼压升高。
故青光眼患者禁用。
(3)调节麻痹:阿托品能阻断睫状肌的M受体,使睫状肌松弛退向外缘,悬韧带拉紧致晶状体呈扁平状态,屈光度降低,不能将近物清晰地成像于视网膜上,而造成视近物模糊不清,
视远物清晰。
3.平滑肌
阿托品对胆碱能神经支配的多种内脏平滑肌有松弛作用,尤其对过度活动或痉挛性收缩的内脏平滑肌作用更为明显。
可抑制胃肠道平滑肌痉挛,降低蠕动的幅度和频率,缓解胃肠绞痛。
阿托品对胆管、支气管和子宫平滑肌的解痉作用较弱。
4.心血管系统
(1)心脏
治疗量阿托品(0.5mg)可使部分患者心率短暂性轻度减慢,但这并不伴随血压与心输出量的变化。
阿托品减慢心率作用是由于其阻断副交感神经节后纤维突触前膜M1受体,减弱ACh 释放的负反馈抑制作用所致。
较大剂量的阿托品(1-2mg)可阻断窦房结M2受体,解除迷走神经对心脏的抑制作用,使心率加快。
心率加快的程度取决于迷走神经张力,在迷走神经张力较高的青壮年,心率加快明显。
阿托品对运动状态、婴幼儿和老年人的心率影响较小。
阿托品可拮抗迷走神经过度兴奋所致的房室传导阻滞,也可缩短房室结的有效不应期,增加心房纤颤或心房扑动患者的心室率。
(2)血管
治疗量阿托品对血管与血压无明显影响,但阿托品可完全拮抗由胆碱酯类药物所引起的外周血管扩张和血压下降。
大剂量阿托品可引起皮肤血管扩张,出现皮肤潮红和温热等症状。
当机体组织器官的微循环小血管痉挛时,大剂量的阿托品也有明显解痉作用。
扩血管作用机制不明,可能是机体对阿托品引起的体温升高(由于出汗减少)后的代偿性散热反应,也可能是阿托品的直接扩血管作用。
5.中枢神经系统
治疗量阿托品对中枢神经系统影响不明显。
较大剂量(1-2mg)可兴奋延髓和大脑,产生轻度的迷走神经兴奋作用,5mg时中枢兴奋明显增强,患者表现为焦躁不安、精神亢奋甚至澹妄、呼吸兴奋等。
中毒剂量(10mg以上)可见明显中枢中毒症状,如烦躁、幻觉、定向障碍、共济失调、抽搐或惊厥等。
继续增加剂量,则可由兴奋转为抑制,发生昏迷与呼吸麻痹,最后死于循环与呼吸衰竭。
【临床应用】
1.解除平滑肌痉挛
2.抑制腺体分泌
3.眼科应用
(1)虹膜睫状体炎
(2)验光、眼底检测
4.缓慢性心律失常
5.抗休克
6.解除有机磷酸酯类中毒(见第7章)
【不良反应】
1.不良反应
常见不良反应有口干、视物模糊、心率加快、瞳孔扩大及皮肤潮红等。
随着剂量增大,不良反应逐渐加重,甚至出现明显的中枢中毒症状。
阿托品的最低致死量成人为80-130mg,儿童约为10mg。
阿托品引起的一般不良反应于停药后可逐渐消失,无须特殊处理。
2.中毒解救
阿托品中毒的解救主要为对症治疗。
如属口服中毒,应立即洗胃、导泻,以促进毒物排出,并可用毒扁豆碱(成人1-4mg、儿童0.5mg)缓慢静脉注射,可迅速对抗阿托品中毒症状。
但由于毒扁豆碱体内代谢迅速,患者可在1-2小时内再度昏迷,故需反复给药。
如患者有明显中枢兴奋时,可用地西泮对抗,但剂量不宜过大,以免与阿托品导致的中枢抑制作用产生协同作用。
不可使用吩噻嗪类药物,因这类药物具有M受体阻断作用而加重阿托品中毒症状。
应对患者进行人工呼吸、敷以冰袋及乙醇擦浴以降低患者的体温,这对儿童中毒者更为重要。
【禁忌证】
青光眼及前列腺肥大者禁用阿托品,可能加重后者排尿困难。
二、东莨菪碱
东莨若碱外周作用与阿托品相似,仅在作用强度上略有差异。
抑制腺体分泌作用较阿托品强,扩瞳及调节麻痹作用较阿托品稍弱,对心血管系统作用较弱,对中枢神经系统的作用较强,持续时间更久。
东莨若碱主要用于麻醉前给药,不仅能抑制腺体分泌,还有中枢抑制作用,因此优于阿托品。
东莨若碱亦可用于治疗晕动病。
也可用于妊娠呕吐及放射病呕吐。
东莨若碱对帕金森病也有一定疗效。
可改善患者的流涎、震颤和肌肉强直等症状。
不良反应和禁忌证与阿托品相似。
三、山莨蓉碱
药理作用与阿托品类似,解除血管平滑肌痉挛和微循环障碍的作用较强,解除平滑肌痉挛作用与阿托品相似。
抑制唾液腺分泌和扩瞳作用较弱。
因不易通过血脑屏障,故中枢作用很弱。
临床主要用于治疗中毒性休克、内脏平滑肌绞痛、眩晕症和血管神经性头痛等。
不良反应和禁忌证与阿托品相似,但其毒性较低。
第二节阿托品的合成代用品
一、合成扩瞳药
二、合成解痉药
三、选择性M受体阻断药。