七年级下册浙教版数学平行线在旋转中的问题(一)
- 格式:docx
- 大小:10.68 KB
- 文档页数:2
浙教版数学七年级下册1.4《平行线的性质》教学设计1一. 教材分析《平行线的性质》是浙教版数学七年级下册1.4节的内容,主要包括平行线的传递性质、同位角、内错角和同旁内角的概念及它们之间的关系。
本节内容是学生学习几何的基础知识,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析七年级的学生已经掌握了平行线的概念,但对平行线的性质和角度关系还不够了解。
学生的空间想象力有所不同,逻辑思维能力也各有差异。
因此,在教学过程中,需要关注学生的个体差异,引导学生通过观察、操作、思考、交流和总结,逐步掌握平行线的性质。
三. 教学目标1.知识与技能:使学生掌握平行线的传递性质,理解同位角、内错角和同旁内角的概念及它们之间的关系。
2.过程与方法:培养学生观察、操作、思考、交流和总结的能力,提高空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。
四. 教学重难点1.教学重点:平行线的传递性质,同位角、内错角和同旁内角的概念及它们之间的关系。
2.教学难点:平行线性质的灵活运用,角度关系的推导和证明。
五. 教学方法1.情境教学法:通过生活实例和几何图形,引导学生发现平行线的性质,激发学生的学习兴趣。
2.动手操作法:让学生通过折纸、拼图等动手操作活动,观察和体验平行线的性质,培养学生的空间想象能力。
3.合作交流法:鼓励学生分组讨论,共同探讨平行线的性质,提高学生的团队协作能力。
4.引导发现法:教师引导学生发现问题,引导学生通过思考和总结,得出平行线的性质,培养学生的逻辑思维能力。
六. 教学准备1.教学素材:准备相关的图片、图形和实例,制作PPT。
2.教学工具:准备黑板、粉笔、直尺、圆规等。
3.学生活动材料:准备折纸、拼图等动手操作材料。
七. 教学过程1.导入(5分钟)通过展示生活中常见的平行线现象,如楼梯、铁路等,引导学生回顾平行线的概念,激发学生的学习兴趣。
浙教版数学七年级下册1.3《平行线的判定》教学设计1一. 教材分析《平行线的判定》是浙教版数学七年级下册第1.3节的内容。
本节主要让学生掌握同位角相等、内错角相等、同旁内角互补这三个平行线的判定方法,并通过实际例题让学生学会运用这些方法解决实际问题。
教材通过简单的图形和实例,引导学生探究平行线的判定方法,培养学生的观察、思考和解决问题的能力。
二. 学情分析七年级的学生已经掌握了基本的图形知识,具有一定的观察和思考能力。
但学生在解决实际问题时,还缺乏一定的逻辑推理能力和证明意识。
因此,在教学过程中,教师需要注重启发学生的思考,引导学生学会用数学语言表达问题,并用逻辑推理的方式解决问题。
三. 教学目标1.了解并掌握同位角相等、内错角相等、同旁内角互补这三个平行线的判定方法。
2.学会运用平行线的判定方法解决实际问题。
3.培养学生的观察、思考和解决问题的能力。
4.培养学生运用数学语言表达问题和用逻辑推理解决问题的意识。
四. 教学重难点1.教学重点:掌握同位角相等、内错角相等、同旁内角互补这三个平行线的判定方法。
2.教学难点:如何引导学生理解并运用这些判定方法解决实际问题。
五. 教学方法1.启发式教学:通过提问、引导学生思考,激发学生的学习兴趣和主动性。
2.实例分析:通过具体的实例,让学生直观地理解平行线的判定方法。
3.小组讨论:让学生分组讨论,培养学生的合作意识和解决问题的能力。
4.归纳总结:引导学生自己总结平行线的判定方法,培养学生的归纳能力。
六. 教学准备1.准备相关的图形和实例,用于讲解和练习。
2.准备课件,用于辅助教学。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,激发学生的学习兴趣。
2.呈现(10分钟)展示相关的图形和实例,引导学生观察和思考,引导学生总结出同位角相等、内错角相等、同旁内角互补这三个平行线的判定方法。
3.操练(10分钟)让学生分组讨论,每组给出一个实例,运用所学的判定方法进行判断。
浙教版七年级下册数学《旋转变换》导学案PPT课件教案课堂教学实录浙教版七年级下册数学《旋转变换》导学案PPT课件教案课堂教学实录第2.4节旋转变换安大军一、背景介绍图形的变换主要有两种方式:平移和旋转。
本教材是在平移转换的基础上学习旋转变换,进一步引导学生用运动的眼光看待生活中的图形,并通过揭示图形的变化规律和内在联系,促进学生观察、分析、归纳、探究能力的提高,既能培养学生积极的情感和态度,又能增强他们学数学、用数学的信心。
二、教学设计〔教学内容分析〕本节通过生动的实例,让学生感受生活中的旋转现象,直观地认识旋转变换,并在此基础上,分析旋转现象的规律,得到旋转变换的性质,然后利用性质进行简单的旋转作图,进一步深化对图形变换的理解和认识,体会旋转变换的应用价值和丰富内涵。
〔教学目标〕1、经历对生活中旋转现象的观察、分析、欣赏,认识图形的旋转变换。
2、探索图形旋转变换的要素和性质,能按要求做出简单图形经过旋转变换后的像。
3、培养学生良好的情感态度和审美情趣,提高观察、分析、抽象、表述等各方面的能力。
〔教学重点〕图形旋转变换的性质〔教学难点〕旋转变换的作图及旋转过程的叙述〔教学准备〕放影片三角板〔教学过程〕教学过程设计意图一、创设情景,引出新课1、放影:杭州未来世界的转盘;运动会上自行车比赛中的车轮;转动的风扇;钟表的指针……(1)你看到了哪些现象?(2)在各自的转动过程中,哪些改变了?哪些保持不变?2、投影:节前图(1)风车的叶片由A至B的运动与静止的自行车踏脚板的轴由C至D的运动有什么共同的特点?(2)你是从哪些方面考虑的?引导学生从运动物体各部分旋转的方向和角度考虑。
二、交流对话,探究新知1、旋转变换的概念试一试:你能用语言描述一下图形的旋转变化吗?在描述的基础上,老师补充、归纳出旋转的概念,并强调旋转变换的三要素:中心、方向、角度。
想一想:你能举出生活中旋转变换的例子吗?做一做:(1)回答教科书53页的两个问题学生的回答可能不太准确,教师明确:描述一个旋转变换,必须抓住旋转中心、旋转方向(顺时针或逆时针)、旋转角度三个关键。
专题1.1 平行线(知识解读)【学习目标】1.进一步认识平行线的概念;2.能用符号表示两条直线互相平行;3.会用三角尺和直尺过直线外一点画这条直线的平行线;4.了解过直线外一点有且仅有一条直线与这条直线平行【知识点梳理】知识点1:平行线的定义及画法1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.注意:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.2.平行线的画法:用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.②靠:用直尺紧靠三角板一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.④画:沿着这条斜边画一条直线,所画直线与已知直线平行.【典例分析】【考点1:平行线定义】【典例1】(2023春•和平区校级月考)下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a.A.4B.3C.2D.1【变式1】(2023春•长沙期中)在同一平面内,不重合的两条直线的位置关系是.【典例2】(2023春•东平县期末)在同一平面内,直线a、b、c中,若a⊥b,b ∥c,则a、c的位置关系是.【变式2-1】(2023•惠阳区校级开学)经过直线外一点,有且只有直线与这条直线平行.【变式2-2】(2023春•大荔县期末)如图,已知OM∥a,ON∥a,所以点O、M、N三点共线的理由.【典例3】(2023春•嘉定区期末)(1)补全下面的图形,使之成为长方体ABCD ﹣EFGH的直观图,并标出顶点的字母;(2)图中与棱AB平行的棱有;(3)图中棱CG和面ABFE的位置关系是.【变式3-1】(2023春•沙河市期末)观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.1【变式3-2】(2023春•松江区校级期末)如图,在长方体ABCD﹣EFGH中,与棱FG异面并且与棱FB平行的棱有.【变式3-3】(2023秋•内乡县期末)如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?专题1.1 平行线(知识解读)【学习目标】1.进一步认识平行线的概念;2.能用符号表示两条直线互相平行;3.会用三角尺和直尺过直线外一点画这条直线的平行线;4.了解过直线外一点有且仅有一条直线与这条直线平行【知识点梳理】知识点1:平行线的定义及画法1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.注意:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.2.平行线的画法:用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.②靠:用直尺紧靠三角板一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.④画:沿着这条斜边画一条直线,所画直线与已知直线平行.【典例分析】【考点:平行线定义】【典例1】(2023春•和平区校级月考)下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a.A.4B.3C.2D.1答案:D【解答】解:①任意两条直线的位置关系不是相交就是平行,说法错误,应为根据同一平面内,任意两条直线的位置关系不是相交就是平行;②过一点有且只有一条直线和已知直线平行,说法错误,应为过直线外一点有且只有一条直线和已知直线平行;③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b,说法错误;④若直线a∥b,b∥c,则c∥a,说法正确;故选:D.【变式1】(2023春•长沙期中)在同一平面内,不重合的两条直线的位置关系是.答案:相交和平行【解答】解:在同一平面内,不重合的两条直线的位置关系是平行和相交,故答案为:平行和相交.【典例2】(2023春•东平县期末)在同一平面内,直线a、b、c中,若a⊥b,b ∥c,则a、c的位置关系是.答案:c⊥a【解答】解:∵c∥b,a⊥b,∴c⊥a.故答案为c⊥a【变式2-1】(2023•惠阳区校级开学)经过直线外一点,有且只有直线与这条直线平行.答案:一条【解答】解:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:一条.【变式2-2】(2023春•大荔县期末)如图,已知OM∥a,ON∥a,所以点O、M、N三点共线的理由.答案:经过直线外一点,有且只有一条直线与这条直线平行【解答】解:已知OM∥a,ON∥a,所以点O、M、N三点共线的理由:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:经过直线外一点,有且只有一条直线与这条直线平行.【典例3】(2023春•嘉定区期末)(1)补全下面的图形,使之成为长方体ABCD ﹣EFGH的直观图,并标出顶点的字母;(2)图中与棱AB平行的棱有;(3)图中棱CG和面ABFE的位置关系是.答案:(1)CD、EF、GH;(2)平行【解答】解:(1)如图即为补全的图形;(2)图中与棱AB平行的棱有CD、EF、GH;故答案为:CD、EF、GH;(3)图中棱CG和面ABFE的位置关系是:平行.故答案为:平行.【变式3-1】(2023春•沙河市期末)观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.1答案:B【解答】解:图中与AB平行的棱有:EF、CD、GH.共有3条.故选:B.【变式3-2】(2023春•松江区校级期末)如图,在长方体ABCD﹣EFGH中,与棱FG异面并且与棱FB平行的棱有.答案:HD和AE【解答】解:根据题意得,与棱FG异面并与FB平行的棱有HD和AE.故答案为:HD和AE.【变式3-3】(2023秋•内乡县期末)如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?【解答】解:(1)(2)如图所示,(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.。
专题02 平行线的性质与平移【考点剖析】1、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.2. 平移平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.①图形的平移的两要素:平移的方向与平移的距离.②图形的平移不改变图形的形状与大小,只改变图形的位置.平移的性质:(1)平移后,对应线段平行且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行且相等;(4)平移后,新图形与原图形是一对全等图形.平移的作图:(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.【典例】例1.已知:如图,点C在∠MON的一边OM上,过点C的直线AB∥ON,CD平分∠ACM,CE⊥CD.(1)若∠O=50°,求∠BCD的度数;(2)求证:CE平分∠OCA;(3)当∠O为多少度时,CA分∠OCD成1:2两部分,并说明理由.【答案】见解析【解析】解:(1)∵AB∥ON,∴∠O=∠MCB(两直线平行,同位角相等)∵∠O=50°,∴∠MCB=50°,∵∠ACM+∠MCB=180°(平角定义),∴∠ACM=180°﹣50°=130°,又∵CD平分∠ACM,∴∠DCM=65°(角平分线定义),∴∠BCD=∠DCM+∠MCB=65°+50°=115°(2)证明:∵CE⊥CD,∴∠DCE=90°,∴∠ACE+∠DCA=90°又∵∠MCO=180°(平角定义)∴∠ECO+∠DCM=90°,∵∠DCA=∠DCM,∴∠ACE=∠ECO(等角的余角相等)即CE平分∠OCA,(3)结论:当∠O=36°或90°时,CA分∠OCD成1:2两部分①当∠O=36°时∵AB∥ON∴∠ACO=∠O=36°∴∠ACM=144°又∵CD平分∠ACM∴∠ACD=72°∴∠ACO∠ACD即CA分∠OCD成1:2两部分.②当∠O=90°时∵AB∥ON∴∠ACO=∠O=90°∴∠ACM=90°又∵CD平分∠ACM∴∠ACD=45°∴∠ACD∠ACO即CA分∠OCD成1:2两部分.【点睛】本题主要考查了角的计算,平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.例2.探究:如图①,AB∥CD,点E在直线AB与CD之间,连接AE、CE,试说明∠BAE+∠DCE=∠AEC,下面给出了这道题的解题过程,请完成下面的解题过程,并填空(理由或数学式).解:如图①,过点E作EF∥AB,∴∠BAE=∠1(________________________).∵AB∥CD(________)∴CD∥EF.∴∠2=∠DCE;∴∠BAE+∠DCE=∠1+∠2.∴∠BAE+∠DCE=∠AEC.拓展:当点E在如图②的位置时,其他条件不变,试探索∠AEC、∠BAE、∠DCE之间的关系,并说明理由;应用:点E、F、G在直线AB与CD之间,连接AE、EF、FG和CG,其他条件不变,如图③,若∠EFG =40°,则∠BAE+∠AEF+∠FGC+∠DCG=__________度.【答案】见解析【解析】探究:证明:如图1中,如图①,过点E作EF∥AB,∴∠BAE=∠1(两直线平行内错角相等).∵AB∥CD(已知)∴CD∥EF.∴∠2=∠DCE;∴∠BAE+∠DCE=∠1+∠2.∴∠BAE+∠DCE=∠AEC.拓展:解:如图2中,结论:∠BAE+∠AEC+∠ECD=360°.理由:作EH∥AB.∵AB∥CD,AB∥EH,∴EH∥CD,∴∠BAE+∠AEH=180°,∠HEC+∠ECD=180°,∴∠BAE+∠AEH+∠HEC+∠ECD=360°,∴∠BAE+∠AEC+∠ECD=360°.应用:解:如图3中,作FH∥AB.∵AB∥CD,FH∥AB,∴FH∥CD,由拓展可知:∠BAE+∠AEF+∠EFH=360°①∠HFG+∠FGC+∠GCD=360°②,①+②得到,∠BAE+∠AEF+∠FGC+∠GCD=720°﹣(∠EFH+∠HFG),∴∠EFH+∠HFG=360°﹣∠EFG=320°,∴∠BAE+∠AEF+∠FGC+∠GCD=720°﹣320°=400°,故答案分别为:两直线平行内错角相等,已知,400.【点睛】本题考查平行线的判定和性质、解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.例3.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系______________________;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】见解析【解析】解:(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.例4.如图所示,直角三角形ABO的周长为100,在其内部的n个小直角三角形周长之和为_______.【答案】100【解析】解:由平移的性质可得,n个小直角三角形较长的直角边平移后等于AO边,较短的直角边平移后等于BO边,斜边之和等于AB边长,∴n个小直角三角形的周长之和=Rt△AOB的周长,∵直角三角形AOB的周长为100,∴这n个小直角三角形的周长之和=100.故答案为:100.【点睛】本题主要考查了平移和矩形的性质,正确理解小直角三角形的周长等于直角△ABC的周长是解题的关键.【巩固练习】1.如图,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路,宽均为1米,其它部分均种植花草.试求出种植花草的面积是多少?【答案】见解析【解析】解:根据题意,小路的面积相当于横向与纵向的两条小路,种植花草的面积=(50﹣1)(30﹣1)=1421m2.故答案为:1421m2.2.如图,已知:AB∥CD,E在直线AB上,且EF⊥EG,EF交直线CD于点M.EG交直线CD于点N.(1)若∠1=34°,求∠2的度数;(2)若∠2=2∠1,直接写出图中等于4∠1的角.【答案】见解析【解析】解:(1)∵AB∥CD,∴∠1=∠GEB=34°,∵EF⊥EG,∴∠2=180°﹣90°﹣34°=56°;(2)∵∠2=2∠1,∠1=∠GEB,∴∠2=2∠GEB,又∵∠2+∠GEB=90°,∴∠GEB=30°=∠1,∴4∠1=120°,∠2=60°,∴∠FMN=∠CME=∠MEB=120°,即图中等于4∠1的角为∠FMN,∠CME,∠MEB.3.如图,AB∥CD,∠CDE=119°,点E、G在AB上,GF交∠DEB的平分线EF于点F,∠AGF=130°,求∠F的度数.【答案】见解析【解析】解:∵AB∥CD,∠CDE=119°,∴∠AED=180°﹣119°=61°,∠DEB=119°.∵GF交∠DEB的平分线EF于点F,∴∠DEF119°°,∴∠GEF=61°°°.∵∠AGF=130°,∴∠F=∠AGF﹣∠GEF=130°﹣°°.4.如图,已知DC∥FP,∠1=∠2,∠FED=30°,∠AGF=80°,FH平分∠EFG.(1)说明:DC∥AB;(2)求∠PFH的度数.【答案】见解析【解析】解:(1)∵DC∥FP,∴∠3=∠2,又∵∠1=∠2,∴∠3=∠1,∴DC∥AB;(2)∵DC∥FP,DC∥AB,∠DEF=30°,∴∠DEF=∠EFP=30°,AB∥FP,又∵∠AGF=80°,∴∠AGF=∠GFP=80°,∴∠GFE=∠GFP+∠EFP=80°+30°=110°,又∵FH平分∠EFG,∴∠GFH∠GFE=55°,∴∠PFH=∠GFP﹣∠GFH=80°﹣55°=25°.5.已知:下列各图中都有AB∥CD,分别探究图(1)图(2)图(3)中∠D,∠E,∠B之间的数量关系,并填在相应的横线上.(1)图1中∠D,∠E,∠B之间的关系是______________________________.(2)图2中∠D,∠E,∠B之间的关系是____________________.(3)图3中∠D,∠E,∠B之间的关系是____________________.(4)请你从(1)(2)(3)中选择一个进行证明.【答案】见解析【解析】解:(1)图1中∠D,∠E,∠B之间的关系是∠D+∠E+∠B=360°;(2)图2中∠D,∠E,∠B之间的关系是∠D+∠B=∠E;(3)图3中∠D,∠E,∠B之间的关系是∠D﹣∠B=∠E;(4)选(1)进行证明:如图,过E作EF∥AB,则AB∥CD∥EF,∴∠D+∠DEF=180°,∠B+∠BEF=180°,∴∠D+∠DEB+∠B=360°;选(2)进行证明:如图,过E作EF∥AB,则AB∥CD∥EF,∴∠D=∠DEF,∠B=∠BEF,∴∠D+∠B=∠DEF+∠BEF=∠DEB;选(3)进行证明:如图,过E作EF∥AB,则AB∥CD∥EF,∴∠D=∠DEF,∠B=∠BEF,∴∠D﹣∠B=∠DEF﹣∠BEF=∠DEB.6.已知:AB∥DE.(1)如图1,点C是夹在AB和DE之间的一点,当AC⊥CD时,垂足为点C,你知道∠A+∠D是多少吗?这一题的解决方法有很多,例如(i)过点C作AB的平行线;(ii)过点C作DE的平行线;(iii)联结AD;(iv)延长AC、DE相交于一点.请你选择一种方法(可以不选上述四种),并说明理由.(2)如图2,点C1、C2是夹在AB和DE之间的两点,请想一想:∠A+∠C1+∠C2+∠D=__________度,并说明理由.(3)如图3,随着AB与CD之间点增加,那么∠A+∠C1+∠C2+……+∠C n+1+∠D=____________________度.(不必说明理由)【答案】见解析【解析】解:(1)如图1,过点C作AB的平行线CF,∵AB∥DE,∴CF∥DE,∴∠A+∠ACF=180°,∠DCF+∠D=180°,∴∠A+∠ACD+∠D=180°×2=360°,又∵AC⊥CD,∴∠A+∠D=360°﹣90°=270°;(2)如图2,过C1作C1F∥AB,过C2作C2G∥DE,∵AB∥DE,∴C1F∥AB∥C2G∥DE,∴∠A+∠AC1F=180°,∠FC1C2+∠C1C2G=180°,∠GC2D+∠D=180°,∴∠A+∠AC1C2+∠C1C2D+∠D=180°×3=540°,故答案为:540;(3)如图3,∠A+∠C1+∠C2+……+∠C n+1+∠D=180°×(n+2),故答案为:180(n+2).7.已知直线l1∥l2,直线l3与l1、l2分别交于C、D两点,点P是直线l3上的一动点,如图①,若动点P 在线段CD之间运动(不与C、D两点重合),问在点P的运动过程中是否始终具有∠3+∠1=∠2这一相等关系?试说明理由;如图②,当动点P在线段CD之外且在CD的上方运动(不与C、D两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由.【答案】见解析【解析】解:(1)∠3+∠1=∠2成立,理由如下:如图①,过点P作PE∥l1,∴∠1=∠AEP,∵l1∥l2,∴PE∥l2,∴∠3=∠BPE,∵∠BPE+∠APE=∠2,∴∠3+∠1=∠2;(2)∠3+∠1=∠2不成立,新的结论为∠3﹣∠1=∠2,理由为:如图②,过P作PE∥l1,∴∠1=∠APE,∵l1∥l2,∴PE∥l2,∴∠3=∠BPE,∵∠BPE﹣∠APE=∠2,∴∠3﹣∠1=∠2.。
浙教版七年级下册数学第一章平行线含答案一、单选题(共15题,共计45分)1、如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再把△A1B1C1绕点C1顺时针旋转90°得到△A2B2C1,则点A的对应点A2的坐标是()A.(5,2)B.(1,0)C.(3,﹣1)D.(5,﹣2)2、如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠B=∠DCE;④AD∥BC且∠B=∠D.其中,能推出AB∥DC的是()A.①④B.②③C.①③D.①③④3、如图,CM,ON被AO所截,那么()A.∠1和∠3是同位角B.∠2和∠4是同位角C.∠ACD和∠AOB是内错角D.∠1和∠4是同旁内角4、如图,∠1=∠2,∠3=35°,则∠4等于()A.120°B.130°C.145°D.150°5、如图所示,点在的延长线上,下列条件中能判断的是()A. B. C. D.6、如图,下列能判定AB∥CD的条件的个数是()⑴∠B+∠BCD=180°;⑵∠1=∠2;⑶∠3=∠4;⑷∠B=∠5.A.1个B.2个C.3个D.4个7、如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为A.10°B.20°C.25°D.30°8、如图所示,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2h后到达位于灯塔P的北偏东40°的N处,则N 处与灯塔P的距离为( )A.40海里B.60海里C.70海里D.80海里9、如图,中,, 的平分线相交于,过点且与平行.的周长为,的周长为,则的长为().A. B. C. D.10、如图,将周长为18的△ABC沿BC方向平移2个单位得△DEF,则四边形ABFD的周长为()A.22B.24C.26D.2811、如图,已知a//b,∠1=50°,则∠2=()A.40°B.50°C.120°D.130°12、如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是( )A.4B.3C.2D.113、将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.75°B.60°C.45°D.30°14、下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个15、如图,直线a∥b,∠1=125°,则∠2的度数为()A.75°B.65°C.55°D.45°二、填空题(共10题,共计30分)16、已知∠A与∠B的两边分别平行,如果∠A=55°,那么∠B=________度17、如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:解:∵AD∥BC(已知),∴∠1=∠3(________).∵∠1=∠2(已知),∴∠2=∠3.∴BE∥________(________).∴∠3+∠4=180°(________).18、如图所示,直线,若,,则________ .19、如图,CD平分∠ACB,交AB于点D,DE∥BC,交AC于点E,EF平分∠AED,交AB于点F,连接CF,下列四个结论:①∠CDE=∠DCE;② CD∥EF;③∠CDE=∠CFE;④ S△ACF =S△ADE,其中正确的结论有________20、抛物线y=-2x2向左平移1个单位,再向上平移7个单位得到的抛物线的解析式是________.21、如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF.如果AB=8cm,BE=4cm,DH=3cm,则图中阴影部分面积为________ cm2.22、如图,AB是⊙O的直径,C是⊙O上的一点,OD⊥BC于点D,AC=6,则OD 的长为________.23、如图,点D是△ABC的边BA延长线上一点,AE∥BC。
依米书院个性化辅导教案基本信息学生姓名年级七年级下册科目数学课时2h 形式教师上课时间辅导课题平移与平行线教学目标知识目标:1、掌握平行线的性质及其判定方法2、平移的概念及其应用教学重点重点:平行线的性质及其判定方法难点:平行线的判定和与应用课前检查学生作业完成情况:优□良□中□差□建议_________________________________教学内容知识图谱一:平行线的判定知识精讲一.平行线的公理及推论1.平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线与直线互相平行,记作.2.平行公理:过直线外一点,有且只有一条直线与已知直线平行.3.平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.二.平行线的判定两条直线被第三条直线所截:1.如果同位角相等,那么两直线平行;2.如果内错角相等,那么两直线平行;3.如果同旁内角互补,那么两直线平行.三点剖析一.考点:平行公理及其推论,平行线的判定二.重难点:平行线的判定.三.易错点:1.不相交的两条直线互相平行一定要注意是在同一平面内,否则结论就不一定成立;平行公理及其推论却不需要限定在同一平面内.2.判定是由“数量关系”确定图形的“位置关系”,因此能否找到两直线平行的条件,关键是能否正确找到或识别出同位角、内错角、同旁内角.题模精讲题模一平行公理及推论例1.1.1、三条直线a、b、c,若a∥c,b∥c,则a与b的位置关系是()A、a⊥bB、a∥bC、a⊥b或a∥bD、无法确定例1.1.2、下列说法正确的有()①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.A、1个B、2个C、3个D、4个例1.1.3、如图,如果CD∥AB,CE∥AB,那么C,D,E三点是否共线?你能说明理由吗?题模二平行线的判定例1.2.1、如图,能判定EC∥AB的条件是()A、∠B=∠ACEB、∠A=∠ECDC、∠B=∠ACBD、∠A=∠ACE例1.2.2、一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度____.A、先向左转130°,再向左转50°B、先向左转50°,再向右转50°C、先向左转50°,再向右转40°D、先向左转50°,再向左转40°例1.2.3、按图填空.已知:如图, ∠1=∠2, ∠3=∠E.求证:AD∥BE.证明:∵∠1 = ∠2 (已知),∴_____∥_____(内错角相等,两直线平行).∴∠E = ∠_____(_____).又∵∠E = ∠3 ( 已知 ),∴∠3 = ∠_____(等量代换).∴AD∥BE(_____).例1.2.4、如图,点E在直线AB与CD之间,若,,,则AB与CD平行吗?请说明理由.随堂练习随练1.1、过一点画已知直线的平行线,则()A、有且只有一条B、有两条C、不存在D、不存在或只有一条随练1.2、如图,下列条件中能判定直线l1∥l2的是()A、∠1=∠2B、∠1=∠5C、∠1+∠3=180°D、∠3=∠5随练1.3、如图,已知,证明:AB∥CD.随练1.4、已知: 如图, ∠C = ∠1, ∠2和∠D互余, BE⊥FD于G.求证:AB∥CD.二:平行线的性质知识精讲一.平行线的性质1.两直线平行,同位角相等;2.两直线平行,内错角相等;3.两直线平行,同旁内角互补.两条平行线之间的距离:在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两平行线之间的距离.三点剖析一.考点:平行线的性质,角度的计算与证明.二.重难点:常见的几种两条直线平行的结论1.两条平行线被第三条直线所截,一组同位角的角平分线平行;2.两条平行线被第三条直线所截,一组内错角的角平分线平行;3.两条平行线被第三条直线所截,一组同旁内角的角平分线垂直.三.易错点:1.性质是由图形的“位置关系”决定“数量关系”;2.两条平行线之间的距离其实可看成点到直线的距离.题模精讲题模一平行线的性质例2.1.1、如图,直线a,b被直线c所截,且a∥b,若∠1=55°,则∠2等于()A、35°B、45°C、55°D、125°例2.1.2、如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A、32°B、58°C、68°D、60°例2.1.3、如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论错误的是()A、∠EMB=∠ENDB、∠BMN=∠MNCC、∠CNH=∠BPGD、∠DNG=∠AME题模二角的计算与证明例2.2.1、如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A、40°B、35°C、50°D、45°例2.2.2、如图,AB∥CD,()A、180°B、360°C、540°D、720°例2.2.3、如图,已知AB∥DE,BF,EF分别平分∠ABC与∠CED,若,求的度数.例2.2.4、已知AB∥CD,分别探讨下列四个图形中∠APC和∠PAB、∠PCD的关系,并说明理由.随堂练习随练2.1、如图,直线AB∥CD,AF交CD于点E,∠CEF=140°,则∠A等于()A、35°B、40°C、45°D、50°随练2.2、如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于()A、120°B、110°C、100°D、80°随练2.3、珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=____度.随练2.4、如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=35°24′,则∠2的度数为____°____′.随练2.5、如图,若AB∥CD,求证:.随练2.6、如图,已知,MN分别和直线、交于点A、B,ME分别和直线、交于点C、D,点P 在MN上(P点与A、B、M三点不重合).(1)如果点P在A、B两点之间运动时,、、之间有何数量关系请说明理由;(2)如果点P在A、B两点外侧运动时,、、有何数量关系(只须写出结论).三:平移知识精讲一.平移的概念平移,是指在平面内,将一个图形上的所有点都按照某个方向做相同距离的直线移动,这样的图形运动叫做图形的平移运动,简称平移.二.平移的性质1.经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,图形的形状与大小都没有发生变化.2.经过平移后,对应点所连的线段平行(或在同一直线上)且相等.三.平移的作图1.找出原图形的关键点(如顶点或者端点).2.按要求分别描出各个关键点平移后的对应点.3.按原图将各对应点顺次连接.三点剖析一.考点:平移的性质,平移作图.二.重难点:平移的性质.三.易错点:1.平移不改变图形的形状和大小和方向,平移可以不是水平的;2.有可能平行有可能在同一直线上.题模精讲题模一平移的性质例3.1.1、在平移过程中,对应线段__________.例3.1.2、下列图形可以由一个图形经过平移变换得到的是()A、B、C、D、例3.1.3、如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C 平移的距离CC′= .例3.1.4、如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为____.A、4,30°B、2,60°C、1,30°D、3,60°题模二平移作图例3.2.1、如图,在6×6方格中有两个涂有阴影的图形M、N,①中的图形M平移后位置如②所示,以下对图形M的平移方法叙述正确的是()A、向右平移2个单位,向下平移3个单位B、向右平移1个单位,向下平移3个单位C、向右平移1个单位,向下平移4个单位D、向右平移2个单位,向下平移4个单位例3.2.2、电灯向__________平移__________.例3.2.3、如图,经过平移,△ABC的顶点A移到了点D,作出平移后的三角形.随堂练习随练3.1、平移改变的是图像的()A、形状B、位置C、大小D、形状、大小及位置.随练3.2、下列四组图形中,有一组中的两个图像经过平移其中一个能得到另外一个,这组图像是()A、B、C、D、随练3.3、如图所示,△DEF是△ABC沿水平方向向右平移后的对应图形,若∠B=31°,∠C=79°,则∠D的度数是____度.随练3.4、图中图形向__________平移__________格.随练3.5、如图,画出猫向后平移8格后的图像.课后作业作业1、直线l同侧有A,B,C三点,若过A,B的直线和过B,C的直线都与l平行,则A,B,C 三点________,理论根据是___________________________.作业2、如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A、∠3=∠4B、∠D=∠DCEC、∠1=∠2D、∠D+∠ACD=180°作业3、如图,已知,,,,求证:AB∥CD.作业4、如图所示,已知,,,求证:DE//BF作业5、如图,点A、D在射线AE上,直线AB∥CD,,那么∠A的度数为()A、140°B、60°C、50°D、40°作业6、如图,已知AB∥CD,,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.作业7、如图,,,,平分,(1)求证:;(2)探究和之间的数量关系,并证明你的结论.作业8、如图,CB∥OA,,E、F在CB上,且满足,OE平分∠BOF.(1)求∠EOC的度数;(2)若平行移动AC,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(3)在平行移动AC的过程中,是否存在某种情况,使?若存在,求出度数;若不存在,说明理由.作业9、如图,直线a,b被直线c所截,,,若,则等于()A、B、C、D、作业10、如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=114°,则∠3的度数为()A、26°B、34°C、44°D、36°作业11、如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为____°.作业12、是由平移得到的,点A的对应点是__________; AB的对应线段是__________;的对应角是__________;平移的方向是__________.作业13、如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A、6B、8C、10D、12作业14、如图,△ABC中,BC=5cm,将△ABC沿BC方向平移至△A′B′C′的对应位置时,A′B′恰好经过AC的中点O,则△ABC平移的距离为cm.作业15、雨伞向__________平移__________格.作业16、在点子图上画出向右平移5点后的图形.。
七年级下册浙教版数学平行线在旋转中的问题
七年级下册浙教版数学平行线在旋转中
问题一:什么是平行线在旋转中?
•平行线在旋转中是指当一个平行线围绕某个点进行旋转时,旋转后的线与原线仍然保持平行关系。
•七年级下册浙教版数学课本中的平行线在旋转中是指介绍了平行线在旋转中的性质和定理。
问题二:平行线在旋转中有哪些性质?
•平行线在旋转中的性质包括:旋转角度相同,旋转角度是360度的整数倍,旋转后线段长度和原线段长度相等,旋转后垂直等角的角度关系等。
•这些性质可以通过几何推理和证明得到。
问题三:平行线在旋转中的定理有哪些?
•平行线在旋转中的定理有:旋转中的平行线仍然是平行线定理,平行线在旋转中的角度关系定理等。
•七年级下册浙教版数学课本中介绍了这些定理,并给出了相应的证明过程。
问题四:平行线在旋转中的应用有哪些?
•平行线在旋转中的应用包括:解决几何问题,画出旋转后的平行线图形等。
•这些应用可以帮助学生更好地理解和应用平行线在旋转中的性质和定理。
问题五:如何练习平行线在旋转中的相关题目?
•学生可以通过做课本中的习题来练习平行线在旋转中的相关题目。
•也可以寻找一些相关的练习题目进行练习,例如在线数学练习网站上的题目或者参考其他相关数学习题集。
以上是关于七年级下册浙教版数学平行线在旋转中的相关问题的
列举和解释说明,希望对学生的学习有所帮助。
七年级下册形的旋转与平移题初中数学七年级下册形的旋转与平移题形的旋转与平移是初中数学七年级下册的重要内容之一,通过学习可以帮助学生理解形的平移和旋转操作,培养他们的几何直观和空间想象能力。
本文将结合具体例题,详细介绍形的旋转与平移的概念、性质以及解题方法。
一、形的旋转在几何学中,旋转是指将图形围绕某一点旋转一定角度,得到新的图形。
旋转可以是顺时针方向或逆时针方向,旋转的角度可以是任意角度。
具体来说,图形的每一个顶点都会围绕旋转点旋转。
旋转有以下几个重要性质:1. 旋转不改变图形的大小和形状。
2. 旋转保持图形的对称性。
例如,一个正方形绕着中心旋转90°后,仍然是一个正方形。
3. 旋转保持图形上点的相对位置关系。
例如,三角形的三边长度不变,旋转后的图形仍然是个三角形。
下面通过一个具体例题来理解形的旋转。
例题:将三角形ABC按照顺时针方向绕点O旋转90°,得到新的图形A'B'C'。
已知A(-1, 2),B(1, 2),C(0, -1),O(0, 0)。
求旋转后的图形的坐标。
解题思路:首先,我们需要计算出旋转后的每个顶点的坐标。
根据旋转公式,对于顺时针旋转90°,我们可以得到旋转后的坐标:x' = -yy' = x带入题中的坐标,可以得到旋转后的顶点坐标:A'(-2, -1)B'(-2, 1)C'(1, 0)通过计算,得到旋转后的图形A'B'C'的坐标。
二、形的平移形的平移是指将图形沿着平行于原来位置的方向上移动一定距离,得到新的图形。
平移可以是水平或垂直方向,平移的距离可以是任意值。
平移有以下几个重要性质:1. 平移不改变图形的大小和形状。
2. 平移保持图形的对称性。
例如,一个正方形平移后,仍然是一个正方形。
3. 平移保持图形上点的相对位置关系。
例如,三角形的三边长度不变,平移后的图形仍然是个三角形。
七年级下册浙教版数学平行线在旋转中的问题(一)
七年级下册浙教版数学平行线在旋转中的问题
背景简介
•简要介绍七年级下册浙教版数学教材中有关平行线在旋转中的问题的内容和目标。
相关问题与解释
1.什么是平行线?
–解释平行线的定义和性质,帮助读者理解平行线的概念。
2.旋转是什么?
–介绍旋转的定义和基本原理,让读者了解旋转的基本概念。
3.为什么在旋转中平行线还是平行线?
–解释旋转对平行线的影响,说明平行线在旋转中保持平行的原因。
4.在旋转中,平行线的性质是否改变?
–探讨平行线在旋转过程中是否保持其它性质不变,如长度、角度等。
5.如何判断旋转后的直线是否平行?
–提供判断旋转后直线平行的方法和步骤,帮助读者正确应用知识。
6.旋转中是否存在平行线的特殊情况?
–探究旋转中平行线的特殊情况,如旋转中的重合线、垂直线等。
7.如何绘制旋转中的平行线?
–提供绘制旋转中的平行线的步骤和技巧,帮助读者实践。
8.旋转中平行线的实际应用有哪些?
–提供一些实际案例,说明旋转中平行线的重要性和应用场景。
9.平行线在旋转中的问题的解法有哪些?
–总结解决平行线在旋转中问题的常用方法,供读者参考。
结论与总结
•简要总结关于七年级下册浙教版数学平行线在旋转中的问题的要点和知识点。
以上是关于七年级下册浙教版数学平行线在旋转中的问题的相关问题和解释,希望能帮助读者更好地理解和掌握这一知识点。