2015高考数学(人教版)一轮复习专项强化训练6(含答案解析)
- 格式:doc
- 大小:737.50 KB
- 文档页数:9
第六章 章末检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.(2013·茂名月考)已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是 ( ) A .15 B .30 C .31 D .642.各项均不为零的等差数列{a n }中,若a 2n -a n -1-a n +1=0 (n ∈N *,n ≥2),则S 2 010等( ) A .0 B .2 C .2 009 D .4 0203.已知数列{a n }的前n 项和S n =n 2-4n +2,则|a 1|+|a 2|+…+|a 10|等于 ( ) A .66 B .65 C .61 D .56 4.(2013·南阳模拟)等比数列{a n }中,T n 表示前n 项的积,若T 5=1,则 ( ) A .a 1=1 B .a 3=1 C .a 4=1 D .a 5=15.(2013·东北师大附中高三月考)由a 1=1,a n +1=a n3a n +1给出的数列{a n }的第34项( )A.34103 B .100 C.1100 D.1104 6.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 等于 ( ) A .9 B .8 C .7 D .67.已知数列{a n }的通项公式是a n =2n-12n ,其前n 项和S n =32164,则项数n 等于 ( )A .13B .10C .9D .6 8.(2013·福建)设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于 ( )A .6B .7C .8D .99.在如图的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x +y +z 的值为 ( )A .1B .2C .3D .410.(2013·衡水月考)某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=12n (n +1)(2n +1)吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是 ( )A .5年B .6年C .7年D .8年 11.在△ABC 中,tan A ,tan B ,tan C 依次成等差数列,则B 的取值范围是 ( )A.⎝⎛⎦⎤0,π3∪⎝⎛⎦⎤π2,2π3B.⎝⎛⎦⎤0,π6∪⎝⎛⎦⎤π2,5π6C.⎣⎡⎭⎫π6,π2D.⎣⎡⎭⎫π3,π2 12.(2013·安徽)设{a n }是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是 ( )A .X +Z =2YB .Y (Y -X )=Z (Z -X )213.数列{a n }的通项公式a n =1n +n +1,若{a n }的前n 项和为24,则n =________.14.(2013·海口调研)在等差数列{a n }中,已知log 2(a 5+a 9)=3,则等差数列{a n }的前13项的和S 13=________.15.将数列{3n -1}按“第n 组有n 个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第100组中的第一个数是________.16.(2013·哈师大附中高三月考)已知S n 是等差数列{a n } (n ∈N *)的前n 项和,且S 6>S 7>S 5,有下列四个命题:①d <0;②S 11>0;③S 12<0;④数列{S n }中的最大项为S 11.其中正确的命题是________.(将所有正确的命题序号填在横线上) 三、解答题(本大题共6小题,共70分) 17.(10分)(2013·德州模拟)设等差数列{a n }的前n 项和为S n ,且a 4-a 2=8,S 10=190. (1)求数列{a n }的通项公式a n ; (2)设p ,q ∈N *,试判断a p ·a q 是否仍为数列{a n }中的项并说明理由.18.(12分)在等差数列{a n }中,若a 3+a 8+a 13=12,a 3a 8a 13=28,求数列{a n }的通项公式.19.(12分)(2013·武汉月考)已知数列{a n }的前n 项和为S n ,且向量a =(n ,S n ),b =(4,n +3)共线.(1)求证:数列{a n }是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫1na n 的前n 项和T n .20.(12分)(2013·唐山月考)已知f (x )=log a x (a >0且a ≠1),设f (a 1),f (a 2),…,f (a n ) (n ∈N *)是首项为4,公差为2的等差数列.(1)设a 为常数,求证:{a n }成等比数列;(2)若b n =a n f (a n ),{b n }的前n 项和是S n ,当a =2时,求S n .21.(12分)(2013·周口月考)已知数列{a n }的前三项与数列{b n }的前三项相同,且a 1+2a 2+22a 3+…+2n -1a n =8n 对任意n ∈N *都成立,数列{b n +1-b n }是等差数列.(1)求数列{a n }与{b n }的通项公式;(2)是否存在k ∈N *,使得(b k -a k )∈(0,1)?请说明理由.22.(12分)为了治理“沙尘暴”,西部某地区政府经过多年努力,到2013年底,将当地沙漠绿化了40%,从2013年开始,每年将出现这种现象:原有沙漠面积的12%被绿化,即改造为绿洲(被绿化的部分叫绿洲),同时原有绿洲面积的8%又被侵蚀为沙漠,问至少经过几年的绿化,才能使该地区的绿洲面积超过50%?(可参考数据lg 2=0.3,最后结果精确到整数)答案 1.A [由{a n }是等差数列知a 7+a 9=2a 8=16,∴a 8=8.又a 4=1,∴a 12=2a 8-a 4=15.]2.D [a 2n =a n -1+a n +1=2a n ,a n ≠0,∴a n =2. ∴S n =2n ,S 2 010=2×2 010=4 020.] 3.A [当n =1时,a 1=S 1=-1; 当n ≥2时,a n =S n -S n -1=n 2-4n +2-[(n -1)2-4(n -1)+2]=2n -5, ∴a 2=-1,a 3=1,a 4=3,…,a 10=15, ∴|a 1|+|a 2|+…+|a 10|=1+1+8(1+15)2=2+64=66.]4.B [因为{a n }是等比数列,所以a 1·a 5=a 2·a 4=a 23,代入已知式T 5=1,得a 53=1,所以a 3=1.]5.C [由a n +1=a n 3a n +1知,1a n +1=1a n+3,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,公差为3的等差数列. ∴1a n=1+(n -1)×3=3n -2. ∴a n =13n -2,a 34=13×34-2=1100.]6.B [∵S n =n 2-9n ,∴n ≥2时,a n =S n -S n -1=2n -10, a 1=S 1=-8适合上式, ∴a n =2n -10 (n ∈N *),∴5<2k -10<8,得7.5<k <9.∴k =8.]7.D [∵a n =1-12n ,∴S n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-14+⎝⎛⎭⎫1-18+…+⎝⎛⎭⎫1-12n =n -⎝⎛⎭⎫12+14+18+…+12n =n -12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=n -1+12n .∵S n =32164,∴n -1+12n =32164=5+164.∴n =6.]8.A [设该数列的公差为d , 则由a 4+a 6=-6得2a 5=-6, ∴a 5=-3.又∵a 1=-11, ∴-3=-11+4d ,∴d =2,∴S n =-11n +n (n -1)2×2=n 2-12n =(n -6)2-36,故当n =6时S n 取最小值.]9.B [由表格知,第三列为首项为4,第二项为2的等比数列,∴x =1.根据每行成等差数列得第四列前两个数字分别为5,52,故该数列所成等比数列的公比为12,∴y =5×⎝⎛⎭⎫123=58,同理z =6×⎝⎛⎭⎫124=38.故x +y +z =2.] 10.C [由题意知第一年产量为a 1=12×1×2×3=3;以后各年产量分别为a n =f (n )-f (n-1)=12n (n +1)·(2n +1)-12n (n -1)(2n -1)=3n 2 (n ∈N *),令3n 2≤150,∴1≤n ≤52,∴1≤n ≤7.故生产期限最大为7年.]11.D [由已知得2tan B =tan A +tan C >0(显然tan B ≠0,若tan B <0,因为tan A >0且tan C >0,tan A +tan C >0,这与tan B <0矛盾),又tan B =-tan(A +C )=-tan A +tan C1-tan A tan C=-2tan B1-tan A tan C≠0,所以tan A tan C =3.又∵tan A +tan C ≥2tan A tan C =23, ∴tan B ≥3,∵B ∈(0,π)∴B 的取值范围是⎣⎡⎭⎫π3,π2.]12.D [由题意知S n =X ,S 2n =Y ,S 3n =Z . 又∵{a n }是等比数列,∴S n ,S 2n -S n ,S 3n -S 2n 为等比数列, 即X ,Y -X ,Z -Y 为等比数列, ∴(Y -X )2=X ·(Z -Y ),即Y 2-2XY +X 2=ZX -XY , ∴Y 2-XY =ZX -X 2, 即Y (Y -X )=X (Z -X ).] 13.624解析 a n =1n +n +1=n +1-n .∴(2-1)+(3-2)+…+(n +1-n )=24, ∴n +1=25,∴n =624. 14.52解析 ∵log 2(a 5+a 9)=3,∴a 5+a 9=23=8.∴S 13=13×(a 1+a 13)2=13×(a 5+a 9)2=13×82=52.15.34 950解析 由“第n 组有n 个数”的规则分组中,各组数的个数构成一个以1为首项,1为公差的等差数列,前99组数的个数共有(1+99)×992=4 950个,故第100组中的第1个数是34 950.16.①②解析 由S 6>S 7得a 7<0, 由S 6>S 5得a 6>0, 由S 7>S 5得a 6+a 7>0.因为d =a 7-a 6,∴d <0;S 11=a 1+a 2+…+a 11=(a 1+a 11)+(a 2+a 10)+…+a 6=11a 6>0,S 12=a 1+a 2+…+a 12=(a 1+a 12)+(a 2+a 11)+…+(a 6+a 7)=6(a 6+a 7)>0;∵a 6>0,a 7<0,∴{S n }中S 6最大. 故正确的命题为①②.17.解 (1)设数列{a n }的首项为a 1,公差为d ,则⎩⎪⎨⎪⎧2d =810a 1+10×92d =190,………………………………………………………………(4分) 解得a 1=1,d =4,∴a n =4n -3.………………………………………………………(6分) (2)a p a q =(4p -3)(4q -3)=16pq -12(p +q )+9 =4[4pq -3(p +q )+3]-3,∵4pq -3(p +q )+3∈N *,………………………………………………………………(8分) ∴a p ·a q 为数列{a n }中的项.……………………………………………………………(10分) 18.解 ∵a 3+a 13=2a 8,a 3+a 8+a 13=12, ∴a 8=4,…………………………………………………………………………………(2分)则由已知得⎩⎪⎨⎪⎧a 3+a 13=8,a 3a 13=7,解得⎩⎪⎨⎪⎧a 3=1,a 13=7,或⎩⎪⎨⎪⎧a 3=7,a 13=1.…………………………………………………………(7分)由a 3=1,a 13=7,可知d =a 13-a 313-3=7-110=35.故a n =a 3+(n -3)·35=35n -45;……………………………………………………………(9分)由a 3=7,a 13=1,可知d =a 13-a 313-3=1-710=-35.故a n =a 3+(n -3)·⎝⎛⎭⎫-35 =-35n +445.……………………………………………………………………………(11分)综上可得,a n =35n -45,或a n =-35n +445.……………………………………………(12分)19.(1)证明 ∵a =(n ,S n ),b =(4,n +3)共线,∴n (n +3)-4S n =0,∴S n =n (n +3)4.……………………………………………………(3分)∴a 1=S 1=1,当n ≥2时,a n =S n -S n -1=n +12,……………………………………………………(5分)又a 1=1满足此式,∴a n =n +12.………………………………………………………(6分)∴a n +1-a n =12为常数,∴数列{a n }为首项为1,公差为12的等差数列.………………………………………(7分)(2)解 ∵1na n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,…………………………………………………(9分) ∴T n =1a 1+12a 2+…+1na n.=2⎝⎛⎭⎫1-12+2⎝⎛⎭⎫12-13+…+2⎝⎛⎭⎫1n -1n +1=2n n +1.……………………………………(12分)20.(1)证明 f (a n )=4+(n -1)×2=2n +2,…………………………………………(2分)即log a a n =2n +2,可得a n =a 2n +2.∴a na n -1=a 2n +2a 2(n -1)+2=a 2n +2a 2n =a 2 (n ≥2)为定值.………………………………………………………………………(4分)∴{a n }为以a 2为公比的等比数列.……………………………………………………(5分)(2)解 b n =a n f (a n )=a 2n +2log a a 2n +2=(2n +2)a 2n +2.…………………………………………………………………………(7分)当a =2时,b n =(2n +2)(2)2n +2=(n +1)2n +2.S n =2·23+3·24+4·25+…+(n +1)·2n +2,①2S n =2·24+3·25+4·26+…+n ·2n +2+(n +1)·2n +3,② ①-②,得-S n =2·23+24+25+…+2n +2-(n +1)·2n +3 …………………………………………(9分)=16+24(1-2n -1)1-2-(n +1)·2n +3=16+2n +3-24-n ·2n +3-2n +3=-n ·2n +3.∴S n =n ·2n +3.……………………………………………………………………………(12分)21.解 (1)已知得a 1+2a 2+22a 3+…+2n -1a n =8n (n ∈N *),①当n ≥2时,a 1+2a 2+22a 3+…+2n -2a n -1=8(n -1).②由①-②,得2n -1a n =8.∴a n =24-n .……………………………………………………(3分)在①中,令n =1,得a 1=8=24-1,∴a n =24-n (n ∈N *).由题意知b 1=8,b 2=4,b 3=2, ∴b 2-b 1=-4,b 3-b 2=-2,∴数列{b n +1-b n }的公差为-2-(-4)=2.∴b n +1-b n =-4+(n -1)×2=2n -6.…………………………………………………(5分) ∴b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =8+(-4)+(-2)+…+(2n -8)=n 2-7n +14(n ∈N *).…………………………………………………………………(7分)(2)∵b k -a k =k 2-7k +14-24-k ,设f (k )=k 2-7k +14-24-k ,当k ≥4时,f (k )=(k -72)2+74-24-k ,单调递增,且f (4)=1.∴k ≥4时,f (k )=k 2-7k +4-24-k ≥1.…………………………………………………(10分) 又f (1)=f (2)=f (3)=0,…………………………………………………………………(11分)∴不存在k ∈N *,使得(b k -a k )∈(0,1).………………………………………………(12分)22.解 设该地区总面积为1,2013年底绿化面积为a 1=25,经过n 年后绿洲面积为a n +1,设2013年底沙漠面积为b 1,经过n 年后沙漠面积为b n +1,则a 1+b 1=1,a n +b n =1.…(3分)依题意a n +1由两部分组成:一部分是原有绿洲a n 减去被侵蚀的部分8%·a n 的剩余面积92%·a n ,另一部分是新绿化的12%·b n ,∴a n +1=92%·a n +12%(1-a n ) =45a n +325,………………………………………………………………………………(6分) 即a n +1-35=45(a n -35).∴{a n -35}是以-15为首项,45为公比的等比数列,则a n +1=35-15·(45)n.………………………………………………………………………(9分)∵a n +1>50%,∴35-15·(45)n >12.∴(45)n <12,n >451log 2=lg 21-3lg 2≈3.……………………………………………………(11分) 则当n ≥4时,不等式(45)n <12恒成立.∴至少需要4年才能使绿化面积超过50%.…………………………………………(12分)。
【走向高考】2015届高考数学一轮总复习 6-1数列的概念课后强化作业 新人教A 版基础巩固强化一、选择题1.给定数列1,2+3+4,5+6+7+8+9,10+11+12+13+14+15+16,…,则这个数列的一个通项公式是( )A .a n =2n 2+3n -1B .a n =n 2+5n -5C .a n =2n 3-3n 2+3n -1D .a n =2n 3-n 2+n -2 [答案] C[解析] 当n =1时,a 1=1,否定A 、D.当n =3时,a 3=35,否定B ,故选C. 2.数列{a n }的前n 项和S n =n 2+2n +1,则{a n }的通项公式为( ) A .a n =2n -1B .a n =2n +1C .a n =⎩⎪⎨⎪⎧ 4 n =1,2n -1 n ≥2.D .a n =⎩⎪⎨⎪⎧4 n =1,2n +1 n ≥2.[答案] D[解析] a 1=S 1=4,n ≥2时,a n =S n -S n -1=2n +1,∴a n =⎩⎪⎨⎪⎧4 n =1,2n +1 n ≥2.3.(文)(2013·北京海淀区期末)若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9 [答案] B[解析] ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n -1)×(-3)=22-3n .设{a n }的前k 项和数值最大,则有⎩⎪⎨⎪⎧a k ≥0,a k +1<0,∴⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)<0,∴193≤k <223,∵k ∈N *,∴k =7.∴满足条件的n 的值为7.(理)若数列{a n }的前n 项和S n =n 2-10n (n ∈N *),则数列{na n }中数值最小的项是( ) A .第2项 B .第3项 C .第4项 D .第5项[答案] B[解析] n ≥2时,a n =S n -S n -1=(n 2-10n )-[(n -1)2-10(n -1)]=2n -11, 令b n =na n ,则b n =n (2n -11)=2(n -114)2-1218,∵n ∈N *,∴n =3时,b n 取最小值.4.(文)(2012·西安模拟)在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N +),则a 3a 5的值是( )A.1516B.158C.34D.38[答案] C[解析] ∵a n a n -1=a n -1+(-1)n , ∴a 2a 1=a 1+1, a 3a 2=a 2-1, a 4a 3=a 3+1, a 5a 4=a 4-1,∵a 1=1,∴a 2=2,a 3=12,a 4=3,a 5=23,∴a 3a 5=34. (理)(2013·德州模拟)已知数列{a n }中,a 1=45,a n +1=⎩⎨⎧2a n ,0≤a n ≤12,2a n-1,12<a n≤1,则a 2012等于( )A.45B.35C.25D.15 [答案] C[解析] ∵a n +1=⎩⎨⎧2a n ,0≤a n ≤12,2a n-1,12<a n≤1,又a 1=45,∴a 2=2×45-1=35,a 3=2×35-1=15,a 4=2×15=25,a 5=2×25=45,∴数列{a n }以4为周期,∵20124=503,∴a 2012=a 4=25. 5.(文)(2012·佛山质检)数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( )A .5 B.72 C.92 D.132[答案] B[解析] ∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2,n 为偶数.∴S 21=11×(-32)+10×2=72.(理)(2013·池州一模)数列{a n }的通项公式a n =2n ·sin(n π2-π3)+3n cos n π2,前n 项和为S n ,则S 2013=( )A .1007B .-1007C .2013D .-2013 [答案] B[解析] a n =2n sin(n π2-π3)+3n cos n π2=n sin n π2.由函数y =sin π2x 的周期是4,且a 1=1,a 2=2×0=0,a 3=3×(-1)=-3,a 4=4×0=0,归纳可知数列{a n }从第一项开始依次每相邻四项之和是一个常数-2,即a i +a i +1+a i +2+a i +3=-2(i =4k +1,k ∈N ),所以S 2013=2013-14×(-2)+2013=-1007,故选A.6.(文)已知x 与函数f (x )的对应关系如下表所示,数列{a n }满足:a 1=3,a n +1=f (a n ),则a 2014=( )A.3 B .2 [答案] A[解析] ∵a 1=3,∴a 2=f (a 1)=f (3)=1,∴a 3=f (a 2)=f (1)=2,a 4=f (a 3)=f (2)=3,∴数列{a n }为周期数列,周期T =3,∴a 2014=a 1=3,故选A.(理)若数列{a n }满足a 1=2,a 2=3,a n =a n -1a n -2(n ≥3且n ∈N *),则a 2014等于( )A .3B .2 C.12 D.23[答案] C[解析] a 1=2,a 2=3,a 3=a 2a 1=32,a 4=a 3a 2=12,依次可得a 5=13,a 6=23,a 7=2,a 8=3,a 9=32…,可见{a n }是周期为6的周期数列.∴a 2014=a 4=12,故选C.[点评] 数列是函数,故可用研究函数的方法加以讨论,由a n =a n -1a n -2(n ≥3,n ∈N *)知,a n+1=a n a n -1=a n -1a n -2a n -1=1a n -2,∴a n +3=1a n (n ∈N *),∴a n +6=a n ,故{a n }周期为6. 二、填空题7.(文)设数列{a n }的前n 项和为S n ,且a n =sin n π2,则S 2014=________.[答案] 1[解析] 依题意得,数列{a n }是以4为周期的周期数列,且a 1=1,a 2=0,a 3=-1,a 4=0,a 1+a 2+a 3+a 4=0,注意到2014=4×503+2,因此S 2014=0×503+a 1+a 2=1.(理)(2012·湖北文,17)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n }.可以推测:b 2012是数列{a n }中的第________项.[答案] 5030[解析] 由前四组可以推知a n =n (n +1)2,b 1=a 4=10,b 2=a 5=15,b 3=a 9=45,b 4=a 10=55,依次可知,当n =4,5,9,10,14,15,19,20,24,25,…时,a n 能被5整除,由此可得,b 2k =a 5k (k ∈N *),∴b 2012=a 5×1006=a 5030.8.(文)已知数列{a n }中,a 1=12,a n +1=1-1a n (n ≥2),则a 2014=________.[答案] 12[解析] 由题可知a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,∴此数列是以3为周期的周期数列,∴a 2014=a 1=12.(理)在数列{a n }中,若a 1=1,a n +1=2a n +3(n ∈N *),则数列{a n }的通项a n =________. [答案] 2n +1-3[解析] 依题意得,a n +1+3=2(a n +3),a 1+3=4,因此数列{a n +3}是以4为首项,2为公比的等比数列,于是有a n +3=4×2n -1=2n +1,则a n =2n +1-3.9.已知数列2008,2009,1,-2008,-2009,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2014项之和S 2014等于________.[答案] 2010[解析] 由题意a n +1+a n -1=a n (n ≥2),a n +a n +2=a n +1,两式相加得a n +2=-a n -1, ∴a n +3=-a n ,∴a n +6=a n , 即{a n }是以6为周期的数列.∵2014=335×6+4,a 1+a 2+a 3+a 4+a 5+a 6=0,∴a 1+a 2+…+a 2014=335×0+a 2011+a 2012+a 2013+a 2014=a 1+a 2+a 3+a 4=2010. 三、解答题10.(文)(2013·江西)正项数列{a n }满足:a 2n -(2n -1)a n -2n =0.(1)求数列{a n }的通项公式a n ;(2)令b n =1(n +1)a n,求数列{b n }的前n 项和T n .[解析] (1)由a 2n -(2n -1)a n -2n =0,得(a n -2n )(a n +1)=0. 由于{a n }是正项数列,所以a n =2n .(2)a n =2n ,b n =1(n +1)a n ,则b n =12n (n +1)=12(1n -1n +1).T n =12(1-12+12-13+…+1n -1-1n +1n -1n +1)=12(1-1n +1)=n2(n +1).(理)(2013·广州调研)各项都为正数的数列{a n },满足a 1=1,a 2n +1-a 2n =2.(1)求数列{a n }的通项公式; (2)求数列{a 2n2n }的前n 项和S n .[解析] (1)因为a 2n +1-a 2n =2,a 21=1,所以数列{a 2n }是首项为1,公差为2的等差数列. 所以a 2n =1+(n -1)×2=2n -1, 因为a n >0,所以a n =2n -1(n ∈N *). (2)由(1)知,a n =2n -1,所以a 2n 2n =2n -12n ,于是S n =12+322+523+…+2n -32n -1+2n -12n ,①12S n =122+323+524+…+2n -32n +2n -12n +1,② ①-②得,12S n =12+222+223+224+…+22n -2n -12n +1=12+2(122+123+124+…+12n )-2n -12n +1 =12+2×14×(1-12n -1)1-12-2n -12n +1 =32-2n +32n +1, 所以S n =3-2n +32n .能力拓展提升一、选择题11.下图是用同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第n 个图案中需用黑色瓷砖的块数为(用含n 的代数式表示)()A .4nB .4n +1C .4n -3D .4n +8[答案] D[解析] 第(1),(2),(3)个图案黑色瓷砖数依次为3×5-3=12;4×6-2×4=16;5×7-3×5=20,代入选项验证可得答案为D.12.(文)(2012·东城模拟)已知数列{a n }的通项公式为a n =log 3nn +1(n ∈N *),设其前n 项和为S n ,则使S n <-4成立的最小自然数n 等于( )A .83B .82C .81D .80[答案] C [解析] ∵a n =log 3nn +1=log 3n -log 3(n +1), ∵S n =log 31-log 32+log 32-log 33+…+log 3n -log 3(n +1)=-log 3(n +1)<-4,解得n >34-1=80.(理)设数列{a n }满足a 1+2a 2=3,且对任意的n ∈N *,点列{P n (n ,a n )}恒满足P n P n +1=(1,2),则数列{a n }的前n 项和S n 为( )A .n (n -43)B .n (n -34)C .n (n -23)D .n (n -12)[答案] A[解析] 设P n +1(n +1,a n +1),则P n P n +1=(1,a n +1-a n )=(1,2),即a n +1-a n =2,所以数列{a n }是以2为公差的等差数列.又a 1+2a 2=3,所以a 1=-13,所以S n =n (n -43),选A.13.(文)由1开始的奇数列,按下列方法分组:(1),(3,5),(7,9,11),…,第n 组有n 个数,则第n 组的首项为( )A .n 2-nB .n 2-n +1C .n 2+nD .n 2+n +1 [答案] B[解析] 前n -1组共有1+2+…+(n -1)=(n -1)(n -1+1)2=n (n -1)2个奇数,故第n 组的首项为2×n (n -1)2+1=n 2-n +1.[点评] 可直接验证,第2组的首项为3,将n =2代入可知A 、C 、D 都不对,故选B. (理)已知整数对按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),……则第2014个数对是( )A .(3,61)B .(3,60)C .(61,3)D .(61,2) [答案] C[解析] 根据题中规律知,(1,1)为第1项,(1,2)为第2项,(1,3)为第4项,…,整数对和为n +1的有n 项,由n (n +1)2≤2014得n ≤62,且n =63时,n (n +1)2=2016,故第2014个数对是和为64的倒数第3项,即(61,3).二、填空题14.(文)(2013·北京东城区综合练习)若数列{a n }满足1a n +1-1a n=d (n ∈N *,d 为常数),则称数列{a n }为调和数列.已知数列{1x n }为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=________.[答案] 20[解析] 由题意,若{a n }为调和数列,则{1a n }为等差数列,∵{1x n}为调和数列,∴数列{x n }为等差数列,由等差数列的性质可知,x 5+x 16=x 1+x 20=x 2+x 19=…=x 10+x 11=20010=20.(理)(2013·大连测试)数列{a n }满足:a 1+3a 2+5a 3+…+(2n -1)·a n =(n -1)·3n +1+3(n ∈N *),则数列{a n }的通项公式a n =________.[答案] 3n[解析] a 1+3a 2+5a 3+…+(2n -3)·a n -1+(2n -1)·a n =(n -1)·3n +1+3,把n 换成n -1得,a 1+3a 2+5a 3+…+(2n -3)·a n -1=(n -2)·3n +3,两式相减得a n =3n .15.(2013·江苏调研)对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项为2n ,则数列{a n }的前n 项和S n =________.[答案] 2n +1-2[解析] 由已知a n +1-a n =2n ,a 1=2得a 2-a 1=2,a 3-a 2=22,…,a n -a n -1=2n -1,由累加法得a n =2+2+22+…+2n -1=2n,从而S n =2(1-2n )1-2=2n +1-2.三、解答题16.(文)(2013·河北质检)已知数列{a n }的前n 项和为S n ,且S n =32a n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)在数列{b n }中,b 1=5,b n +1=b n +a n ,求数列{b n }的通项公式. [解析] (1)当n =1时,S 1=a 1=32a 1-1,所以a 1=2.∵S n =32a n -1,①∴当n ≥2时,S n -1=32a n -1-1,②①-②,得a n =(32a n -1)-(32a n -1-1),所以a n =3a n -1,又a 1≠0,故a n -1≠0, 所以a na n -1=3,故数列{a n }是首项为2,公比为3的等比数列, 所以a n =2·3n -1.(2)由(1)知b n +1=b n +2·3n -1.当n ≥2时,b n =b n -1+2·3n -2,…b 3=b 2+2·31, b 2=b 1+2·30,将以上n -1个式子相加并整理,得b n =b 1+2×(3n -2+…+31+30)=5+2×1-3n -11-3=3n -1+4.当n =1时,31-1+4=5=b 1,所以b n =3n -1+4(n ∈N *).(理)已知数列{a n }的前n 项和为S n ,a 1=1,且3a n +1+2S n =3(n 为正整数). (1)求出数列{a n }的通项公式;(2)若对任意正整数n ,k ≤S n 恒成立,求实数k 的最大值. [解析] (1)∵3a n +1+2S n =3,① ∴当n ≥2时,3a n +2S n -1=3,② 由①-②得,3a n +1-3a n +2a n =0. ∴a n +1a n =13(n ≥2). 又∵a 1=1,3a 2+2a 1=3,解得a 2=13.∴数列{a n }是首项为1,公比q =13的等比数列.∴a n =a 1q n -1=⎝⎛⎭⎫13n -1(n 为正整数). (2)由(1)知,∴S n =32⎣⎡⎦⎤1-⎝⎛⎭⎫13n , 由题意可知,对于任意的正整数n ,恒有 k ≤32⎣⎡⎦⎤1-⎝⎛⎭⎫13n , ∵数列⎩⎨⎧⎭⎬⎫1-⎝⎛⎭⎫13n 单调递增,当n =1时,数列取最小项为23,∴必有k ≤1,即实数k 的最大值为1.考纲要求了解数列的概念,了解数列是自变量为正整数的一类函数. 了解数列的几种简单表示方法(列表、图象、通项公式). 补充说明1.求数列的通项公式常见的有以下三种类型 (1)已知数列的前几项,写出一个通项公式.依据数列前几项的特点归纳出通项公式:方法是依据数列的排列规律,求出项与项数的关系.一般步骤是:①定符号,②定分子、分母,③观察前后项的数值特征找规律,④综合写出项与项数的关系.要特别注意以下数列特点: ①自然数列,自然数的平方列. ②奇数列,偶数列.③a n =(-1)n ,a n =12[1+(-1)n ].④a n =sin n π2,a n =cos n π2.⑤a n =k9(10n -1)(k =1,2,…,9).要注意理顺其大小规律如:2,-83,4,-325,…先变化为:42,-83,164,-325,….(2)已知数列的递推关系求其通项公式:一般是采用“归纳—猜想—证明”,有时也通过变形转化为等差、等比数列进行处理.(3)已知数列的前n 项和求通项公式,用a n =S n -S n -1(n ≥2)求解. 2.注意数列的两个性质(1)单调性——若a n +1>a n ,则{a n }为递增数列;若a n +1<a n ,则{a n }为递减数列. (2)周期性——若a n +k =a n (n ∈N *,k 为非零常数),则{a n }为周期数列,k 为{a n }的一个周期.3.数列求和方法 (1)公式法①直接用等差、等比数列的求和公式求. ②了解一些常见的数列的前n 项和. 1+2+3+…+n =12n (n +1);1+3+5+…+(2n -1)=n 2;12+22+32+…+n 2=16n (n +1)(2n +1).(2)倒序相加法如果一个数列{a n },与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和可用“乘公比,错位相减”法进行,如等比数列的前n 项和就是用此法推导的,其一般步骤是:第一步,将数列{c n }写成c n =a n ·b n ,其中{a n }为等差数列,{b n }为等比数列,公比为q . 第二步,写出S n =a 1b 1+a 2b 2+…+a n b n .第三步,乘公比q 得,qS n =a 1b 2+a 2b 3+…+a n b n +1.第四步,错位相减,用等比数列求和公式求和得(q -1)S n .第五步,等式两边同除以q -1得S n .第六步,检查解题过程,看求和公式是否用错,符号是否正确,化简有无错误.(4)裂项相消法如果数列的通项可以表达成两项之差,各项随n 的变化而变化,前后项相加可以相互抵消就用裂项相加相消法.(5)分组求和法当一个数列的通项由几个项构成,各个项构成等差或等比数列时,可分为几个数列分别求和再相加.4.函数思想在数列中的应用(1)数列可以看作是一类特殊的函数,因此可用函数的知识,函数的思想方法来解决.(2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法.备选习题1.设数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a 3=( )A .8B .4C .2D .1[答案] A[解析] 由S 1=2(a 1-1)得a 1=2;由S 2=2(a 2-1)得a 2=4.由S 3=2(a 3-1)得,a 3=8.2.如果f (a +b )=f (a )·f (b )(a ,b ∈R )且f (1)=2,则f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2014)f (2013)等于( ) A .2011B .2012C .2013D .2014 [答案] D[解析] 令a =n ,b =1,f (n +1)=f (n )·f (1),∴f (n +1)f (n )=f (1)=2, ∴f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2014)f (2013)=2×1007=2014.。
1. [2014·深圳段考]用数学归纳法证明“2n>n2+1对于n≥n0的正整数n都成立”时,第一步证明中的起始值n0应取( )A. 2B. 3C. 5D. 6答案:C2. [2014·深圳检测]对于不等式n2+n<n+1(n∈N*),某同学应用数学归纳法的证明过程如下:(1)当n=1时,12+1<1+1,不等式成立.(2)假设当n=k(k∈N*)时,不等式成立,即k2+k<k+1,则当n=k+1时,k+2+k+=k2+3k+2<k2+3k++k+=k +2=(k+1)+1,∴当n=k+1时,不等式成立.则上述证法( )A.过程全部正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确答案:D3.[2014·石家庄质检]用数学归纳法证明“当n为正奇数时,x n+y n能被x+y整除”的第二步是( )A.假设n=2k+1时正确,再推n=2k+3时正确(其中k∈N*)B.假设n=2k-1时正确,再推n=2k+1时正确(其中k∈N*)C.假设n=k时正确,再推n=k+1时正确(其中k∈N*)D.假设n≤k(k≥1)时正确,再推n=k+2是正确(其中k∈N*)答案:B4.[2014·三明质检]利用数学归纳法证明不等式1+12+13+…+12n-1<f(n)(n≥2,n∈N*)的过程,由n=k到n=k+1时,左边增加了( ) A.1项B.k项C.2k-1项D.2k项解析:∵f(k+1)-f(k)=12k +12k+1+12k+2+…+12k+2k-1.∴增加了2k项.答案:D5. [2014·南京模拟]设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有:(S n -1)2=a n S n ,通过计算S 1,S 2,S 3,猜想S n =________.解析:由(S 1-1)2=S 21得:S 1=12;由(S 2-1)2=(S 2-S 1)S 2得:S 2=23;由(S 3-1)2=(S 3-S 2)S 3得:S 3=34.猜想:S n =nn +1.答案:nn +1。
专项强化训练(六)(45分钟100分)一、选择题(每小题6分,共30分)1.在100个产品中,一等品20个,二等品30个,三等品50个,用分层抽样的方法抽取一个容量为20的样本,则二等品中A被抽取到的概率为( )A. B. C. D.不确定2.从一堆苹果中任取了20个,并得到它们的质量(单位:克)数据分布如表:分组[90,100) [100,110) [110,120) [120,130) [130,140) [140,150] 频数 1 2 3 10 3 1则这堆苹果中,质量不小于120克的苹果数约占苹果总数的( )A.50%B.30%C.70%D.40%3.总体已经分成A,B,C三层,A,B,C三层个体数之比为2∶3∶5,现从总体中抽取容量为20的一个样本,已知A层中用简单随机抽样抽取样本时,甲被抽到的概率为,则总体的个体个数为( )A.4B.80C.120D.1604.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5)2,[15.5,19.5)4,[19.5,23.5)9,[23.5,27.5)18,[27.5,31.5)11,[31.5,35.5)12,[35.5,39.5)7,[39.5,43.5]3.根据样本的频率分布估计,数据在[31.5,43.5]内的概率约是( )A. B.C. D.5.(2014·郑州模拟)为了研究某高校大学5000名新生的视力情况,随机抽查了该校100名进校新生的视力情况,得到其频率分布直方图如图,若规定视力低于5.0的学生属于近视学生,则估计该校新生中不是近视的人数约为( )A.300B.400C.600D.1 000二、填空题(每小题6分,共18分)6.(2014·日照模拟)某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是.他属于不超过2个小组的概率是.7.(2014·银川模拟)甲、乙两人比赛射击,两人所得的平均环数相同,其中甲所得环数的方差为5,乙所得环数如下:5,6,9,10,5,那么这两人中成绩较稳定的是.8.(2014·石家庄模拟)将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n等于.三、解答题(每小题13分,共52分)9.(2014·兰州模拟)如图所示是某班学生一次数学考试成绩的频数分布直方图(每个分组包括左端点,不包括右端点),其中纵轴表示学生数,观察图形,回答下列问题:(1)全班有多少学生?(2)此次考试平均成绩大概是多少?(3)不及格的人数有多少?占全班多大比例?(4)如果80分及以上的成绩为优良,那么这个班的优良率为多少?10.(2014·枣庄模拟)有编号为A1,A2,A3,…,A6的6位同学,进行100米赛跑,得到下面的成绩:编号A1A2A3A4A5A6成绩(秒) 12.2 12.4 11.8 12.6 11.8 13.3其中成绩在13秒内的同学记为优秀.(1)从上述6名同学中,随机抽取1名,求这名同学成绩优秀的概率.(2)从成绩优秀的同学中,随机抽取2名,用同学的编号列出所有可能的抽取结果,并求这2名同学的成绩都在12.3秒内的概率.11.(2014·天津模拟)某公司由筛选出的男员工14名,女员工6名共20名员工组建甲、乙两个部门,现对这20名员工进行一次综合测试,成绩的茎叶图如图所示(单位:分).现规定180分以上者到“甲部门”工作,180分以下者到“乙部门”工作.(1)求女员工成绩的平均值.(2)现采用分层抽样的方式分别从“甲部门”和“乙部门”中共选出5人参加一项活动.①甲、乙部门分别选出多少人?②若从这5人中随机选出2人,那么至少1人选自“甲部门”的概率是多少?12.(2014·珠海模拟)我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,为此市政府首先采用抽样调查的方法获得了n位居民某年的月均用水量(单位:吨).根据所得的n个数据按照区间[0,0.5),[0.5,1),[1,1.5),[1.5,2),[2,2.5), [2.5,3),[3,3.5),[3.5,4),[4,4.5]进行分组,得到频率分布直方图如图.(1)若已知n位居民中月均用水量小于1吨的人数是12,求n位居民中月均用水量分别在区间[2,2.5)和[2.5,3)内的人数.(2)在该市居民中随意抽取10位,求至少有2位居民月均用水量在区间[2,2.5)或[2.5,3)内的概率.(精确到0.01,参考数据:0.619≈0.012,0.6110≈0.0071)答案解析1.【解析】选A.每个个体被抽到的概率等于=,故二等品中产品A被抽到的概率为.2.【解析】选C.由表中数据可知,质量不小于120克的苹果有14个,一共有苹果20个,所以质量不小于120克的苹果数约占苹果总数的70%.3.【解析】选B.因为从总体中抽取容量为20的一个样本,甲被抽到的概率为,所以在整个抽样过程中每个个体被抽到的概率是,所以总体的个体个数为=80.4.【解析】选 B.根据所给的数据的分组及各组的频数得到数据在[31.5,43.5]范围的有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5]3,所以满足题意的数据有12+7+3=22(个),总的数据有66个,根据等可能数据的概率得到P==,故选B.5.【解析】选C.由频率分布直方图可知,视力在[5.0,5.1],[5.1,5.2]的频率分别为0.7×0.1=0.07,0.5×0.1=0.05.所以在样本中,有100×(0.07+0.05)=12人不是近视,可见不近视率约为0.12,因为共有5000人,故估计该校新生中不是近视的人数约为5000×0.12=600,故选C.【加固训练】(2014·深圳模拟)某容量为180的样本的频率分布直方图共有n(n>1)个小矩形,若第一个小矩形的面积等于其余(n-1)个小矩形的面积之和的,则第一个小矩形对应的频数为( )A.20B.25C.30D.35【思路点拨】由第一个小矩形的面积和其余(n-1)个小矩形的面积之和的关系,求出第一个小矩形的面积占所有矩形面积的比例,从而得到第一个小矩形的频率,然后乘以样本容量即可得到第一个小矩形对应的频数. 【解析】选C.设第一个小矩形的面积为S,则其余(n-1)个小矩形的面积之和为5S,则n个小矩形面积的总和为6S,那么第一个小矩形的面积等于所有n个小矩形的面积之和的.因为样本的频率分布直方图中,矩形的面积就是对应的频率,所以第一个小矩形对应的频率为.则第一个小矩形对应的频数是180×=30.故选C.6.【解析】“至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为P==.“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”.故他属于不超过2个小组的概率是P=1-=.答案:7.【解析】==7,=[(5-7)2+(6-7)2+(9-7)2+(10-7)2+(5-7)2]=×(4+1+4+9+4)=4.4.因为>,所以乙稳定.答案:乙8.【解析】设第一至第六组数据的频数分别为2x,3x,4x,6x,4x,x,则2x+3x+4x=27,解得x=3,故n=20x=60. 答案:609.【解析】(1)由频数分布直方图可知,成绩在[30,40)的有1人,[40,50)的有2人,[50,60)的有3人,[60,70)的有8人,[70,80)的有10人,[80,90)的有14人,[90,100)的有6人,所以总人数为1+2+3+8+10+14+6=44.(2)≈75.45.(3)不及格的人数有1+2+3=6(人),因为全班共有44人,所以占全班比例是×100%≈13.64%.(4)由图知,成绩为优良的有14+6=20(人),因为全班共有44人,所以优良率是×100%≈45.45%.10.【解析】(1)由所给成绩可知,成绩优秀的同学共有5名,设“从6名同学中,随机抽取1名成绩为优秀”为事件A,则P(A)=.(2)成绩优秀的同学编号为A1,A2,A3,A4,A5.从这5名同学中随机抽取2名,所有可能的结果为(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A2,A3),(A2,A4),(A2,A5),(A3,A4),(A3,A5),(A4,A5)共有10种,设“这2名同学的成绩都在12.3秒内”为事件B,则B中所有可能的结果为(A1,A3),(A1,A5),(A3,A5)共3种.所以P(B)=.11.【解析】(1)女员工成绩的平均值为:(160×1+170×2+180×2+190×1+8+7+8+6+5+2)=181.(2)①“甲部门”共有8人,“乙部门”共有12人,按分层抽样从“甲部门”选出2人,“乙部门”共选出3人.②设“甲部门”选出的2人记为a,b,“乙部门”选出的3人记为1,2,3,则所有的选取方式有(a,b),(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),(1,2)(1,3),(2,3)共10种情形,其中满足至少有1人选自“甲部门”的有(a,b),(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),共7种情形,故所求的概率为.12.【解析】(1)根据频率分布直方图可得n位居民中月均用水量小于1吨的频率为(0.08+0.16)×0.5=0.12,所以n==100(人),所以根据频率分布直方图可得n位居民中月均用水量在区间[2,2.5)内的人数是0.5×0.5×100=25(人), 在[2.5,3)内的人数是0.28×0.5×100=14(人).(2)设A,B分别表示随机事件“居民月均用水量在区间[2,2.5)内”和“居民月均用水量在区间[2.5,3)内”,则事件A,B互斥,所以居民月均用水量在区间[2,2.5)或[2.5,3)内的概率是P=P(A∪B)=P(A)+P(B)=+==0.39,设X表示10位居民中月均用水量在区间[2,2.5)或[2.5,3)内的人数,则X~B(10,0.39),所以所求概率是P(X≥2)=1-P(X=0)-P(X=1)=1-×0.390×0.6110-×0.391×0.619≈1-0.0071-10×0.39×0.012≈0.95.。
【走向高考】2015届高考数学一轮总复习 6-2等差数列课后强化作业 新人教B 版基础巩固强化一、选择题1.(文)(2013·某某一中期末)等差数列{a n }的前n 项和为S n ,且S 3=6,a 1=4,则公差d 等于( )A .1 B.53 C .-2 D .3[答案]C[解析]由条件知⎩⎪⎨⎪⎧3a 2=6,a 1=4,∴d =-2.(理)(2013·某某二模)已知等差数列1,a ,b ,且3,a +2,b +5成等比数列,则该等差数列的公差为( )A .3或-3B .3或-1C .3D .-3 [答案]C[解析]2a =1+b ,(a +2)2=3(b +5),a =4或a =-2. ∵等比数列中的项不能为0, ∴a =4,b =7,∴等差数列的公差为3.2.(2013·某某新华中学月考)公差不为零的等差数列{a n }的前n 项和为S n ,若a 4是a 3与a 7的等比中项,S 8=32,则S 10等于( )A .18B .24C .60D .90 [答案]C[解析]因为a 4是a 3与a 7的等比中项,所以a 3a 7=a 24,又S 8=8(a 1+a 8)2=32,所以a 1+a 8=8,解得a 1=-3,d =2,所以S 10=10a 1+10×92d =-3×10+90=60,选C.3.(文)设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 3+a 7=-6,则当S n 取最小值时,n 等于( )A .8B .7C .6D .9 [答案]C[解析]设等差数列{a n }的公差为d ,依题意得a 3+a 7=2a 5=-6,∴a 5=-3,∴d =a 5-a 15-1=2,∴a n =-11+(n -1)×2=2n -13.令a n >0得n >6.5,即在数列{a n }中,前6项均为负数,自第7项起以后各项均为正数,因此当n =6时,S n 取最小值,选C.(理)等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时n 的值是( )A .5B .6C .7D .8 [答案]B[解析]⎩⎪⎨⎪⎧ a 5+a 7=4a 6+a 8=-2⇒⎩⎪⎨⎪⎧ 2a 1+10d =42a 1+12d =-2⇒⎩⎪⎨⎪⎧a 1=17d =-3,∴a n =-3n +20.法一:由⎩⎪⎨⎪⎧a n ≥0,a n +1≤0.解得173≤n ≤203,又n ∈N *,∴n =6.故选B.法二:S n =17n +n (n -1)2×(-3)=-32(n -376)2+37224,∵n ∈N *,∴当n =6时,S n 取得最大值.故选B.4.(2013·某某一中月考)已知等差数列{a n }的前n 项和为S n ,a 2=4,S 10=110,则S n +64a n的最小值为( )A .7B .8 C.152 D.172[答案]D[解析]由题意知⎩⎪⎨⎪⎧a 1+d =4,10a 1+45d =110.∴⎩⎪⎨⎪⎧a 1=2,d =2.∴S n =n 2+n ,a n =2n . ∴S n +64a n =n 2+n +642n =n 2+12+32n ≥12+2n 2·32n =172.等号成立时,n 2=32n,∴n =8,故选D.5.(文)设S n 表示等差数列{a n }的前n 项和,已知S 5S 10=13,那么S 10S 20等于( )A.19B.310C.18D.13 [答案]B[解析]设其公差为d ,∵S 5S 10=5a 1+12×5×4d 10a 1+12×10×9d=a 1+2d 2a 1+9d =13, ∴a 1=3d .∴S 10S 20=10a 1+12×10×9d20a 1+12×20×19d=310. (理)(2013·某某省名校联考)已知每项均大于零的数列{a n }中,首项a 1=1且前n 项和S n满足S n S n -1-S n -1S n =2S n S n -1(n ∈N *且n ≥2),则a 81=( )A .641B .640C .639D .638 [答案]B [解析]由已知S nS n -1-S n -1S n =2S n S n -1可得,S n -S n -1=2,所以{S n }是以1为首项,2为公差的等差数列,故S n =2n -1,S n =(2n -1)2,所以a 81=S 81-S 80=1612-1592=640,故选B.6.(文)在函数y =f (x )的图象上有点列(x n ,y n ),若数列{x n }是等差数列,数列{y n }是等比数列,则函数y =f (x )的解析式可能为( )A .f (x )=2x +1B .f (x )=4x 2C .f (x )=log 3xD .f (x )=⎝⎛⎭⎫34x [答案]D[解析]对于函数f (x )=⎝⎛⎭⎫34x上的点列(x n ,y n ),有y n =⎝⎛⎭⎫34x n ,由于{x n }是等差数列,所以x n +1-x n =d ,因此y n +1y n=⎝⎛⎭⎫34x n +1⎝⎛⎭⎫34x n =⎝⎛⎭⎫34x n +1-x n =⎝⎛⎭⎫34d ,这是一个与n 无关的常数,故{y n }是等比数列.故选D.[点评] 根据指数与对数运算的性质知真数成等比(各项为正),其对数成等差,指数成等差时,幂成等比.(理)已知直线(3m +1)x +(1-m )y -4=0所过定点的横、纵坐标分别是等差数列{a n }的第一项与第二项,若b n =1a n ·a n +1,数列{b n }的前n 项和为T n ,则T 2014=( )A.20134029B.20144029 C.40174029D.40184029 [答案]B[解析]依题意,将(3m +1)x +(1-m )y -4=0化为(x +y -4)+m (3x -y )=0,令⎩⎪⎨⎪⎧ x +y -4=03x -y =0,解得⎩⎪⎨⎪⎧x =1y =3, ∴直线(3m +1)x +(1-m )y -4=0过定点(1,3), ∴a 1=1,a 2=3,公差d =2,a n =2n -1, ∴b n =1a n ·a n +1=12(12n -1-12n +1),∴T 2014=12×[(11-13)+(13-15)+…+(14027-14029)]=12×(1-14029)=20144029.故选B.二、填空题7.已知a ,b ,c 是递减的等差数列,若将其中两个数的位置对换,得到一个等比数列,则a 2+c 2b2的值为________.[答案]20[解析]依题意得①⎩⎪⎨⎪⎧ a +c =2b ,b 2=ac .或②⎩⎪⎨⎪⎧ a +c =2b ,a 2=bc .或③⎩⎪⎨⎪⎧a +c =2b ,c 2=ab .由①得a =b =c ,这与“a ,b ,c 是递减的等差数列”矛盾;由②消去c 整理得(a -b )(a +2b )=0,又a >b ,因此a =-2b ,c =4b ,a 2+c 2b 2=20;由③消去a 整理得(c -b )(c +2b )=0,又b >c ,因此有c=-2b ,a =4b ,a 2+c 2b2=20.8.(文)已知{a n }是等差数列,S n 为其前n 项和,n ∈N *,若a 3=16,S 20=20,则S 10的值为________.[答案]110[解析]由题意,设公差为d ,则⎩⎨⎧a 1+2d =16,20a 1+20×(20-1)2d =20,解得⎩⎪⎨⎪⎧a 1=20,d =-2.∴S 10=10a 1+10(10-1)2d =110.(理)设等差数列{a n }的公差为正数,若a 1+a 2+a 3=15,a 1a 2a 3=105,则a 11+a 12+a 13=________.[答案]75[解析]∵⎩⎪⎨⎪⎧a 1+a 2+a 3=15,a 1a 2a 3=105,∴⎩⎪⎨⎪⎧ a 2=5,a 1a 3=21,∴⎩⎪⎨⎪⎧a 1+d =5,a 1(a 1+2d )=21, ∵d >0,∴⎩⎪⎨⎪⎧d =2,a 1=3,∴a 11+a 12+a 13=3a 1+33d =75.9.(文)(2013·冀州中学检测)已知S n 是数列{a n }的前n 项和,向量a =(a n -1,-2),b =(4,S n )满足a ⊥b ,则S 5S 3=________.[答案]317[解析]∵a =(a n -1,-2),b =(4,S n )满足a ⊥b , ∴a ·b =0,∴4a n -4-2S n =0,即S n =2a n -2, ∴S n -1=2a n -1-2(n ≥2). 两式相减得a n =2a n -1,∴a n a n -1=2.由S n =2a n -2(n ∈N *),得a 1=2.∴{a n }是以2为首项,2为公比的等比数列,∴a n =2n .∴S 5S 3=2(1-25)1-22(1-23)1-2=317. (理)(2013·某某某某中学模拟)设m >3,对于项数为m 的有穷数列{a n },令b k 为a 1,a 2,…,a k (k ≤m )中最大值,称数列{b n }为{a n }的“创新数列”.例如数列3,5,4,7的创新数列为3,5,5,7.考查自然数1,2,…,m (m >3)的所有排列,将每种排列都视为一个有穷数列{}.若m =4,则创新数列为3,4,4,4的所有数列{a n }为________.[答案]3,4,2,1或3,4,1,2[解析]由数列{a n }的创新数列定义知,a 1=3,a 2=4,由于c 3=4,∴a 3≤4,又{a n }是1,2,3,4的一个排列,∴a 3≠3,4,∴a 3=1或2,由于c 4=4, ∴当a 3=1时,a 4=2;当a 3=2时,a 4=1, ∴数列{a n }为3,4,1,2或3,4,2,1. 三、解答题10.(文)已知数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N +)在函数f (x )=3x 2-2x 的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n ·a n +1,求数列{b n }的前n 项和T n .[解析](1)由已知点(n ,S n )(n ∈N +)在函数f (x )=3x 2-2x 的图象上,可得S n =3n 2-2n . 当n ≥2时,a n =S n -S n -1=3n 2-2n -3(n -1)2+2(n -1)=6n -5, 当n =1时,a 1=S 1=1也适合上式,∴a n =6n -5. (2)b n =3a n a n +1=3(6n -5)(6n +1)=12(16n -5-16n +1), ∴T n =12(11-17+17-113+…+16n -5-16n +1)=12(1-16n +1)=12-112n +2. (理)在等差数列{a n }和等比数列{b n }中,a 1=b 1=1,b 4=8,{a n }的前10项和S 10=55.(1)求a n 和b n ;(2)现分别从{a n }和{b n }的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.[解析](1)设{a n }的公差为d ,{b n }的公比为q .依题意得S 10=10+10×92d =55,b 4=q 3=8,解得d =1,q =2, 所以a n =n ,b n =2n -1.(2)分别从{a n }和{b n }的前3项中各随机抽取一项,得到的基本事件有9个:(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4).符合题意的基本事件有2个:(1,1),(2,2). 故所求的概率P =29.[点评] 在等差数列和等比数列中,已知具体项或某几项的和等条件时,常选用“基本量法”来求解,即把已知条件均用数列的首项、公差或首项、公比来表示;概率中的古典概型关键是能正确列举出所有的基本事件和满足条件的基本事件.能力拓展提升一、选择题11.(文)已知在等差数列{a n }中,对任意n ∈N *,都有a n >a n +1,且a 2,a 8是方程x 2-12x +m =0的两根,且前15项的和S 15=m ,则数列{a n }的公差是( )A .-2或-3B .2或3C .-2D .3 [答案]A[解析]由2a 5=a 2+a 8=12,得a 5=6, 由S 15=m 得a 8=m15.又因为a 8是方程x 2-12x +m =0的根, 解之得m =0,或m =-45, 则a 8=0,或a 8=-3.由3d =a 8-a 5得d =-2,或d =-3.(理)(2013·某某六中月考)已知a >0,b >0,若2是4a 与2b 的等比中项,则2a +1b的最小值为( )A .2 2B .8C .9D .10 [答案]C[解析]由条件知:4a ·2b =(2)2, ∴22a +b =21,∴2a +b =1, ∴2a +1b =(2a +1b )(2a +b )=5+2b a +2a b ≥5+22b a ·2ab=9, 等号在⎩⎪⎨⎪⎧2b a =2a b ,2a +b =1,即a =b =13时成立.12.(2013·某某市调研)已知等比数列{a n }公比为q ,其前n 项和为S n ,若S 3,S 9,S 6成等差数列,则q 3等于( )A .-12B .1C .-12或1D .-1或12[答案]A[解析]由条件知2S 9=S 3+S 6,∴2a 1(1-q 9)1-q =a 1(1-q 3)1-q +a 1(1-q 6)1-q ,∴2q 6=1+q 3,∴q 3=1或-12,∵q ≠1,∴q 3=-12.13.(文)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3L ,下面3节的容积共4L ,则第5节的容积为( )A .1L B.6766L C.4744L D.3733L[答案]B[解析]设该数列为{a n }公差为d ,则⎩⎪⎨⎪⎧ a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解之得⎩⎨⎧a 1=1322,d =766,所以第5节的容积为a 5=a 1+4d =1322+766×4=6766.(理)已知{a n }是等差数列,S n 为其前n 项和,若S 29=S 4000,O 为坐标原点,点P (1,a n ),点Q (2015,a 2015),则OP →·OQ →等于( )A .2015B .-2015C .0D .1 [答案]A[解析]S 29=S 4000⇒a 30+a 31+…+a 4000=0⇒a 2015=0,又P (1,a n ),Q (2015,a 2015),则OP →=(1,a n ),OQ →=(2015,a 2015), ∴OP →·OQ →=(1,a n )·(2015,a 2015)=2015+a n a 2015=2015,故选A. 二、填空题14.数列{a n },{b n }都是等差数列,a 1=0,b 1=-4,用S k 、S k ′分别表示等差数列{a n }和{b n }的前k 项和(k 是正整数),若S k +S k ′=0,则a k +b k =________.[答案]4[解析]由条件知,S k +S k ′=k (k -1)2d +k (k -1)2d ′-4k =k (k -1)(d +d ′)2-4k =0,∵k 是正整数,∴(k -1)(d +d ′)=8, ∴a k +b k =(k -1)d -4+(k -1)d ′ =(k -1)(d +d ′)-4=4. 三、解答题15.(文)已知正数数列{a n }的前n 项和为S n ,且对任意的正整数n 满足2S n =a n +1. (1)求数列{a n }的通项公式;(2)设b n =1a n ·a n +1,求数列{b n }的前n 项和B n .[解析](1)由2S n =a n +1,n =1代入得a 1=1, 两边平方得4S n =(a n +1)2①①式中n 用n -1代替得4S n -1=(a n -1+1)2 (n ≥2)②①-②,得4a n =(a n +1)2-(a n -1+1)2,0=(a n -1)2-(a n -1+1)2, [(a n -1)+(a n -1+1)]·[(a n -1)-(a n -1+1)]=0, ∵{a n }是正数数列,∴a n -a n -1=2,所以数列{a n }是以1为首项,2为公差的等差数列,∴a n =2n -1.(2)b n =1a n ·a n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, 裂项相消得B n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=n 2n +1.(理)(2013·某某质检)已知数列{a n }的前n 项和为S n ,且S n =32a n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)在数列{b n }中,b 1=5,b n +1=b n +a n ,求数列{b n }的通项公式. [解析](1)当n =1时,S 1=a 1=32a 1-1,所以a 1=2.∵S n =32a n -1,①∴当n ≥2时,S n -1=32a n -1-1,②①-②,得a n =(32a n -1)-(32a n -1-1),所以a n =3a n -1,又a 1≠0,故a n -1≠0, 所以a na n -1=3,故数列{a n }是首项为2,公比为3的等比数列, 所以a n =2·3n -1.(2)由(1)知b n +1=b n +2·3n -1. 当n ≥2时,b n =b n -1+2·3n -2, …b 3=b 2+2·31, b 2=b 1+2·30,将以上n -1个式子相加并整理,得b n =b 1+2×(3n -2+…+31+30)=5+2×1-3n -11-3=3n -1+4.当n =1时,31-1+4=5=b 1,所以b n =3n -1+4(n ∈N *).16.(文)(2013·某某适应性测试)已知数列{a n }的首项a 1=1,且满足a n +1=a n 4a n +1(n ∈N *). (1)设b n =1a n,求证:数列{b n }是等差数列,并求数列{a n }的通项公式; (2)设=b n ·2n ,求数列{}的前n 项和S n .[解析](1)b 1=1a 1=1,a n +1=a n 4a n +1,1a n +1=4+1a n ,1a n +1-1a n =4, ∴b n +1-b n =4.数列{b n }是以1为首项,4为公差的等差数列.1a n=b n =1+4(n -1)=4n -3, ∴数列{a n }的通项公式为a n =14n -3(n ∈N *). (2)S n =21+5×22+9×23+…+(4n -3)·2n ,①2S n =22+5×23+9×24+…+(4n -3)·2n +1,②②-①并化简得S n =(4n -7)·2n +1+14.(理)(2013·某某调研)各项都为正数的数列{a n },满足a 1=1,a 2n +1-a 2n=2. (1)求数列{a n }的通项公式;(2)求数列{a 2n 2n }的前n 项和S n . [解析](1)因为a 2n +1-a 2n =2,a 21=1,所以数列{a 2n }是首项为1,公差为2的等差数列.所以a 2n =1+(n -1)×2=2n -1,因为a n >0,所以a n =2n -1(n ∈N *). (2)由(1)知,a n =2n -1,所以a 2n 2n =2n -12n , 于是S n =12+322+523+…+2n -32n -1+2n -12n ,① 12S n =122+323+524+…+2n -32n +2n -12n +1,②①-②得,12S n =12+222+223+224+…+22n -2n -12n +1 =12+2(122+123+124+…+12n )-2n -12n +1 =12+2×14×(1-12n -1)1-12-2n -12n +1 =32-2n +32n +1, 所以S n =3-2n +32n .考纲要求1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数的关系.补充材料1.函数思想等差数列的通项是n 的一次函数,前n 项和是n 的二次函数,故有关等差数列的前n 项和的最值问题,数列的递增递减问题等都可以利用函数的研究方法来解决.2.等差数列的设项技巧与方程思想(1)对于连续奇数项的等差数列,可设为:…,x -d ,x ,x +d ,…,此时公差为d ;(2)对于连续偶数项的等差数列,通常可设为…,a -3d ,a -d ,a +d ,a +3d ,…,此时公差为2d .3.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则(1)若p +q 为偶数,则当n =p +q 2时,S n 最大; (2)若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大. 备选习题1.已知等差数列{a n }中,|a 3|=|a 9|,公差d <0,S n 是数列{a n }的前n 项和,则( )A .S 5>S 6B .S 5<S 6C .S 6=0D .S 5=S 6[答案]D[解析]∵d <0,|a 3|=|a 9|,∴a 3>0,a 9<0,且a 3+a 9=0,∴a 6=a 3+a 92=0,∴S 5=S 6. 2.(2013·某某模拟)数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11[答案]B[解析]因为{b n }是等差数列,且b 3=-2,b 10=12,故公差d =12-(-2)10-3=2.于是b 1=-6, 且b n =2n -8(n ∈N *),即a n +1-a n =2n -8.所以a 8=a 7+6=a 6+4+6=a 5+2+4+6=…=a 1+(-6)+(-4)+(-2)+0+2+4+6=3.[解法探究] 求得b n =2n -8后可用逐差相加法求a 8.3.一个算法的程序框图如下图所示,若该程序输出的结果为56,则判断框中应填入的条件是( )A .i <4?B .i <5?C .i ≥5?D .i <6?[答案]D[解析]由题意知S =11×2+12×3+…+1i (i +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1i -1i +1=i i +1,故要输出S =56,i =5时再循环一次,故条件为i ≤5或i <6,故选D. 4.已知数列{a n }的前n 项和S n =2-a n ,数列{b n }满足b 1=1,b 3+b 7=18,且b n -1+b n +1=2b n (n ≥2).(1)求数列{a n }和{b n }的通项公式;(2)若=b n a n,求数列{}的前n 项和T n . [解析](1)由题意S n =2-a n ,①当n ≥2时,S n -1=2-a n -1,②①-②得a n =S n -S n -1=a n -1-a n ,即a n =12a n -1,又a 1=S 1=2-a 1, ∴a 1=1,故数列{a n }是以1为首项,12为公比的等比数列,所以a n =12n -1; 由b n -1+b n +1=2b n (n ≥2)知,数列{b n }是等差数列,设其公差为d ,则b 5=12(b 3+b 7)=9, 所以d =b 5-b 14=2,b n =b 1+(n -1)d =2n -1. 综上,数列{a n }和{b n }的通项公式为a n =12n -1,b n =2n -1. (2)=b n a n=(2n -1)·2n -1, T n =c 1+c 2+c 3+…+=1×20+3×21+5×22+…+(2n -1)×2n -1,③2T n =1×21+3×22+…+(2n -3)×2n -1+(2n -1)×2n ,④ ③-④得:-T n =1+2(21+22+23+…+2n -1)-(2n -1)·2n=1+2×2-2n1-2-(2n -1)·2n =-(2n -3)·2n -3.∴T n =(2n -3)·2n +3.5.已知等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18.(1)求数列{a n }的通项公式;(2)令b n =S n n +c(n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由.[分析] 第(1)问是求等差数列的通项公式,需要知道首项a 1和公差d 的值,由条件a 2·a 3=45,a 1+a 5=18建立方程组不难求得;第(2)问是构造一个等差数列{b n },可考虑利用等差数列的定义,研究使b n +1-b n (n ∈N *)为一个常数时需要满足的条件.[解析](1)由题设知{a n }是等差数列,且公差d >0,则由⎩⎪⎨⎪⎧ a 2a 3=45,a 1+a 5=18,得⎩⎪⎨⎪⎧ (a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18,解得⎩⎪⎨⎪⎧a 1=1,d =4. 所以a n =4n -3(n ∈N *).(2)由b n =S n n +c =n (1+4n -3)2n +c =2n (n -12)n +c, 因为c ≠0,所以可令c =-12,得到b n =2n . 因为b n +1-b n =2(n +1)-2n =2(n ∈N *),所以数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列.。
基础巩固强化一、选择题1.(文)(2013·北京东城区统一检测)已知数列{a n }为等差数列,其前n 项和为S n ,若a 3=6,S 3=12,则公差d 等于( )A .1 B.53 C .2 D .3 [答案] C[解析] 根据已知,a 1+2d =6,3a 1+3d =12,解得d =2. (理)已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则该数列前10项和S 10等于( )A .64B .100C .110D .120 [答案] B[解析] 设数列{a n }的公差为d ,由题意得,2a 1+d =4,2a 1+13d =28,所以a 1=1,d =2.于是S 10=10×1+10×92×2=100.[点评] 可设b n =a 2n -1+a 2n ,则{b n }为等差数列,其公差D =b 4-b 13=8,∴S 10=b 1+b 2+…+b 5=5b 1+5×42D =100.2.(文)(2012·辽宁文,4)在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=( )A .12B .16C .20D .24 [答案] B[解析] 由等差数列的性质得,a 2+a 10=a 4+a 8=16,B 正确. [点评] 解决此类问题的关键是熟练掌握等差数列的性质. (理)(2013·昆明重点高中检测)已知等差数列{a n }的前n 项和为S n ,若a 3+a 4+a 5=12,则S 7的值为( )A .28B .42C .56D .14 [答案] A[解析] ∵a 3+a 4+a 5=3a 4=12, ∴a 4=4,∴S 7=7a 4=28,故选A.3.(2013·玉溪模拟)数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11 [答案] B[解析] 因为{b n }是等差数列,且b 3=-2,b 10=12, 故公差d =12-(-2)10-3=2.于是b 1=-6,且b n =2n -8(n ∈N *),即a n +1-a n =2n -8.所以a 8=a 7+6=a 6+4+6=a 5+2+4+6=…=a 1+(-6)+(-4)+(-2)+0+2+4+6=3.[解法探究] 求得b n =2n -8后可用逐差相加法求a 8.4.(文)在等差数列{a n }中,a 9+a 11=10,则数列{a n }的前19项之和为( )A .98B .95C .93D .90 [分析] 由求和公式S n =n (a 1+a n )2,及等差数列的性质a 1+a 19=a 9+a 11可求解结果.[解析] S 19=19×(a 1+a 19)2=19×(a 9+a 11)2 =19×102=95,故选B.(理)(2013·天津新华中学月考)公差不为零的等差数列{a n }的前n 项和为S n ,若a 4是a 3与a 7的等比中项,S 8=32,则S 10等于( )A .18B .24C .60D .90 [答案] C[解析] 因为a 4是a 3与a 7的等比中项,所以a 3a 7=a 24,又S 8=8(a 1+a 8)2=32,所以a 1+a 8=8,解得a 1=-3,d =2,所以S 10=10a 1+10×92d =-3×10+90=60,选C.5.(文)已知数列{a n }是等差数列,a 4=15,S 5=55,则过点P (3,a 3),Q (4,a 4)的直线的斜率是( )A .4 B.14 C .-4 D .-143 [答案] A[解析] ∵{a n }是等差数列,a 4=15,S 5=55, ∴a 1+a 5=22,∴2a 3=22,∴a 3=11. ∴k PQ =a 4-a 34-3=4,故选A.(理)(2012·衡阳六校联考)已知等差数列{a n }的前n 项和为S n ,若M 、N 、P 三点共线,O 为坐标原点,且ON →=a 15OM →+a 6OP →(直线MP 不过点O ),则S 20等于( )A .10B .15C .20D .40[解析] 依题意,得a 15+a 6=1.由等差数列性质知a 15+a 6=a 1+a 20,所以S 20=20(a 1+a 20)2=10(a 15+a 6)=10,选A. 6.(文)设S n 表示等差数列{a n }的前n 项和,已知S 5S 10=13,那么S 10S20等于( )A.19B.310C.18D.13 [答案] B[解析] 设其公差为d ,∵S 5S 10=5a 1+12×5×4d10a 1+12×10×9d =a 1+2d 2a 1+9d =13, ∴a 1=3d .∴S 10S 20=10a 1+12×10×9d20a 1+12×20×19d=310. (理)设数列{a n }为等差数列,其前n 项和为S n ,已知a 1+a 4+a 7=99,a 2+a 5+a 8=93,若对任意n ∈N *,都有S n ≤S k 成立,则k 的值为( )A .22B .21C .20D .19 [答案] C[解析] 设等差数列{a n }的公差为d ,则有3d =93-99=-6,∴d =-2;∴a 1+(a 1+3d )+(a 1+6d )=3a 1+9d =3a 1-18=99,∴a 1=39,∴a n =a 1+(n -1)d =39-2(n -1)=41-2n .令a n =41-2n >0得n <20.5,即在数列{a n }中,前20项均为正,自第21项起以后各项均为负,因此在其前n 项和中,S 20最大.依题意得知,满足题意的k 值是20,选C.二、填空题7.(文)(2013·陕西检测)在等差数列{a n }中,若a 13=20,a 20=13,则a 2013=________.[答案] -1980[解析] 由题意知,等差数列{a n }的公差d =13-2020-13=-1,∴a 2013=a 20+(2013-20)d =13-1993=-1980.(理)两个等差数列的前n 项和之比为5n +102n -1,则它们的第7项之比为________.[答案][解析] 设两个数列{a n }、{b n }的前n 项和为S n 、T n ,则S nT n=5n +102n -1,而a 7b 7=a 1+a 13b 1+b 13=S 13T 13=5×13+102×13-1=3. 8.已知函数f (x )=sin x +tan x .项数为27的等差数列{a n }满足a n∈⎝ ⎛⎭⎪⎫-π2,π2,且公差d ≠0.若f (a 1)+f (a 2)+…+f (a 27)=0,则当k =________时,f (a k )=0.[答案] 14[解析] ∵f (x )=sin x +tan x 为奇函数,且在x =0处有定义,∴f (0)=0.∵{a n }为等差数列且d ≠0,∴a n (1≤n ≤27,n ∈N *)对称分布在原点及原点两侧, ∵f (a 1)+f (a 2)+…+f (a 27)=0,∴f (a 14)=0.∴k =14.9.(文)将正偶数按下表排成5列:[答案] 252 2[解析] 通项a n =2n ,故2014为第1007项,∵1007=4×251+3,又251为奇数,因此2014应排在第252行,且第252行从右向左排第3个数,即252行第2列.(理)已知a n =n 的各项排列成如图的三角形状:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 … … … … … … … … … …记A (m ,n )表示第m 行的第n 个数,则A (31,12)=________. [答案] 912[解析] 由题意知第1行有1个数,第2行有3个数,……第n 行有2n -1个数,故前n 行有S n =n [1+(2n -1)]2=n 2个数,因此前30行共有S 30=900个数,故第31行的第一个数为901,第12个数为912,即A (31,12)=912. 三、解答题10.(2013·福建)已知等差数列{a n }的公差d =1,前n 项和为S n . (1)若1,a 1,a 3成等比数列,求a 1; (2)若S 5>a 1a 9,求a 1的取值范围.[解析] (1)因为数列{a n }的公差d =1,且1,a 1,a 3成等比数列.所以a 21=1×(a 1+2),即a 21-a 1-2=0,解得a 1=-1,或a 1=2. (2)因为数列{a n }的公差d =1,且S 5>a 1a 9,所以5a 1+10>a 21+8a 1,即a 21+3a 1-10<0,解得-5<a 1<2.能力拓展提升一、选择题11.(文)设{a n }是递减的等差数列,前三项的和是15,前三项的积是105,当该数列的前n 项和最大时,n 等于( )A .4B .5C .6D .7 [答案] A[解析] ∵{a n }是等差数列,且a 1+a 2+a 3=15,∴a 2=5, 又∵a 1·a 2·a 3=105,∴a 1a 3=21,由⎩⎪⎨⎪⎧a 1a 3=21,a 1+a 3=10.及{a n }递减可求得a 1=7,d =-2,∴a n =9-2n ,由a n ≥0得n ≤4,∴选A.(理)(2012·大纲全国理,5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{1a n a n +1}的前100项和为( )A.100101B.99101C.99100D.101100 [答案] A[解析] 本小题主要考查等差数列的通项公式和前n 项和公式的运用,以及裂项求和的综合应用.∵a 5=5,S 5=15, ∴5(a 1+a 5)2=15,即a 1=1. ∴d =a 5-a 15-1=1,∴a n =n .∴1a n a n +1=1n (n +1)=1n -1n +1. 则数列{1a n a n +1}的前100项的和为:T 100=(1-12)+(12-13)+…+(1100-1101)=1-1101=100101.故选A.[点评] 本题亦可利用等差数列的性质,由S 5=15得5a 3=15,即a 3=3,再进一步求解.12.(2012·河南安阳三模)已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4000,O 为坐标原点,点P (1,a n ),Q (2011,a 2011),则OP →·OQ →等于( )A .2011B .-2011C .0D .1 [答案] A[解析] 解法一:由已知S 21=S 4000,则a 22+a 23+…+a 4000=0,设{a n }的公差为d ,则3979(a 22+a 4000)2=0,又a 22+a 4000=2a 2011,所以a 2011=0,所以OP →·OQ →=2011+a n ·a 2011=2011.解法二:设等差数列{a n }的公差为d ,因为S 21=S 4000,且等差数列前n项和公式可看成二次函数,所以由对称性可得S1=S4020,则有a1=4020a1+4020×40192d,整理得a2011=0,所以OP→·OQ→=2011+a n·a2011=2011.13.(2013·浙江省名校联考)已知每项均大于零的数列{a n}中,首项a1=1且前n项和S n满足S n S n-1-S n-1S n=2S n S n-1(n∈N*且n≥2),则a81=()A.641 B.640 C.639 D.638[答案] B[解析]由已知S n S n-1-S n-1S n=2S n S n-1可得,S n-S n-1=2,所以{S n}是以1为首项,2为公差的等差数列,故S n=2n-1,S n=(2n-1)2,所以a81=S81-S80=1612-1592=640,故选B.二、填空题14.(2013·南京模拟)已知等差数列{a n}的前n项和为S n,若(a2-1)3+2012(a2-1)=1,(a2011-1)3+2012·(a2011-1)=-1,则下列四个命题中真命题的序号为________.①S2011=2011;②S2012=2012;③a2011<a2;④S2011<S2.[答案]②③[解析]设f(x)=x3+2012x,则f(x)为奇函数,f′(x)=3x2+2012>0,∴f(x)单调递增.由f(1)=2013>1知f(1)>f(a2-1),∴1>a2-1,∴a2<2.又f(a2-1)=-f(a2011-1)=f(1-a2011),∴a2-1=1-a2011,∴a2+a2011=2,∴S2012=a1+a20122×2012=2012,故②正确;又f(a2-1)>f(a2011-1),∴a2-1>a2011-1,∴a2011<a2,∴③正确;S 2011=S 2012-a 2012=2012-(a 2011+d )=2012-(2-a 2+d )=2010+a 1>a 1+a 2=S 2,∴④错误;假设S 2011=2011,则2010+a 1=2011,∴a 1=1,∵S 2011=2011×(a 1+a 2011)2=2011×(1+a 2011)2=2011,∴a 2011=1,这与{a n }是等差数列矛盾,∴①错.综上,正确的为②③.15.(2013·黄山期末)对于正项数列{a n },定义H n =na 1+2a 2+3a 3+…+na n为{a n }的“光阴”值,现知某数列的“光阴”值为H n =2n +2,则数列{a n }的通项公式为________.[答案] a n =2n +12n[解析] 由H n =na 1+2a 2+3a 3+…+na n 可得,a 1+2a 2+3a 3+…+na n =n H n =n (n +2)2,①a 1+2a 2+3a 3+…+(n -1)a n -1 =(n -1)(n +1)2,② ①-②得na n =n (n +2)2-(n -1)(n +1)2=2n +12,所以a n =2n +12n .三、解答题16.(文)(2013·河北唐山一模)设函数f (x )=ax +b (其中a ≠0),若f (3)=5,且f (1),f (2),f (5)成等比数列.(1)求f (n );(2)令b n =f (n )·2n ,求数列{b n }的前n 项和T n .[解析] (1)∵f (3)=5,且f (1),f (2),f (5)成等比数列,∴⎩⎪⎨⎪⎧3a +b =5,(a +b )(5a +b )=(2a +b )2,解得a =2,b =-1, ∴f (x )=2x -1,即f (n )=2n -1.(2)由题意得b n =(2n -1)·2n ,则T n =1·21+3·22+…+(2n -1)·2n ,①2T n =1·22+3·23+…+(2n -3)·2n +(2n -1)·2n +1,②①-②得:-T n =2+23+24+…+2n +1-(2n -1)·2n +1=2·2n +1-6-(2n -1)·2n +1=-(2n -3)·2n +1-6,∴T n =(2n -3)·2n +1+6.(理)(2012·湖北文,20)已知等差数列{a n }前三项的和为-3,前三项的积为8.(1)求等差数列{a n }的通项公式;(2)若a 2、a 3、a 1成等比数列,求数列{|a n |}的前n 项和.[分析] (1)利用等差数列的通项公式,及相关关系求出首项和公差.(2)先确定数列的通项公式,由于首项a 1<0需判断从哪一项开始a n >0,将{|a n |}前n 项和写为分段函数的形式.[解析] (1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d ,由题意得⎩⎪⎨⎪⎧ 3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8.解得⎩⎪⎨⎪⎧ a 1=2,d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3. 所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5,或a n=-4+3(n -1)=3n -7.故a n =-3n +5,或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列;当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7, n =1,2.3n -7, n ≥3. 记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5;当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+(n -2)[2+(3n -7)]2=32n 2-112n +10. 当n =2时,满足此式.综上,S n =⎩⎨⎧ 4, n =1,32n 2-112n +10, n >1.[点评] {a n }是等差数列(a 1>0,d <0或a 1<0,d >0),求数列{|a n |}的前n 项和T n 一般步骤:第一步,求{a n }的前n 项和S n . 第二步,求使⎩⎪⎨⎪⎧a k ≥0,a k +1<0,成立的整数k . 第三步,求n ≤k 和n >k 时T n 的表达式.第四步,用分段函数形式下结论,并反思检查.考纲要求1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数的关系.补充说明1.函数思想等差数列的通项是n 的一次函数,前n 项和是n 的二次函数,故有关等差数列的前n 项和的最值问题,数列的递增递减问题等都可以利用函数的研究方法来解决.2.等差数列的设项技巧与方程思想(1)对于连续奇数项的等差数列,可设为:…,x -d ,x ,x +d ,…,此时公差为d ;(2)对于连续偶数项的等差数列,通常可设为…,a -3d ,a -d ,a +d ,a +3d ,…,此时公差为2d .3.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则(1)若p +q 为偶数,则当n =p +q 2时,S n 最大;(2)若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.备选习题1.如表定义函数f (x ):n 1n n -1a 2014的值是( )A .1B .2C .3D .4[答案] A[解析] 本题可通过归纳推理的方法研究数列的规律.由特殊到一般易知a 1=4,a 2=f (a 1)=f (4)=1,a 3=f (a 2)=f (1)=5,a 4=f (a 3)=f (5)=2,a 5=f (a 4)=f (2)=4,…,据此可归纳数列{a n }为以4为周期的数列,从而a 2014=a 2=1.2.(2013·河南适应性测试)已知数列{a n }的首项a 1=1,且满足a n +1=a n 4a n +1(n ∈N *). (1)设b n =1a n,求证:数列{b n }是等差数列,并求数列{a n }的通项公式;(2)设c n =b n ·2n ,求数列{c n }的前n 项和S n .[解析] (1)b 1=1a 1=1,a n +1=a n 4a n +1,1a n +1=4+1a n ,1a n +1-1a n=4, ∴b n +1-b n =4.数列{b n }是以1为首项,4为公差的等差数列.1a n =b n =1+4(n -1)=4n -3,∴数列{a n }的通项公式为a n =14n -3(n ∈N *). (2)S n =21+5×22+9×23+…+(4n -3)·2n ,①2S n =22+5×23+9×24+…+(4n -3)·2n +1,②②-①并化简得S n =(4n -7)·2n +1+14.3.(2013·湖南十二校联考)已知数列{a n }的前n 项和为S n ,点A (n ,S n n )(n ∈N *)总在直线y =12x +32上.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =n +1a n (n ∈N *),试问数列{b n }中是否存在最大项,如果存在,请求出;如果不存在,请说明理由.[解析] (1)因为点A (n ,S n n )(n ∈N )在直线y =12x +32上,故有S n n =12n +32,即S n =12n 2+32n ,当n ≥2时,S n -1=12(n -1)2+32(n -1),所以a n =S n -S n -1=12n 2+32n -[12(n -1)2+32(n -1)]=n +1(n ≥2).当n =1时,a 1=S 1=2满足上式,故数列{a n }的通项公式为a n =n +1.(2)由a n =n +1,可知b n =n +1n +1, b 1=2=623<632=33=b 2,b 3=44=2=b 1,b 3=44=2045>2054=55=b 4, 所以,b 2>b 1=b 3>b 4,猜想{b n +1}递减,即猜想当n ≥2时,n +1n +1>n +2n +2,考察函数y =ln x x (x >e),则y ′=1-ln x x 2,显然当x >e 时,ln x >1,即y ′<0,故y =ln (n +2)n +2<ln (n +1)n +1,即n +2n +2<n +1n +1,猜想正确,因此,数列{b n }的最大项是b 2=33.[点评] 由n +1n +1>n +2n +2两边取对数得,1n +1ln(n +1)>1n +2ln(n +2).即ln (n +1)n +1>ln (n +2)n +2,于是构造函数f (x )=ln x x (x >e),通过研究函数f (x )的单调性来证明不等式.。
【走向高考】2015届高考数学一轮总复习 11-4数学归纳法课后强化作业 新人教A 版基础巩固强化一、选择题1.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,n >1)时,第一步应验证不等式( )A .1+12<2B .1+12+13<2C .1+12+13<3D .1+12+13+14<3[答案] B[解析] ∵n ∈N *,n >1,∴n 取的第一个数为2,左端分母最大的项为122-1=13,故选B.2.某个命题与自然数n 有关,若n =k (k ∈N *)时命题成立,则可推得当n =k +1时该命题也成立,现已知n =5时,该命题不成立,那么可以推得( )A .n =6时该命题不成立B .n =6时该命题成立C .n =4时该命题不成立D .n =4时该命题成立 [答案] C[解析] ∵“若n =k (k ∈N *)时命题成立,则当n =k +1时,该命题也成立”,故若n =4时命题成立,则n =5时命题也应成立,现已知n =5时,命题不成立,故n =4时,命题也不成立.[点评] 可用逆否法判断.3.用数学归纳法证明:12+22+…+n 2+…+22+12=n (2n 2+1)3,第二步证明由“k 到k+1”时,左边应加( )A .k 2B .(k +1)2C .k 2+(k +1)2+k 2D .(k +1)2+k 2 [答案] D[解析] 当n =k 时,左边=12+22+…+k 2+…+22+12,当n =k +1时,左边=12+22+…+k 2+(k +1)2+k 2+…+22+12,∴选D.4.(2013·安徽黄山联考)已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1n +1=2(1n +2+1n +4+…+12n )时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立.( )A .k +1B .k +2C .2k +2D .2(k +2) [答案] B[解析] ∵n =k 为偶数,∴下一个偶数应为n =k +2,故选B.5.数列{a n }中,已知a 1=1,当n ≥2时,a n -a n -1=2n -1,依次计算a 2、a 3、a 4后,猜想a n 的表达式是( )A .a n =3n -2B .a n =n 2C .a n =3n -1D .a n =4n -3[答案] B[解析] a 1=1,a 2=4,a 3=9,a 4=16,猜想a n =n 2. 二、填空题6.如果不等式2n >n 2+1对于n ≥n 0的正整数n 都成立,则n 0的最小值为________. [答案] 5[解析] 当n =1时,2>2不成立, 当n =2时,4>5不成立. 当n =3时,8>10不成立 当n =4时,16>17不成立 当n =5时,32>26成立当n =6时,64>37成立,由此猜测n 0应取5.7.用数学归纳法证明:(n +1)+(n +2)+…+(n +n )=n (3n +1)2(n ∈N *)的第二步中,当n=k +1时等式左边与n =k 时等式左边的差等于________.[答案] 3k +2[解析] [(k +1)+1]+[(k +1)+2]+…+[(k +1)+(k +1)]-[(k +1)+(k +2)+…+(k +k )] =[(k +1)+k ]+[(k +1)+(k +1)]-(k +1) =3k +2.8.(2012·温州一模)已知n ∈N *,设平面上的n 个椭圆最多能把平面分成a n 部分,则a 1=2,a 2=6,a 3=14,a 4=26,…,则a n =________.[答案] 2n 2-2n +2[解析] 观察规律可知a n -a n -1=(n -1)×4,利用累加法可得a n =2n 2-2n +2.9.(2012·长春模拟)如图,第n 个图形是由正n +2边形“扩展”而来的(n =1,2,3,…),则第n -2(n ≥3,n ∈N *)个图形共有________个顶点.[答案] n (n +1)[解析] 当n =1时,顶点共有3×4=12(个),当n =2时,顶点共有4×5=20(个), 当n =3时,顶点共有5×6=30(个), 当n =4时,顶点共有6×7=42(个),故第n -2图形共有顶点(n -2+2)(n -2+3)=n (n +1)个. 三、解答题10.已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1).试比较11+a 1+11+a 2+11+a 3+…+11+a n与1的大小,并说明理由. [解析] ∵f ′(x )=x 2-1,a n +1≥f ′(a n +1), ∴a n +1≥(a n +1)2-1.∵函数g (x )=(x +1)2-1=x 2+2x 在区间[-1,+∞)上单调递增,于是由a 1≥1,及a 2≥(a 1+1)2-1得,a 2≥22-1,进而得a 3≥(a 2+1)2-1≥24-1>23-1,由此猜想:a n ≥2n -1.下面用数学归纳法证明这个猜想: ①当n =1时,a 1≥21-1=1,结论成立;②假设当n =k (k ≥1且k ∈N *)时结论成立,即a k ≥2k -1,则当n =k +1时,由g (x )=(x +1)2-1在区间[-1,+∞)上单调递增知,a k +1≥(a k +1)2-1≥22k -1≥2k +1-1,即n =k +1时,结论也成立.由①②知,对任意n ∈N *,都有a n ≥2n -1. 即1+a n ≥2n .∴11+a n ≤12n .∴11+a 1+11+a 2+…+11+a 3+…+11+a n ≤12+122+123+…+12n =1-(12)n <1.能力拓展提升11.已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=b n 1-4a 2n (n ∈N *)且点P 1的坐标为(1,-1). (1)求过点P 1,P 2的直线l 的方程;(2)试用数学归纳法证明:对于n ∈N *,点P n 都在(1)中的直线l 上. [解析] (1)由P 1的坐标为(1,-1)知a 1=1,b 1=-1. ∴b 2=b 11-4a 21=13,a 2=a 1·b 2=13. ∴点P 2的坐标为(13,13).∴直线l 的方程为2x +y =1.(2)证明:①当n =1时,2a 1+b 1=2×1+(-1)=1成立. ②假设n =k (k ∈N *,k ≥1)时,2a k +b k =1成立,则当n =k +1时,2a k +1+b k +1=2a k ·b k +1+b k +1 =b k 1-4a 2k ·(2a k +1)=b k1-2a k =1-2a k 1-2a k=1, ∴当n =k +1时,命题也成立.由①②知,对n ∈N *,都有2a n +b n =1,即点P n 在直线l 上. 12.已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n 2,n ∈N *.(1)当n =1,2,3时,试比较f (n )与g (n )的大小; (2)猜想f (n )与g (n )的大小关系,并给出证明. [解析] (1)当n =1时,f (1)=1,g (1)=1, 所以f (1)=g (1);当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2);当n =3时,f (3)=251216,g (3)=312216,所以f (3)<g (3).(2)由(1)猜想f (n )≤g (n ),下面用数学归纳法给出证明. ①当n =1,2,3时,不等式显然成立. ②假设当n =k (k ≥3,k ∈N *)时不等式成立, 即1+123+133+143+…+1k 3<32-12k 2,那么,当n =k +1时,f (k +1)=f (k )+1(k +1)3<32-12k 2+1(k +1)3, 因为12(k +1)2-[12k 2-1(k +1)3]=k +32(k +1)3-12k 2=-3k -12(k +1)3k 2<0, 所以f (k +1)<32-12(k +1)2=g (k +1).由①②可知,对一切n ∈N *, 都有f (n )≤g (n )成立.13.(2013·南京一模)已知数列{a n }满足a 1=0,a 2=1,当n ∈N *时,a n +2=a n +1+a n .求证:数列{a n }的第4m +1项(m ∈N *)能被3整除.[证明] (1)当m =1时,a 4m +1=a 5=a 4+a 3=(a 3+a 2)+(a 2+a 1)=(a 2+a 1)+2a 2+a 1=3a 2+2a 1=3+0=3.即当m =1时,第4m +1项能被3整除.故命题成立. (2)假设当m =k 时,a 4k +1能被3整除,则当m =k +1时,a 4(k +1)+1=a 4k +5=a 4k +4+a 4k +3=2a 4k +3+a 4k +2=2(a 4k +2+a 4k +1)+a 4k +2 =3a 4k +2+2a 4k +1.显然,3a 4k +2能被3整除, 又由假设知a 4k +1能被3整除. ∴3a 4k +2+2a 4k +1能被3整除.即当m =k +1时,a 4(k +1)+1也能被3整除.命题也成立.由(1)和(2)知,对于n ∈N *,数列{a n }中的第4m +1项能被3整除. 14.用数学归纳法证明下面的等式12-22+32-42+…+(-1)n -1·n 2=(-1)n-1n (n +1)2. [证明] (1)当n =1时,左边=12=1, 右边=(-1)0·1×(1+1)2=1,∴原等式成立.(2)假设n =k (k ∈N +,k ≥1)时,等式成立, 即有12-22+32-42+…+(-1)k -1·k 2=(-1)k-1k (k +1)2. 那么,当n =k +1时,则有12-22+32-42+…+(-1)k -1·k 2+(-1)k ·(k +1)2=(-1)k-1k (k +1)2+(-1)k ·(k +1)2 =(-1)k ·k +12[-k +2(k +1)]=(-1)k (k +1)(k +2)2,∴n =k +1时,等式也成立, 由(1)(2)得对任意n ∈N +有 12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n (n +1)2.考纲要求1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题. 补充说明归纳法有不完全归纳法和完全归纳法,如果我们考察了某类对象中的一部分,由这一部分对象具有某种特征而得出该类对象中的全体都具有这种特征的结论,为不完全归纳.由不完全归纳法得出的结论不一定都是正确的,其正确性还需进一步证明;如果我们考察了某类对象中的每一个对象,而得出该类对象的某种特征的结论为完全归纳,由完全归纳法得出的结论一定是正确的,数学归纳法是一种完全归纳法.2.归纳、猜想与证明从观察一些特殊的简单的问题入手,根据它们所体现的共同性质,运用不完全归纳法作出一般命题的猜想,然后从理论上证明(或否定)这种猜想,即“归纳—猜想—证明”.这是我们归纳探究一些有规律性问题的一般步骤.3.在用数学归纳法证明不等式时,常根据题目的需要进行恰当的放缩,要注意既不能放缩的不到位,也不能放缩过了头.备选习题1.对于不等式n2+n≤n+1(n∈N*),某人的证明过程如下:1°当n=1时,12+1≤1+1,不等式成立.2°假设n=k(k∈N*)时不等式成立,即k2+k<k+1,则n=k+1时,(k+1)2+(k+1)=k2+3k+2<(k2+3k+2)+k+2=(k+2)2=(k+1)+1.∴当n=k+1时,不等式成立.上述证法()A.过程全都正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确[答案] D[解析]上述证明过程中,在由n=k变化到n=k+1时,不等式的证明使用的是放缩法而没有使用归纳假设.故选D.2.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝,第二件首饰由6颗珠宝(图中圆圈表示珠宝)构成如图1所示的正六边形,第三件首饰由15颗珠宝构成如图2所示的正六边形,第四件首饰是由28颗珠宝构成如图3所示的正六边形,第五件首饰是由45颗珠宝构成如图4所示的正六边形,以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断前10件首饰所用珠宝总颗数为()A.190 B.715C.725 D.385[解析] 由条件可知前5件首饰的珠宝数依次为:1,1+5,1+5+9,1+5+9+13,1+5+9+13+17,即每件首饰的珠宝数为一个以1为首项,4为公差的等差数列的前n 项和,通项a n =4n -3.由此可归纳出第n 件首饰的珠宝数为n [1+(4n -3)]2=2n 2-n .则前n 件首饰所用的珠宝总数为2(12+22+…+n 2)-(1+2+…+n )=4n 3+3n 2-n6.当n =10时,总数为715.3.(2013·九江模拟)设数列{a n }的前n 项和为S n ,并且满足2S n =a 2n +n ,a n >0(n ∈N *).(1)猜想{a n }的通项公式,并用数学归纳法加以证明.(2)设x >0,y >0,且x +y =1,证明:a n x +1+a n y +1≤2(n +2). [解析] (1)分别令n =1,2,3, 得⎩⎪⎨⎪⎧2a 1=a 21+1,2(a 1+a 2)=a 22+2,2(a 1+a 2+a 3)=a 23+3.∵a n >0,∴a 1=1,a 2=2,a 3=3. 猜想:a n =n . 由2S n =a 2n +n .①可知,当n ≥2时,2S n -1=a 2n -1+(n -1).②①-②,得2a n =a 2n -a 2n -1+1, 即a 2n =2a n +a 2n -1-1.(ⅰ)当n =2时,a 22=2a 2+12-1,∵a 2>0,∴a 2=2.(ⅱ)假设当n =k (k ≥2)时,a k =k ,那么当n =k +1时,a 2k +1=2a k +1+a 2k -1=2a k +1+k 2-1⇒[a k +1-(k +1)][a k +1+(k -1)]=0, ∵a k +1>0,k ≥2,∴a k +1+(k -1)>0, ∴a k +1=k +1.即当n =k +1时也成立. ∴a n =n (n ≥2).显然n =1时,也成立,故对于一切n ∈N *,均有a n =n . (2)要证nx +1+ny +1≤2(n +2),只要证nx +1+2(nx +1)(ny +1)+ny +1≤2(n +2). 即n (x +y )+2+2n 2xy +n (x +y )+1≤2(n +2),将x +y =1代入,得2n 2xy +n +1≤n +2, 即只要证4(n 2xy +n +1)≤(n +2)2, 即4xy ≤1.∵x >0,y >0,且x +y =1,∴xy ≤x +y 2=12,即xy ≤14,故4xy ≤1成立,所以原不等式成立.[失误与防范] 证明不等式时,不能利用x +y =1作代换,找不到思路是解答本题中常出现的失误.证题时要注意把题设条件(特别是隐含条件)都找出来,当证题思路打不通时,看看有没有没用上的条件.4.(2013·北京房山摸底)已知曲线C :y 2=2x (y ≥0),A 1(x 1,y 1),A 2(x 2,y 2),…,A n (x n ,y n ),…是曲线C 上的点,且满足0<x 1<x 2<…<x n <…,一列点B i (a i,0)(i =1,2,…)在x 轴上,且△B i -1A i B i (B 0是坐标原点)是以A i 为直角顶点的等腰直角三角形.(1)求A 1,B 1的坐标; (2)求数列{y n }的通项公式;(3)令b i =1a i ,c i =(2)-y i 2,是否存在正整数N ,当n ≥N 时,都有∑i =1nb i <∑i +1n c i ,若存在,求出N 的最小值并证明;若不存在,说明理由.[解析] (1)∵△B 0A 1B 1是以A 1为直角顶点的等腰直角三角形, ∴直线B 0A 1的方程为y =x . 由⎩⎪⎨⎪⎧y =x ,y 2=2x ,y >0,得x 1=y 1=2,即点A 1的坐标为(2,2),进而得B 1(4,0).(2)根据△B n -1A n B n 和△B n A n +1B n +1分别是以A n 和A n +1为直角顶点的等腰直角三角形可得⎩⎪⎨⎪⎧a n =x n +y n ,a n =x n +1-y n +1, 即x n +y n =x n +1-y n +1.(*)∵A n 和A n +1均在曲线C :y 2=2x (y ≥0)上,∴y 2n =2x n ,y 2n +1=2x n +1.∴x n =y 2n 2,x n +1=y 2n +12,代入(*)式得y 2n +1-y 2n =2(y n +1+y n ). ∴y n +1-y n =2(n ∈N *).∴数列{y n }是以y 1=2为首项,2为公差的等差数列. ∴其通项公式为y n =2n (n ∈N *).(3)由(2)可知,x n =y 2n2=2n 2,∴a n =x n +y n =2n (n +1).∴b i =12i (i +1),c i =(2)-y i 2=12i +1,∴∑i =1nb i =12(1×2)+12(2×3)+…+12n (n +1)=12(1-12+12-13+…+1n -1n +1) =12(1-1n +1), ∑i =1n c i =122+123+…+12n +1=14(1-12n )1-12 =12(1-12n ). ∑i =1n b i -∑i =1nc i =12(1-1n +1)-12(1-12n )=12(12n -1n +1)=n +1-2n 2n +1(n +1). 当n =1时,b 1=c 1不符合题意,当n =2时b 2<c 2符合题意,当n =3时,b 3<c 3,符合题意,猜想对于一切大于或等于2的自然数都有∑i =1nb i <∑i =1nc i ,(*)观察知,欲证(*)式成立,只需证明n ≥2时,n +1≤2n . 以下用数学归纳法证明,①当n =2时,左边=3,右边=4,左边<右边; ②假设n =k (k ≥2)时,k +1<2k ,当n =k +1时, 左边=(k +1)+1<2k +1<2k +2k =2k +1=右边.∴对于一切大于或等于2的正整数,都有n +1<2n , 即∑i =1nb i <∑i =1nc i 成立.综上,满足题意的n 的最小值为2.5.已知正项数列{a n }中,对于一切的n ∈N *均有a 2n ≤a n -a n +1成立. (1)证明:数列{a n }中的任意一项都小于1; (2)探究a n 与1n的大小,并证明你的结论.[解析] (1)由a 2n ≤a n -a n +1得a n +1≤a n -a 2n .∵在数列{a n }中a n >0,∴a n +1>0, ∴a n -a 2n >0,∴0<a n <1,故数列{a n }中的任何一项都小于1. (2)解法1:由(1)知0<a n <1=11,那么a 2≤a 1-a 21=-⎝⎛⎭⎫a 1-122+14≤14<12, 由此猜想:a n <1n.下面用数学归纳法证明:当n ≥2,n ∈N 时猜想正确. ①当n =2时,显然成立;②假设当n =k (k ≥2,k ∈N )时,有a k <1k ≤12成立.那么a k +1≤a k -a 2k =-⎝⎛⎭⎫a k -122+14<-⎝⎛⎭⎫1k -122+14=1k -1k 2=k -1k 2<k -1k 2-1=1k +1, ∴当n =k +1时,猜想也正确. 综上所述,对于一切n ∈N *,都有a n <1n .解法2:由a 2n ≤a n -a n +1, 得0<a k +1≤a k -a 2k =a k (1-a k ),∵0<a k <1,∴1a k +1≥1a k (1-a k )=1a k +11-a k ,∴1a k +1-1a k ≥11-a k >1. 令k =1,2,3,…,n -1得:1a 2-1a 1>1,1a 3-1a 2>1,…,1a n -1a n -1>1, ∴1a n >1a 1+n -1>n ,∴a n <1n. 6.设数列{a n }的前n 项和为S n ,对一切n ∈N *,点⎝⎛⎭⎫n ,S n n 都在函数f (x )=x +an 2x 的图象上. (1)求a 1、a 2、a 3的值,猜想a n 的表达式,并用数学归纳法证明;(2)将数列{a n }依次按1项、2项、3项、4项循环地分为(a 1),(a 2,a 3),(a 4,a 5,a 6),(a 7,a 8,a 9,a 10);(a 11),(a 12,a 13),(a 14,a 15,a 16),(a 17,a 18,a 19,a 20);(a 21),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{b n },求b 5+b 100的值.[分析] (1)将点⎝⎛⎭⎫n ,S n n 代入函数f (x )=x +an 2x 中,通过整理得到S n 与a n 的关系,则a 1,a 2,a 3可求;(2)通过观察发现b 100是第25组中第4个括号内各数之和,各组第4个括号中各数之和构成首项为68、公差为80的等差数列,利用等差数列求和公式可求b 100.[解析] (1)∵点⎝⎛⎭⎫n ,S n n 在函数f (x )=x +a n 2x的图象上, ∴S n n =n +a n 2n ,∴S n =n 2+12a n . 令n =1得,a 1=1+12a 1,∴a 1=2; 令n =2得,a 1+a 2=4+12a 2,∴a 2=4; 令n =3得,a 1+a 2+a 3=9+12a 3,∴a 3=6. 由此猜想:a n =2n .用数学归纳法证明如下:①当n =1时,由上面的求解知,猜想成立.②假设n =k (k ≥1)时猜想成立,即a k =2k 成立,则当n =k +1时,注意到S n =n 2+12a n (n ∈N *), 故S k +1=(k +1)2+12a k +1,S k =k 2+12a k . 两式相减得,a k +1=2k +1+12a k +1-12a k ,所以a k +1=4k +2-a k . 由归纳假设得,a k =2k ,故a k +1=4k +2-a k =4k +2-2k =2(k +1).这说明n =k +1时,猜想也成立.由①②知,对一切n ∈N *,a n =2n 成立.(2)因为a n =2n (n ∈N *),所以数列{a n }依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循环记为一组.由于每一个循环含有4个括号,故b 100是第25组中第4个括号内各数之和.由分组规律知,各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20.同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20.故各组第4个括号中各数之和构成等差数列,且公差为80.注意到第一组中第4个括号内各数之和是68,所以b 100=68+24×80=1988,又b 5=22,所以b 5+b 100=2010.[点评] 由已知求出数列的前几项,做出猜想,然后利用数学归纳法证明,是不完全归纳法与数学归纳法相结合的一种重要的解决数列通项公式问题的方法.证明的关键是根据已知条件和假设寻找a k与a k+1或S k与S k+1间的关系,使命题得证.。
[课堂练通考点]1.已知f (x )=x +1x -2(x <0),则f (x )有 ( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4解析:选C ∵x <0,∴f (x )=- ⎣⎡⎦⎤(-x )+1(-x )-2≤-2-2=-4,当且仅当-x =1-x ,即x =-1时取等号.2.(2013·重庆高考改编)(3-a )(a +6)(-6<a <3)的最大值为( ) A .9 B.92 C .3D.322解析:选B ∵-6<a <3,∴3-a >0,a +6>0, ∴(3-a )(a +6)≤⎝⎛⎭⎫3-a +a +622=92,当且仅当3-a =a +6,即a =-32时取等号,∴当a =-32时,(3-a )(a +6)有最大值92.3.(2013·福建高考)若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞)D .(-∞,-2]解析:选D ∵2x +2y ≥22x ·2y =22x +y (当且仅当2x =2y 时等号成立),∴2x +y ≤12,∴2x +y ≤14,得x +y ≤-2.4.已知x 2a 2+y 2b 2=1(a >b >0),则利用柯西不等式判断a 2+b 2与(x +y )2的大小关系为________.解析:∵x 2a 2+y 2b2=1,∴a 2+b 2=(a 2+b 2)⎝⎛⎭⎫x 2a 2+y 2b 2≥⎣⎡⎦⎤⎝⎛⎭⎫a ·x a +⎝⎛⎭⎫b ·y b 2=(x +y )2. 答案:a 2+b 2≥(x +y )25.(2014·济南模拟)若点A (1,1)在直线mx +ny -2=0上,其中mn >0,则1m +1n 的最小值为________.解析:由已知得m +n =2,所以1m +1n =12(m +n )·⎝⎛⎭⎫1m +1n =12⎝⎛⎭⎫2+n m +m n ≥2,当且仅当m =n =1时取等号.答案:26.已知函数f (x )=x +px -1(p 为常数,且p >0)若f (x )在(1,+∞)上的最小值为4,则实数p 的值为________.解析:由题意得x -1>0,f (x )=x -1+px -1+1≥2p +1,当且仅当x =p +1时取等号,因为f (x )在(1,+∞)上的最小值为4,所以2p +1=4,解得p =94.答案:94[课下提升考能]第Ⅰ组:全员必做题1.下列不等式一定成立的是( ) A .lg(x 2+14)>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 解析:选C 取x =12,则lg ⎝⎛⎭⎫x 2+14=lg x ,故排除A ;取x =32π,则sin x =-1,故排除B ;取x =0,则1x 2+1=1,故排除D.2.(2014·宁波模拟)若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ) A.12 B .1 C .2D .4解析:选A ∵a >0,b >0,a +2b =2,∴a +2b =2≥22ab ,即ab ≤12.当且仅当a =1,b =12时等号成立. 3.若a ,b 均为大于1的正数,且ab =100,则lg a ·lg b 的最大值是( ) A .0B .1C .2D.52解析:选B ∵a >1,b >1. ∴lg a >0,lg b >0.lg a ·lg b ≤(lg a +lg b )24=(lg ab )24=1.当且仅当a =b =10时取等号. 4.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2解析:选A ∵x >1,∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2(x -1)+3x -1=(x -1)2+2(x -1)+3x -1=x -1+3x -1+2≥2(x -1)⎝⎛⎭⎫3x -1+2=23+2.当且仅当x -1=3x -1,即x =1+3时,取等号.5已知a >b >c >d ,则⎝⎛⎭⎫1a -b +1b -c +1c -d (a -d )的最小值为( )A .8B .9C .10D .6解析:选B原式=⎝⎛⎭⎫1a -b +1b -c +1c -d [(a -b )+(b -c )+(c -d )]≥331a -b ×1b -c ×1c -d×3 3(a -b )(b -c )(c -d )=9. 当且仅当a -b =b -c =c -d 时等号成立. 6函数y =12-2x +x -1的最大值为________. 解析:函数的定义域为[1,6].y 2=(12-2x +x -1)2=(2×6-x +1×x -1)2≤[(2)2+12]×[(6-x )2+(x -1)2]=3×5=15.∴y 2≤15.由题意知y >0,∴0<y ≤15. 当且仅当2×x -1=1×6-x , 即x =83时等号成立.答案:157.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与仓库到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________公里处.解析:设x 为仓库与车站距离,由已知y 1=20x ;y 2=0.8x 费用之和y =y 1+y 2=0.8x +20x ≥20.8x ·20x =8,当且仅当0.8x =20x ,即x =5时“=”成立.答案:58.(创新题)规定记号“⊗”表示一种运算,即a ⊗b =ab +a +b (a ,b 为正实数).若1⊗k =3,则k 的值为________,此时函数f (x )=k ⊗xx的最小值为________.解析:1⊗k =k +1+k =3, 即k +k -2=0, ∴k =1或k =-2(舍), ∴k =1.f (x )=1⊗x x =x +x +1x=1+x +1x≥1+2=3, 当且仅当x =1x即x =1时等号成立. 答案:1 39.正数x ,y 满足1x +9y =1.(1)求xy 的最小值; (2)求x +2y 的最小值. 解:(1)由1=1x +9y ≥21x ·9y 得xy ≥36,当且仅当1x =9y,即y =9x =18时取等号,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )⎝⎛⎭⎫1x +9y =19+2y x +9xy ≥19+2 2y x ·9xy=19+62,当且仅当2y x =9xy,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2. 10.为了响应国家号召,某地决定分批建设保障性住房供给社会.首批计划用100万元购得一块土地,该土地可以建造每层1 000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高20元.已知建筑第5层楼房时,每平方米建筑费用为800元.(1)若建筑第x 层楼时,该楼房综合费用为y 万元(综合费用是建筑费用与购地费用之和),写出y =f (x )的表达式;(2)为了使该楼房每平方米的平均综合费用最低,应把楼层建成几层?此时平均综合费用为每平方米多少元?解:(1)由题意知建筑第1层楼房每平方米建筑费用为720元, 建筑第1层楼房建筑费用为720×1 000=720 000(元)=72 (万元), 楼房每升高一层,整层楼建筑费用提高20×1 000=20 000(元)=2(万元), 建筑第x 层楼房的建筑费用为72+(x -1)×2=2x +70(万元), 建筑第x 层楼时,该楼房综合费用为y =f (x )=72x +x (x -1)2×2+100=x 2+71x +100,综上可知y =f (x )=x 2+71x +100(x ≥1,x ∈Z ).(2)设该楼房每平方米的平均综合费用为g (x ),则g (x )=f (x )×10 0001 000x =10f (x )x=10(x 2+71x +100)x =10x +1 000x+710≥210x ·1 000x+710=910.当且仅当10x =1 000x,即x =10时等号成立.综上可知应把楼层建成10层,此时平均综合费用最低,为每平方米910元.第Ⅱ组:重点选做题1.(2013·台州一模)设x ,y 均为正实数,且32+x +32+y =1,则xy 的最小值为( )A .4B .4 3C .9D .16解析:选D 由32+x +32+y =1可化为xy =8+x +y ,∵x ,y 均为正实数,∴xy =8+x+y ≥8+2xy (当且仅当x =y 时等号成立),即xy -2xy -8≥0,解得xy ≥4,即xy ≥16,故xy 的最小值为16.2设a ,b ,c ∈R +且a +b +c =1,则12a +1+12b +1+12c +1的最小值是________.解析:∵a +b +c =1,a ,b ,c 为正数,∴⎝⎛⎭⎫12a +1+12b +1+12c +1(2a +1+2b +1+2c +1)≥(1+1+1)2,∴12a +1+12b +1+12c +1≥95. 当且仅当2a +1=2b +1=2c +1, 即a =b =c 时等号成立,∴当a =b =c =13时,12a +1+12b +1+12c +1取最小值95.答案:95。
【走向高考】2015届高考数学一轮总复习 6-4数列的综合问题与数列的应用课后强化作业 新人教A 版基础巩固强化一、选择题1.(文)若a 、b 、c 成等比数列,则函数f (x )=ax 2+bx +c 的图象与x 轴交点的个数是( ) A .0 B .1 C .2 D .不确定 [答案] A[解析] 由题意知,b 2=ac >0,∴Δ=b 2-4ac =-3ac <0,∴f (x )的图象与x 轴无交点. (理)已知数列{a n },{b n }满足a 1=1,且a n 、a n +1是函数f (x )=x 2-b n x +2n 的两个零点,则b 10等于( )A .24B .32C .48D .64 [答案] D[解析] 依题意有a n a n +1=2n ,所以a n +1a n +2=2n +1,两式相除得a n +2a n=2,所以a 1,a 3,a 5,…成等比数列,a 2,a 4,a 6,…成等比数列,而a 1=1,a 2=2,所以a 10=2×24=32,a 11=1×25=32.又因为a n +a n +1=b n ,所以b 10=a 10+a 11=64,故选D.2.(文)小正方形按照下图中的规律排列:每小图中的小正方形的个数就构成一个数列{a n },有以下结论:①a 5=15;②数列{a n }是一个等差数列;③数列{a n }是一个等比数列;④数列的递推公式为:a n =a n -1+n (n ∈N *),其中正确的为( )A .①②④B .①③④C .①②D .①④[答案] D[解析] 观察图形可知a n =1+2+3+…+n =n (n +1)2.∴选D.(理)某同学在电脑中打出如下若干个圈:●○●○○●○○○●○○○○●○○○○○●……若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前2014个圈中的●的个数是( )A .60B .61C .62D .63 [答案] C[解析] 第一次出现●在第1个位置;第二次出现●在第(1+2)个位置;第三次出现●在第(1+2+3)个位置;…;第n 次出现●在第(1+2+3+…+n )个位置.∵1+2+3+…+n =n (n +1)2,当n =62时,n (n +1)2=62×(62+1)2=1953,2014-1953=61<63,∴在前2014个圈中的●的个数是62.3.(2012·沈阳市二模)设等差数列{a n }的前n 项和为S n ,若a 2、a 4是方程x 2-x -2=0的两个实数根,则S 5的值为( )A.52 B .5 C .-52 D .-5 [答案] A[解析] ∵a 2、a 4是方程x 2-x -2=0的两实根, ∴a 2+a 4=1,∴S 5=5×(a 1+a 5)2=5(a 2+a 4)2=52.4.(文)已知{a n }为等差数列,{b n }为正项等比数列,公式q ≠1,若a 1=b 1,a 11=b 11,则( ) A .a 6=b 6 B .a 6>b 6 C .a 6<b 6 D .以上都有可能[答案] B[解析] a 6=a 1+a 112,b 6=b 1b 11=a 1a 11,由q ≠1得,a 1≠a 11. 故a 6=a 1+a 112>a 1a 11=b 6.(理)(2012·吉林省实验中学模拟)已知正数组成的等差数列{a n }的前20项的和是100,那么a 6·a 15的最大值是( )A .25B .50C .100D .不存在 [答案] A[解析] 由条件知,a 6+a 15=a 1+a 20=110S 20=110×100=10,a 6>0,a 15>0,∴a 6·a 15≤(a 6+a 152)2=25,等号在a 6=a 15=5时成立,即当a n =5(n ∈N *)时,a 6·a 15取最大值25.5.已知{a n }是等差数列,S n 为其前n 项和,若S 29=S 4000,O 为坐标原点,点P (1,a n ),点Q (2015,a 2015),则OP →·OQ →=( )A .2015B .-2015C .0D .1[答案] A[解析] 由S 29=S 4000得到S n 关于n =29+40002=2014.5对称,故S n 的最大(或最小)值为S 2014=S 2015,故a 2015=0,OP →·OQ →=2015+a n ·a 2015=2015+a n ×0=2015,故选A.6.(2013·江南十校联考)已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2013=( )A.2012-1B.2013-1C.2014-1D.2014+1[答案] C[解析] 由f (4)=2可得4a=2,解得a =12,则f (x )=x 12 .∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2013=a 1+a 2+a 3+…+a 2013=(2-1)+(3-2)+(4-3)+…+(2014-2013)=2014-1.二、填空题7.(文)已知{a n }是公差不为0的等差数列,{b n }是等比数列,其中a 1=2,b 1=1,a 2=b 2,2a 4=b 3,且存在常数α、β,使得a n =log αb n +β对每一个正整数n 都成立,则αβ=________.[答案] 4[解析] 设{a n }的公差为d ,{b n }的公比为q ,则⎩⎪⎨⎪⎧ 2+d =q ,2(2+3d )=q 2.解得⎩⎪⎨⎪⎧q =2,d =0,(舍去)或⎩⎪⎨⎪⎧q =4,d =2.所以a n =2n ,b n =4n -1.若a n =log αb n +β对每一个正整数n 都成立,则满足2n =log α4n -1+β,即2n =(n -1)log α4+β,因此只有当α=2,β=2时上式恒成立,所以αβ=4. (理)在等比数列{a n }中,首项a 1=23,a 4=⎠⎛14(1+2x )d x ,则公比q 为________.[答案] 3[解析] ∵a 4=⎠⎛14(1+2x )d x =(x +x 2)|41=(4+42)-(1+12)=18,∴q 3=a 4a 1=27, ∴q =3.8.小王每月除去所有日常开支,大约结余a 元.小王决定采用零存整取的方式把余钱积蓄起来,每月初存入银行a 元,存期1年(存12次),到期取出本和息.假设一年期零存整取的月利率为r ,每期存款按单利计息.那么,小王存款到期利息为________元.[答案] 78ar[解析] 依题意得,小王存款到期利息为12ar +11ar +10ar +…+3ar +2ar +ar =12(12+1)2ar =78ar 元. 9.(文)已知m 、n 、m +n 成等差数列,m 、n 、mn 成等比数列,则椭圆x 2m +y 2n =1的离心率为________.[答案]22[解析] 由2n =2m +n 和n 2=m 2n 可得m =2,n =4, ∴e =n -m n=22. (理)已知双曲线a n -1y 2-a n x 2=a n -1a n (n ≥2,n ∈N *)的焦点在y 轴上,一条渐近线方程是y =2x ,其中数列{a n }是以4为首项的正项数列,则数列{a n }的通项公式是________.[答案] a n =2n +1[解析] 双曲线方程为y 2a n -x 2a n -1=1,∵焦点在y 轴上, 又渐近线方程为y =2x , ∴a na n -1=2, 又a 1=4,∴a n =4×2n -1=2n +1. 三、解答题10.(文)(2013·浙江萧山五校联考)已知二次函数y =f (x )的图象经过坐标原点,其导函数f ′(x )=2x +2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)设b n =2n ·a n ,T n 是数列{b n }的前n 项和,求T n . [解析] (1)设f (x )=ax 2+bx ,f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x , ∴S n =n 2+2n ,∴当n ≥2时,a n =S n -S n -1=(n 2+2n )-[(n -1)2+2(n -1)]=2n +1, 又a 1=S 1=3,适合上式,∴a n =2n +1. (2)b n =(2n +1)·2n ,∴T n =3·21+5·22+7·23+…+(2n +1)·2n , ∴2T n =3·22+5·23+7·24+…+(2n +1)·2n +1,相减得-T n =3·21+2·(22+23+…+2n )-(2n +1)·2n +1=6+2·4·(1-2n -1)1-2-(2n +1)·2n +1=(1-2n )·2n +1-2,∴T n =(2n -1)·2n +1+2.(理)已知函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)若数列{a n }和数列{b n }满足等式:a n =b 12+b 222+b 323+…+b n2n (n ∈N *),求数列{b n }的前n项和T n .[解析] (1)由题意可设f (x )=ax 2+bx +c , 则f ′(x )=2ax +b =6x -2,∴a =3,b =-2, ∵f (x )过原点,∴c =0,∴f (x )=3x 2-2x .依题意得S n =3n 2-2n .n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5, n =1时,a 1=S 1=1适合上式. ∴a n =6n -5(n ∈N *). (2)∵a n =b 12+b 222+b 323+…+b n2n ,∴a n -1=b 12+b 222+b 323+…+b n -12n -1(n ≥2).相减得b n2n =6,∴b n =6·2n (n ≥2).b 1=2a 1=2,∴b n =⎩⎪⎨⎪⎧2 (n =1),6·2n (n ≥2).∴T n =2+6(22+23+…+2n )=3·2n +2-22.能力拓展提升一、选择题11.椭圆x 24+y 23=1上有n 个不同的点P 1、P 2、…、P n ,椭圆的右焦点为F ,数列{|P n F |}是公差大于11000的等差数列,则n 的最大值为( )A .2001B .2000C .1999D .1998[答案] B[分析] 公差确定后,首项和末项之差越大,等差数列的项数就越多(即n 越大),故P 1与P n 取长轴两端点时n 取最大值,可依据公差大于11000列不等式解.[解析] ∵|P n F |max =a +c =3,|P n F |min =a -c =1, d =a n -a 1n -1=3-1n -1>11000,n ∈N ,∴n max =2000,故选B.12.(文)数列{a n }是公差d ≠0的等差数列,数列{b n }是等比数列,若a 1=b 1,a 3=b 3,a 7=b 5,则b 11等于( )A .a 63B .a 36C .a 31D .a 13 [答案] A[解析] 设数列{b n }的首项为b 1,公比为q ,则⎩⎪⎨⎪⎧a 1+2d =a 1q 2,a 1+6d =a 1q 4.得d =a 14(q 4-q 2). ∴a 1+a 12(q 4-q 2)=a 1q 2,∵q ≠1,∴q 2=2,d =a 12,于是b 11=a 1q 10=32a 1.设32a 1=a 1+(n -1)·a 12,则n =63,∴b 11=a 63.(理)(2013·河北教学质量监测)已知数列{a n }满足:a 1=1,a n +1=a na n +2(n ∈N *).若b n +1=(n-λ)(1a n+1)(n ∈N *),b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值范围为( )A .λ>2B .λ>3C .λ<2D .λ<3[答案] C[解析] 由已知可得1a n +1=2a n +1,1a n +1+1=2(1a n +1),1a 1+1=2≠0,则1a n +1=2n ,b n +1=2n (n -λ),b n =2n -1(n -1-λ)(n ≥2,n ∈N *),b 1=-λ也适合上式,故b n =2n -1(n -1-λ)(n ∈N *).由b n +1>b n ,得2n (n -λ)>2n -1(n -1-λ),即λ<n +1恒成立,而n +1的最小值为2,故实数λ的取值范围为λ<2.13.(文)如图,是一个算法的程序框图,该算法输出的结果是( )A.12B.23C.34D.45 [答案] C[解析] 循环过程为i =1<4→i =2,m =1,S =11×2; i =2<4→i =3,m =2,S =11×2+12×3;i =3<4→i =4,m =3,S =11×2+12×3+13×4;i =4<4不成立,输出S 的值. 故S =11×2+12×3+13×4=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14 =1-14=34.(理)已知数列{a n }的各项均为正数,如图给出程序框图,当k =5时,输出的S =511,则数列{a n }的通项公式为( )A .a n =2nB .a n =2n -1C .a n =2n +1D .a n =2n -3[答案] B[解析] 由a i +1=a i +2知数列{a n }是公差为2的等差数列,由M =1a i ai +1及S =S +M 知,S =1a 1a 2+1a 2a 3+…+1a i a i +1, 由条件i ≤k 不满足时输出S 及输入k =5,输出S =511知,1a 1a 2+1a 2a 3+…1a 5a 6=12[(1a 1-1a 2)+(1a 2-1a 3)+…(1a 5-1a 6)]=12(1a 1-1a 6)=12(1a 1-1a 1+10)=5a 1(a 1+10)=511, ∵a 1>0,∴a 1=1,∴a n =2n -1. 二、填空题14.(2013·广东佛山一模)我们可以利用数列{a n }的递推公式,求出这个数列各项的值,使得这个数列中的每一项都是奇数,则a 24+a 25=________;研究发现,该数列中的奇数都会重复出现,那么第8个5是该数列的第________项.[答案] 28 640[解析] a 24+a 25=a 12+25=a 6+25=a 3+25=3+25=28. 5=a 5=a 10=a 20=a 40=a 80=a 160=a 320=a 640.15.已知数列{a n }的通项公式为a n =2n (n ∈N *),把数列{a n }的各项排列成如图所示的三角形数阵:2 22 23 24 25 26 27 28 29 210……记M (s ,t )表示该数阵中第s 行的第t 个数,则M (11,2)对应的数是________(用2n 的形式表示,n ∈N ).[答案] 257[解析] 由数阵的排列规律知,第m 行的最后一个数是数列{a n }的第1+2+3+…+m =m (m +1)2项,且该行有m 项,由此可知第11行的第2个数是数列{a n }的第10×112+2=57项,对应的数是257.三、解答题16.(文)已知数列{a n }是公差d ≠0的等差数列,记S n 为其前n 项和. (1)若a 2、a 3、a 6依次成等比数列,求其公比q .(2)若a 1=1,证明点P 1⎝⎛⎭⎫1,S 11,P 2⎝⎛⎭⎫2,S 22,…,P n ⎝⎛⎭⎫n ,S nn (n ∈N *)在同一条直线上,并写出此直线方程.[解析] (1)∵a 2、a 3、a 6依次成等比数列, ∴q =a 3a 2=a 6a 3=a 6-a 3a 3-a 2=3dd =3,即公比q =3.(2)证明:∵S n =na 1+n (n -1)2d ,∴S nn =a 1+n -12d =1+n -12d . ∴点P n ⎝⎛⎭⎫n ,S n n 在直线y =1+x -12d 上. ∴点P 1,P 2,…,P n (n ∈N *)都在过点(1,1)且斜率为d2的直线上.此直线方程为y -1=d2(x -1).即dx -2y +2-d =0.(理)在等差数列{a n }中, 设S n 为它的前n 项和,若S 15>0,S 16<0,且点A (3,a 3)与B (5,a 5)都在斜率为-2的直线l 上,(1)求a 1的取值范围;(2)指出S 1a 1,S 2a 2,…,S 15a 15中哪个值最大,并说明理由.[解析] (1)由已知可得a 5-a 35-3=-2,则公差d =-2,∴⎩⎨⎧S 15=15a 1+15×142×d =15(a 1-14)>0,S16=16a 1+16×152×d =16(a 1-15)<0.∴14<a 1<15. (2)最大的值是S 8a 8,∵S 15=15a 8>0,S 16=8(a 8+a 9)<0, ∴a 8>0,a 9<0,即S 8最大.又当1≤i ≤8时,S i a i >0;当9≤i ≤15时,S ia i <0,∵数列{a n }递减,∴S 1a 1≤S 2a 2≤…≤S 8a 8,S 8a 8≥S 9a 9≥…≥S 15a 15⇒S 8a 8最大. 考纲要求能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.补充说明1.等比数列综合问题的解题思路在解答等差、等比数列综合问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,往往能取得与“巧用性质”相同的解题效果,既要掌握“通法”,又要注重“特法”.2.通过数列通项公式观察数列特点和规律,在分析数列通项的基础上,判断求和类型,寻找求和的方法,将数列拆为基本数列,或转化为基本数列求和.求和过程中同时要对项数作出准确判断.3.含有字母的数列求和,常伴随着分类讨论.4.数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解,深刻领悟它在解题中的重大作用,常用的数学思想方法有:“函数与方程”、“数形结合”、“分类讨论”、“等价转换”等.备选习题1.设正项等比数列{a n }的前n 项之积为T n ,且T 10=32,则1a 5+1a 6的最小值为( )A .2 2 B. 2 C .2 3 D. 3 [答案] B[解析] 由条件知,T 10=a 1a 2…a 10=(a 5a 6)5=32,∵a n >0,∴a 5a 6=2,∴1a 5+1a 6=12·a 5a 6·(1a 5+1a 6)=12(a 5+a 6)≥12×2a 5a 6=2,等号在a 5=a 6=2时成立. 2.设等差数列{a n }的前n 项和为S n ,则a 6+a 7>0是S 9≥S 3的( ) A .充分但不必要条件 B .必要但不充分条件 C .充要条件 D .既不充分也不必要条件[答案] A[解析] ∵S 9≥S 3⇔a 4+a 5+a 6+a 7+a 8+a 9≥0⇔3(a 6+a 7)≥0⇔a 6+a 7≥0,∴a 6+a 7>0⇒a 6+a 7≥0,但a 6+a 7≥0⇒/ a 6+a 7>0,故选A.3.已知数列{a n }、{b n }满足a 1=12,a n +b n =1,b n +1=b n 1-a 2n ,则b 2014=( )A.20132014B.20142013C.20142015D.20152014 [答案] C[解析] ∵a n +b n =1,a 1=12,∴b 1=12,∵b n +1=b n 1-a 2n ,∴b 2=b 11-a 21=23, ∴a 2=13,b 3=b 21-a 22=34,a 3=14,b 4=b 31-a 23=45,a 4=15,…,观察可见a n=1n +1,b n =n n +1,∴b 2014=20142015,故选C.4.(2013·武汉调研)在如图所示的数表中,第i 行第j 列的数记为a i ,j ,且满足a 1,j =2j -1,a i,1=i ,a i +1,j +1=a i ,j +a i +1,j (i ,j ∈N *);又记第3行的3,5,8,13,22,39,…,为数列{b n },则(1)(2)数列{b n }的通项公式为________. [答案] (1)129 (2)b n =2n -1+n +1,n ∈N *5.已知f (x )=a 1x +a 2x 2+…+a n x n (n 为正偶数)且{a n }为等差数列,f (1)=n 2,f (-1)=n ,试比较f ⎝⎛⎭⎫12与3的大小,并证明你的结论.[解析] 由f (1)=n 2,f (-1)=n 得,a 1=1,d =2. ∴f ⎝⎛⎭⎫12=⎝⎛⎭⎫12+3⎝⎛⎭⎫122+5⎝⎛⎭⎫123+…+(2n -1)· ⎝⎛⎭⎫12n ,两边同乘以12得,12f ⎝⎛⎭⎫12=⎝⎛⎭⎫122+3⎝⎛⎭⎫123+…+(2n -3)⎝⎛⎭⎫12n +(2n -1)⎝⎛⎭⎫12n +1, 两式相减得,12f ⎝⎛⎭⎫12=12+2⎝⎛⎭⎫122+2⎝⎛⎭⎫123+…+2⎝⎛⎭⎫12n -(2n -1)⎝⎛⎭⎫12n +1=12+12⎝⎛⎭⎫1-12n -11-12-(2n -1)12n +1. ∴f ⎝⎛⎭⎫12=3-2n +32n<3.。
参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上__________的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组所确定的点M (x ,y )都在____________,那么方程就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称______.相对于参数方程而言,直接给出点的坐标间关系的方程叫做__________. 2.几种常见曲线的参数方程(1)直线:经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程是____________(t 为参数). (2)圆:以O ′(a ,b )为圆心,r 为半径的圆的参数方程是____________,其中α是参数.当圆心在(0,0)时,方程⎩⎪⎨⎪⎧x =r cos α,y =r sin α.(3)椭圆:中心在原点,坐标轴为对称轴的椭圆的参数方程有以下两种情况: 椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是____________,其中φ是参数.椭圆x 2b 2+y 2a2=1(a >b >0)的参数方程是____________,其中φ是参数.(4)抛物线:抛物线y 2=2px (p >0)的参数方程是⎩⎪⎨⎪⎧x =2pt 2,y =2pt .(t 为参数).1.(课本习题改编)若直线的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =2-3t (t 为参数),则直线的斜率为________.2.椭圆⎩⎪⎨⎪⎧x =2cos θ,y =5sin θ(θ为参数)的离心率为________.3.已知点P (3,m )在以点F 为焦点的抛物线⎩⎪⎨⎪⎧x =4t 2,y =4t (t 为参数)上,则|PF |=________.4.(课本习题改编)直线⎩⎪⎨⎪⎧x =-1+t sin 40°,y =3+t cos 40°(t 为参数)的倾斜角为________.5.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =3t ,y =2t 2+1(t 为参数).则点M 1(0,1),M 2(5,4)在曲线C 上的是________.题型一 参数方程与普通方程的互化例1 已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),它们的交点坐标为________.思维升华 (1)参数方程化为普通方程常用的消参技巧有代入消元、加减消元、平方后再加减消元等.对于与角θ有关的参数方程,经常用到的公式有sin 2θ+cos 2θ=1,1+tan 2θ=1cos 2θ等.(2)在将曲线的参数方程化为普通方程时,还要注意其中的x ,y 的取值范围,即在消去参数的过程中一定要注意普通方程与参数方程的等价性.(2013·广东)已知曲线C 的参数方程为⎩⎨⎧x =2cos ty =2sin t(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为________.题型二 参数方程的应用例2 在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数),直线l 经过点P (2,2),倾斜角α=π3.(1)写出圆的标准方程和直线l 的参数方程; (2)设l 与圆C 相交于A 、B 两点,求|P A |·|PB |的值.思维升华 根据直线的参数方程的标准式中t 的几何意义,有如下常用结论: (1)直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; (2)定点M 0是弦M 1M 2的中点⇒t 1+t 2=0;(3)设弦M 1M 2中点为M ,则点M 对应的参数值t M =t 1+t 22(由此可求|M 2M |及中点坐标).已知直线l 的参数方程为⎩⎨⎧x =3+12t ,y =2+32t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数). (1)将曲线C 的参数方程化为普通方程;(2)若直线l 与曲线C 交于A 、B 两点,求线段AB 的长.题型三 极坐标、参数方程的综合应用例3 在直角坐标平面内,以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.曲线C 的极坐标方程是ρ=4cos θ,直线l 的参数方程是⎩⎨⎧x =-3+32t ,y =12t(t 为参数),M ,N分别为曲线C 、直线l 上的动点,则|MN |的最小值为________.思维升华 涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.转化后可使问题变得更加直观,它体现了化归思想的具体运用.(2013·湖北)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =a cos φy =b sin φ(φ为参数,a >b >0),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为ρsin(θ+π4)=22m (m为非零常数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为________.参数的几何意义不明致误典例:(10分)已知直线l 的参数方程为⎩⎨⎧x =12t ,y =22+32t(t 为参数),若以直角坐标系xOy 的O 点为极点,Ox 方向为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程为ρ=2cos(θ-π4).(1)求直线l 的倾斜角;(2)若直线l 与曲线C 交于A ,B 两点,求|AB |.易错分析 不明确直线的参数方程中的几何意义导致错误. 规范解答解 (1)直线的参数方程可以化为⎩⎪⎨⎪⎧x =t cos 60°,y =22+t sin 60°,[2分]根据直线参数方程的意义,直线l 经过点(0,22), 倾斜角为60°.[4分](2)直线l 的直角坐标方程为y =3x +22,[6分] ρ=2cos(θ-π4)的直角坐标方程为(x -22)2+(y -22)2=1,[8分]所以圆心(22,22)到直线l 的距离d =64. 所以|AB |=102.[10分] 温馨提醒 对于直线的参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)来说,要注意t 是参数,而α则是直线的倾斜角.与此类似,椭圆参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ的参数φ有特别的几何意义,它表示离心角.方法与技巧1.参数方程化普通方程常用的消参技巧:代入消元、加减消元、平方后加减消元等,经常用到公式:cos 2θ+sin 2θ=1,1+tan 2θ=1cos 2θ.2.利用曲线的参数方程来求解两曲线间的最值问题非常简捷方便,是我们解决这类问题的好方法.3.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α.(t 为参数).若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到:①t 0=t 1+t 22;②|PM |=|t 0|=⎪⎪⎪⎪⎪⎪t 1+t 22;③|AB |=|t 2-t 1|;④|P A |·|PB |=|t 1·t 2|. 失误与防范在将曲线的参数方程化为普通方程时,不仅仅要把其中的参数消去,还要注意其中的x ,y 的取值范围.也即在消去参数的过程中一定要注意普通方程与参数方程的等价性.A 组 专项基础训练1.若直线的参数方程为⎩⎨⎧x =1+3t ,y =2-3t(t 为参数),则直线的倾斜角为________.2.将参数方程⎩⎪⎨⎪⎧x =3t 2+2,y =t 2-1(0≤t ≤5)化为普通方程为________________. 3.(2013·湖南)在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.4.(2013·陕西)如图,以过原点的直线的倾斜角θ为参数,则圆x 2+y 2-x =0的参数方程为______________.5.已知曲线C :⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(参数θ∈R )经过点(m ,12),则m =________.6.(2013·重庆)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB |=________.7.(2012·天津)已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .若|EF |=|MF |,点M 的横坐标是3,则p =________.8.已知曲线C :⎩⎪⎨⎪⎧ x =2cos θ,y =2sin θ(θ为参数)和直线l :⎩⎪⎨⎪⎧x =t ,y =t +b (t 为参数,b 为实数),若曲线C 上恰有3个点到直线l 的距离等于1,则b =________.9.在直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧ x =t +1,y =1-2t (t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,则a =________.10.若直线l 的极坐标方程为ρcos(θ-π4)=32,圆C :⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数)上的点到直线l 的距离为d ,则d 的最大值为________.B 组 专项能力提升1.已知抛物线C 1的参数方程为⎩⎪⎨⎪⎧x =8t2y =8t (t 为参数),圆C 2的极坐标方程为ρ=r (r >0),若斜率为1的直线经过抛物线C 1的焦点,且与圆C 2相切,则r =________.2.直线⎩⎪⎨⎪⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数为________.3.在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t (t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________. 4.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知射线θ=π4与曲线⎩⎪⎨⎪⎧x =t +1,y =(t -1)2 (t 为参数)相交于A ,B 两点,则线段AB 的中点的直角坐标为________.5.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =4-2t ,y =t -2(t 为参数),P 是椭圆x 24+y 2=1上的任意一点,则点P 到直线l 的距离的最大值为________.6.已知圆C 的参数方程为⎩⎪⎨⎪⎧x =cos αy =1+sin α (α为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ=1,则直线l 与圆C 的交点的直角坐标为________________.7.(2013·辽宁改编)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎫θ-π4=2 2. (1)C 1与C 2交点的极坐标为________;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),则a ,b 的值分别为________.答案基础知识自主学习 要点梳理1.任意一点 这条曲线上 参数 普通方程2.(1)⎩⎪⎨⎪⎧ x =x 0+t cos α,y =y 0+t sin α (2)⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α(3)⎩⎪⎨⎪⎧ x =a cos φ,y =b sin φ ⎩⎪⎨⎪⎧x =b cos φ,y =a sin φ夯基释疑1.-32 2.215 3.4 4.50° 5.M 1题型分类深度剖析 例1 ⎝⎛⎭⎫1,255解析 将两曲线的参数方程化为普通方程分别为x 25+y 2=1 (0≤y ≤1,-5<x ≤5)和y 2=45x ,联立解得交点为⎝⎛⎭⎫1,255.跟踪训练1 ρcos θ+ρsin θ-2=0解析 由⎩⎪⎨⎪⎧x =2cos ty =2sin t(t 为参数),得曲线C 的普通方程为x 2+y 2=2.则在点(1,1)处的切线l的方程为y -1=-(x -1),即x +y -2=0.又x =ρcos θ,y =ρsin θ,∴l 的极坐标方程为ρcos θ+ρsin θ-2=0.例2 解 (1)由圆C 的参数方程可得其标准方程为x 2+y 2=16.因为直线l 过点P (2,2),倾斜角α=π3,所以直线l 的参数方程为⎩⎨⎧x =2+t cos π3,y =2+t sin π3,即⎩⎨⎧x =2+12t ,y =2+32t (t 为参数).(2)把直线l 的参数方程⎩⎨⎧x =2+12t ,y =2+32t代入圆C :x 2+y 2=16中,得(2+12t )2+(2+32t )2=16,t 2+2(3+1)t -8=0,设A 、B 两点对应的参数分别为t 1、t 2,则t 1t 2=-8,即|P A |·|PB |=8. 跟踪训练2 解 (1)x 2+y 2=16.(2)将⎩⎨⎧x =3+12t ,y =2+32t 代入x 2+y 2=16,并整理得t 2+33t -9=0.设A 、B 对应的参数为t 1、t 2,则t 1+t 2=-33,t 1t 2=-9. |AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=37.例312解析 化极坐标方程ρ=4cos θ为直角坐标方程x 2+y 2-4x =0,所以曲线C 是以(2,0)为圆心,2为半径的圆.化参数方程⎩⎨⎧x =-3+32t ,y =12t(t 为参数)为普通方程x -3y +3=0.圆心到直线l 的距离d=|2+3|1+3=52,此时,直线与圆相离,所以|MN |的最小值为52-2=12. 跟踪训练363解析 椭圆C 的标准方程为x 2a 2+y 2b 2=1,直线l 的标准方程为x +y =m ,圆O 的方程为x 2+y 2=b 2,由题意知⎩⎨⎧|m |2=b a 2-b 2=|m |,∴a 2-b 2=2b 2,a 2=3b 2,∴e =c 2a 2=3b 2-b 23b 2=23=63.练出高分 A 组 1.150°解析 由直线的参数方程知,斜率k =y -2x -1=-3t 3t =-33=tan θ,θ为直线的倾斜角,所以该直线的倾斜角为150°. 2.x -3y -5=0,x ∈[2,77]解析 化为普通方程为x =3(y +1)+2,即x -3y -5=0,由于x =3t 2+2∈[2,77],故曲线为线段. 3.3解析 椭圆C 的右顶点坐标为(3,0),若直线l 过(3,0),则0=3-a ,∴a =3.4.⎩⎨⎧x =12+12cos 2θ,y =12sin 2θ0≤θ<π解析 由题意得圆的标准方程为⎝⎛⎭⎫x -122+y 2=⎝⎛⎭⎫122,设圆与x 轴的另一交点为Q ,则Q (1,0),设点P 的坐标为(x ,y ),则OP =OQ cos θ=cos θ.∴⎩⎨⎧x =OP cos θ=cos 2θ=12+12cos 2θ,y =OP sin θ=cos θ·sin θ=12sin 2θ0≤θ<π.5.±154解析 将曲线C :⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(参数θ∈R )化为普通方程为x 2+y 24=1,将点(m ,12)代入该椭圆方程,得m 2+144=1,即m 2=1516,所以m =±154.6.16解析 将极坐标方程ρcos θ=4化为直角坐标方程得x =4,将x =4代入⎩⎪⎨⎪⎧x =t 2,y =t 3得t =±2,从而y =±8.所以A (4,8),B (4,-8).所以|AB |=|8-(-8)|=16.7.2解析 根据抛物线的参数方程可知抛物线的标准方程是y 2=2px ,所以y 2M =6p ,所以E ⎝⎛⎭⎫-p 2,±6p ,F ⎝⎛⎭⎫p 2,0,所以p 2+3=p 2+6p ,所以p 2+4p -12=0,解得p =2(负值舍去).8.±2解析 将曲线C 和直线l 的参数方程分别化为普通方程为x 2+y 2=4和y =x +b ,依题意,若要使圆上有3个点到直线l 的距离为1,只要满足圆心到直线的距离为1即可,得到|b |2=1,解得b =±2.9.32解析 将曲线C 1与C 2的方程化为普通方程求解. ∵⎩⎪⎨⎪⎧ x =t +1,y =1-2t ,消去参数t 得2x +y -3=0. 又⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ,消去参数θ得x 2a 2+y 29=1. 方程2x +y -3=0中,令y =0得x =32, 将⎝⎛⎭⎫32,0代入x 2a 2+y 29=1,得94a 2=1.又a >0,∴a =32. 10.32+1解析 ρcos(θ-π4)=32,∴ρcos θ+ρsin θ=6, ∴直线l 的直角坐标方程为x +y =6.由圆C 的参数方程知圆C 的圆心为C (0,0),半径r =1.圆心C (0,0)到直线l 的距离为62=3 2.∴d min =32+1. B 组1. 2解析 抛物线C 1的普通方程为y 2=8x ,其焦点坐标是(2,0),过该点且斜率为1的直线方程是y =x -2,即x -y -2=0.圆ρ=r 的圆心是极点、半径为r ,直线x -y -2=0与该圆相切,则r =|0-0-2|2= 2. 2.2解析 将参数方程化为普通方程求解.将⎩⎪⎨⎪⎧ x =2+t ,y =-1-t 消去参数t 得直线x +y -1=0; 将⎩⎪⎨⎪⎧x =3cos α,y =3sin α消去参数α得圆x 2+y 2=9. 又圆心(0,0)到直线x +y -1=0的距离d =22<3. 因此直线与圆相交,故直线与曲线有2个交点.3.(1,1)解析 化参数方程为普通方程然后解方程组求解.C 1的普通方程为y 2=x (x ≥0,y ≥0),C 2的普通方程为x 2+y 2=2.由⎩⎪⎨⎪⎧ y 2=x ,x ≥0,y ≥0,x 2+y 2=2得⎩⎪⎨⎪⎧x =1,y =1. ∴C 1与C 2的交点坐标为(1,1).4.⎝⎛⎭⎫52,52 解析 化射线的极坐标方程为普通方程,代入曲线方程求t 值.射线θ=π4的普通方程为y =x (x ≥0),代入⎩⎪⎨⎪⎧x =t +1,y =(t -1)2,得t 2-3t =0,解得t =0或t =3. 当t =0时,x =1,y =1,即A (1,1);当t =3时,x =4,y =4,即B (4,4).所以AB 的中点坐标为⎝⎛⎭⎫52,52. 5.2105解析 由于直线l 的参数方程为⎩⎪⎨⎪⎧ x =4-2t ,y=t -2(t 为参数),故直线l 的普通方程为x +2y =0. 因为P 为椭圆x 24+y 2=1上的任意一点,故可设P (2cos θ,sin θ),其中θ∈R .因此点P 到直线l 的距离是d =|2cos θ+2sin θ|12+22 =22⎪⎪⎪⎪sin ⎝⎛⎭⎫θ+π45.所以当θ=k π+π4,k ∈Z 时,d 取得最大值2105.6.(-1,1)和(1,1)解析 ∵y =ρsin θ,∴直线l 的直角坐标方程为y =1. 由⎩⎪⎨⎪⎧ x =cos α,y =1+sin α得x 2+(y -1)2=1.由⎩⎪⎨⎪⎧ y =1,x 2+(y -1)2=1得⎩⎪⎨⎪⎧ x =-1,y =1或⎩⎪⎨⎪⎧ x =1,y =1.∴直线l 与圆C 的交点的直角坐标为(-1,1)和(1,1).7.(1)⎝⎛⎭⎫4,π2,⎝⎛⎭⎫22,π4 (2)-1,2解析 (1)圆C 1的直角坐标方程为x 2+(y -2)2=4, 直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧ x 1=0,y 1=4,⎩⎪⎨⎪⎧ x 2=2,y 2=2.所以C 1与C 2交点的极坐标为⎝⎛⎭⎫4,π2,⎝⎛⎭⎫22,π4,注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3). 故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab 2+1,所以⎩⎨⎧ b 2=1,-ab 2+1=2,解得a =-1,b =2.。
【走向高考】2015届高考数学一轮总复习 6-1数列的概念课后强化作业 新人教B 版基础巩固强化一、选择题1.数列{a n }的通项公式a n =2n3n +1,则这个数列是( ) A .递增数列 B .递减数列 C .摆动数列 D .常数列 [答案]A[解析]a n =23-29n +3,∵n ∈N *,∴a n 随n 的增大而增大,故选A.[点评] 上面解答过程利用了反比例函数y =-1x 的单调性,也可以直接验证a n +1-a n >0.2.(文)设数列{(-1)n }的前n 项和为S n ,则对任意正整数n ,S n =( ) A.n [(-1)n -1]2 B.(-1)n -1+12C.(-1)n +12D.(-1)n -12[答案]D[解析]因为数列{(-1)n}是首项与公比均为-1的等比数列,所以S n =-1-(-1)n ×(-1)1-(-1)=(-1)n -12,选D.[点评] 直接检验,S 1=-1,排除B ,C ;S 3=-1,排除A ,故选D.(理)已知数列{a n }的通项公式为a n =log 3nn +1(n ∈N *),设其前n 项和为S n ,则使S n <-4成立的最小自然数n 等于( )A .83B .82C .81D .80 [答案]C[解析]∵a n =log 3nn +1=log 3n -log 3(n +1),∵S n =log 31-log 32+log 32-log 33+…+log 3n -log 3(n +1)=-log 3(n +1)<-4,解得n >34-1=80.3.(文)已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈R ),则a 2014=( ) A .0 B .- 3 C.3D.32[答案]A[解析]∵a 1=0,∴a 2=-3,a 3=3,a 4=0,a 5=-3,a 6=3,∴数列{a n }的周期为3,∴a 2014=a 1=0,故选A.(理)(2013·麻城实验高中月考)设数列{a n }满足:a 1=2,a n +1=1-1a n,记数列{a n }的前n项之积为πn ,则π2012的值为( )A .-12B .-1C.12D .1 [答案]D[解析]∵a 1=2,a n +1=1-1a n ,∴a 1=2,a 2=12,a 3=-1,a 4=2,故数列{a n }是周期为3的周期数列,且a 1a 2a 3=-1,又2012=670×3+2,∴π2012=(-1)670×2×12=1.4.在数列{a n }中,已知a n +1+a n -1=2a n (n ∈N +,n ≥2),若平面上的三个不共线的向量OA →、OB →、OC →,满足OC →=a 1007OA →+a 1008OB →,三点A 、B 、C 共线,且直线不过O 点,则S 2014等于( )A .1007B .1008C .2014D .2015 [答案]A[解析]由条件知{a n }成等差数列, ∵A 、B 、C 共线,∴a 1007+a 1008=1,∴S 2014=2014(a 1+a 2014)2=1007(a 1007+a 1008)=1007.5.(文)已知数列{a n }中,a 1=1,且1a n +1=1a n+3(n ∈N *),则a 2015=( )A .6042B .6048 C.16043D.16047 [答案]C [解析]∵1a n +1-1a n =3,∴数列⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=1,公差为3的等差数列,∴1a n =1+3(n -1)=3n -2,∴a n =13n -2,∴a 2015=16043.(理)(2013·某某某某市第一中学二模)数列11、21、12、31、22、13、41、32、23、14、…依次排列到第a 2010项属于的X 围是( )A .(0,110)B .[110,1)C .[1,10]D .(10,+∞) [答案]B[解析]分子分母和为k +1的有k 项,由1+2+3+…+n ≤2010得,n ≤62,且1+2+3+…+62=1953,2010-1953=57,∴a 2010项为和为64的第57项,即757∈[110,1),故选B.6.将数列{3n -1}按“第n 组有n 个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第100组中的第一个数是( )A .34950B .35000C .35010D .35050 [答案]A[解析]由“第n 组有n 个数”的规则分组中,各组数的个数构成一个以1为首项,公差为1的等差数列,前99组数的个数共有(1+99)992=4950个,故第100组中的第1个数是34950,选A.二、填空题7.(文)(2013·东城区综合练习)若数列{a n }满足1a n +1-1a n=d (n ∈N *,d 为常数),则称数列{a n }为调和数列.已知数列{1x n}为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=________.[答案]20[解析]由题意,若{a n }为调和数列,则{1a n }为等差数列,∵{1x n}为调和数列,∴数列{x n }为等差数列,由等差数列的性质可知,x 5+x 16=x 1+x 20=x 2+x 19=…=x 10+x 11=20010=20. (理)(2013·某某测试)数列{a n }满足:a 1+3a 2+5a 3+…+(2n -1)·a n =(n -1)·3n +1+3(n ∈N *),则数列{a n }的通项公式a n =________.[答案]3n[解析]a 1+3a 2+5a 3+…+(2n -3)·a n -1+(2n -1)·a n =(n -1)·3n +1+3,把n 换成n -1得,a 1+3a 2+5a 3+…+(2n -3)·a n -1=(n -2)·3n +3,两式相减得a n =3n .8.设关于x 的不等式x 2-x <2nx (n ∈N *)的解集中整数的个数为a n ,则数列{a n }的前n 项和S n =________.[答案]n 2+n (n ∈N *)[解析]由x 2-x <2nx (n ∈N *)得0<x <2n +1,则a n =2n ,所以S n =n 2+n .9.(2013·某某调研)对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项为2n ,则数列{a n }的前n 项和S n =________.[答案]2n +1-2[解析]由已知a n +1-a n =2n ,a 1=2得a 2-a 1=2,a 3-a 2=22,…,a n -a n -1=2n -1,由累加法得a n =2+2+22+…+2n -1=2n ,从而S n =2(1-2n )1-2=2n +1-2.三、解答题10.已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设=T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{}的增减性.[解析](1)S n =n 2+1,∴a n =S n -S n -1=(n 2+1)-[(n -1)2+1]=2n -1(n ≥2), 当n =1时,a 1=S 1=2, ∵b n =2a n +1,∴b 1=2a 1+1=23,n ≥2时,b n =2(2n -1)+1=1n,∴b n=⎩⎨⎧23 (n =1),1n(n ≥2).(2)由题设知,T n =b 1+b 2+…+b n ,T 2n +1=b 1+b 2+…+b 2n +1, ∴=T 2n +1-T n =b n +1+b n +2+…+b 2n +1,∴+1-=(b n +2+b n +3+…+b 2n +3)-(b n +1+b n +2+…+b 2n +1)=b 2n +2+b 2n +3-b n +1=12n +2+12n +3-1n +1<12n +2+12n +2-1n +1=0, ∴+1<,即数列{}为递减数列.能力拓展提升一、选择题11.(2013·日照市阶段训练)已知数列{a n },若点(n ,a n )(n ∈N *)在经过点A (8,4)的定直线l 上,则数列{a n }的前15项和S 15=( )A .12B .32C .60D .120 [答案]C[解析]解法1:∵点(n ,a n )在定直线l 上,∴{a n }为等差数列,由条件知(8,a 8)在直线l 上,l 经过(8,4),∴a 8=4,∴S 15=15a 8=60.解法2:可设定直线为y -4=k (x -8),知a n -4=k (n -8),得a n =k (n -8)+4,则{a n }是等差数列,S 15=15·(a 1+a 15)2=15·a 8=15×4=60.12.(2013·长安一中、高新一中、交大附中、师大附中、某某中学联考)如果数列a 1,a 2a 1,a 3a 2,…,a n a n -1,…是首项为1,公比为-2的等比数列,则a 5等于( ) A .32 B .64 C .-32 D .-64 [答案]A [解析]由条件知a na n -1=(-2)n -1(n ≥2),∴a 5=a 1·a 2a 1·a 3a 2·a 4a 3·a 5a 4=1×(-2)·(-2)2·(-2)3·(-2)4=(-2)10=32.13.(文)(2013·池州一模)数列{a n }的通项公式a n =2n ·sin(n π2-π3)+3n cos n π2,前n 项和为S n ,则S 2013=( )A .1005B .-1005C .2013D .-2013 [答案]B[解析]a n =2n sin(n π2-π3)+3n cos n π2=n sin n π2.由函数y =sin π2x 的周期是4,且a 1=1,a 2=2×0=0,a 3=3×(-1)=-3,a 4=4×0=0,归纳可知数列{a n }的每相邻四项之和是一个常数-2,所以S 2013=2013-14×(-2)+1=-1005,故选B.(理)(2013·某某模拟)已知数列{a n }中,a 1=45,a n +1=⎩⎨⎧2a n ,0≤a n ≤12,2a n-1,12<a n≤1,则a 2012等于( )A.45B.35C.25D.15 [答案]C[解析]∵a n +1=⎩⎨⎧2a n ,0≤a n ≤12,2a n-1,12<a n≤1,又a 1=45,∴a 2=2×45-1=35,a 3=2×35-1=15,a 4=2×15=25,a 5=2×25=45,∴数列{a n }以4为周期, ∵20124=503,∴a 2012=a 4=25. 二、填空题14.(文)数列{a n }中,a 1=35,a n +1-a n =2n -1(n ∈N *),则a nn 的最小值是________.[答案]10[解析]由a n +1-a n =2n -1可知,当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+(a n -2-a n -3)+…+(a 2-a 1)+a 1=[2(n -1)-1]+[2(n -2)-1]+[2(n -3)-1]+…+(2×1-1)+35=2[1+2+3+…+(n -1)]-(n -1)+35=n 2-2n +36.∴a n n =n 2-2n +36n =n +36n-2≥2×n ·36n-2=10, 当且仅当n =6时,取等号.(理)已知f (x )=sin πx2,a n =f (n )+f ′(n ),数列{a n }的前n 项和为S n ,则S 2013=________.[答案]1[解析]f ′(x )=π2cos πx 2,a n =sin n π2+π2cos n π2,∴a 1=1,a 2=-π2,a 3=-1,a 4=π2,且{a n }的周期为4,又2013=503×4+1且a 1+a 2+a 3+a 4=0,∴S 2013=503×0+a 1=1. 三、解答题15.(文)已知数列{a n }的前n 项和为S n ,a 1=1,且3a n +1+2S n =3(n 为正整数). (1)求出数列{a n }的通项公式;(2)若对任意正整数n ,k ≤S n 恒成立,某某数k 的最大值. [解析](1)∵3a n +1+2S n =3,① ∴当n ≥2时,3a n +2S n -1=3,② 由①-②得,3a n +1-3a n +2a n =0. ∴a n +1a n =13(n ≥2). 又∵a 1=1,3a 2+2a 1=3,解得a 2=13.∴数列{a n }是首项为1,公比q =13的等比数列.∴a n =a 1q n -1=⎝⎛⎭⎫13n -1(n 为正整数). (2)由(1)知,S n =32⎣⎡⎦⎤1-⎝⎛⎭⎫13n由题意可知,对于任意的正整数n ,恒有 k ≤32⎣⎡⎦⎤1-⎝⎛⎭⎫13n , ∵数列⎩⎨⎧⎭⎬⎫1-⎝⎛⎭⎫13n 单调递增,当n =1时,数列取最小项为23,∴必有k ≤1,即实数k 的最大值为1.(理)已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n ,n ∈N *. (1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′(1a n ),且a 1=4,求数列{a n }的通项公式;(3)记b n =a n a n +1,数列{b n }的前n 项和T n ,求证:43≤T n <2.[解析](1)由题意及f ′(x )=2ax +b 得⎩⎪⎨⎪⎧b =2n ,16n 2a -4nb =0,解之得⎩⎪⎨⎪⎧a =12,b =2n ,即f (x )=12x 2+2nx (n ∈N *).(2)由条件得1a n +1=1a n +2n ,∴1a n +1-1a n =2n ,累加得1a n -14=2+4+6+…+2(n -1)=[2+2(n -1)]×(n -1)2=n 2-n ,∴1a n =(n -12)2, 所以a n =1(n -12)2=4(2n -1)2(n ∈N *). (3)b n =a n a n +1=4(2n -1)(2n +1)=2(12n -1-12n +1),则T n =b 1+b 2+…+b n =a 1a 2+a 2a 3+…+a n a n +1=2[(1-13)+(13-15)+…+(12n -1-12n +1)]=2(1-12n +1)<2. ∵2n +1≥3,故2(1-12n +1)≥43,∴43≤T n <2.16.(文)(2013·某某莱州一中质检)已知数列{a n }的相邻两项a n ,a n +1满足a n +a n +1=2n ,且a 1=1.(1)求证{a n -13×2n }是等比数列;(2)求数列{a n }的通项公式a n 及前n 项和S n .[解析](1)由a n +a n +1=2n ,得a n +1-13×2n +1=-(a n -13×2n ),故数列{a n -13×2n }是首项为a 1-23=13,公比为-1的等比数列.(2)由(1)知,a n -13×2n =13×(-1)n -1,即a n =13[2n -(-1)n ],S n =a 1+a 2+a 3+…+a n=13{(2+22+23+…+2n )-[(-1)+(-1)2+…+(-1)n ]} =13[2n +1-2-(-1)n -12] =13·2n -1-16(-1)n -12. (理)(2013·某某市部分中学联考)在数列{a n }中,a 1=1,a 1+2a 2+3a 3+…+na n =n +12an+1(n ∈N *).(1)求数列{a n }的通项a n ;(2)若存在n ∈N *,使得a n ≤(n +1)λ成立,某某数λ的最小值. [解析](1)令b n =na n ,{b n }的前n 项和为S n ,则S n =12b n +1,∴S n -1=12b n (n ≥2),两式相减得b n +1b n=3,又b 1=a 1=1,在条件式中令n =1,2得a 2=1,a 3=2,∴b 2=2a 2=2,∴b n =b 2×3n -2=2×3n -2.∴a n =⎩⎪⎨⎪⎧1, (n =1),2n ·3n -2, (n ≥2).(2)a n ≤(n +1)λ⇔λ≥a nn +1, 由(1)可知当n ≥2时,a nn +1=2·3n -2n (n +1),设f (n )=n (n +1)2·3n -2(n ≥2,n ∈N *), 则f (n +1)-f (n )=(n +1)(1-n )3n -1<0,∴1f (n +1)>1f (n )(n ≥2), 又1f (2)=13及a 12=12, 所以所某某数λ的最小值为13.考纲要求了解数列的概念,了解数列是自变量为正整数的一类函数. 了解数列的几种简单表示方法(列表、图象、通项公式). 补充材料1.求数列的通项公式常见的有以下三种类型 (1)已知数列的前几项,写出一个通项公式.依据数列的排列规律,求出项与项数的关系.一般步骤是:①定符号,②定分子、分母,③观察前后项的数值特征找规律,④综合写出项与项数的关系.要特别注意以下数列特点: ①自然数列,自然数的平方列. ②奇数列,偶数列.③a n =(-1)n ,a n =12[1+(-1)n ].④a n =sin n π2,a n =cos n π2. ⑤a n =k 9(10n -1)(k =1,2,…,9). 要注意理顺其大小规律如:2,-83,4,-325,…先变化为:42,-83,164,-325,…. (2)已知数列的递推关系求其通项公式:一般是采用“归纳—猜想—证明”,有时也通过变形转化为等差、等比数列进行处理.(3)已知数列的前n 项和求通项公式,用a n =S n -S n -1(n ≥2)求解.2.注意数列的两个性质(1)单调性——若a n +1>a n ,则{a n }为递增数列;若a n +1<a n ,则{a n }为递减数列.(2)周期性——若a n +k =a n (n ∈N *,k 为非零常数),则{a n }为周期数列,k 为{a n }的一个周期.3.数列求和方法(1)公式法①直接用等差、等比数列的求和公式求.②了解一些常见的数列的前n 项和.1+2+3+…+n =12n (n +1); 1+3+5+…+(2n -1)=n 2;12+22+32+…+n 2=16n (n +1)(2n +1). (2)倒序相加法如果一个数列{a n },与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和可用“乘公比,错位相减”法进行,如等比数列的前n 项和就是用此法推导的.(4)裂项相消法如果数列的通项可以表达成两项之差,各项随n 的变化而变化,前后项相加可以相互抵消就用裂项相加相消法.(5)分组求和法当一个数列的通项由几个项构成,各个项构成等差或等比数列时,可分为几个数列分别求和再相加.4.函数思想在数列中的应用(1)数列可以看作是一类特殊的函数,因此可用函数的知识,函数的思想方法来解决.(2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法.备选习题1.设a 1,a 2,…,a 50是从-1,0,1这三个整数中取值的数列,若a 1+a 2+…+a 50=9,且(a 1+1)2+(a 2+1)2+…+(a 50+1)2=107,则a 1,a 2,…,a 50中数字1的个数为( )A .24B .15C .14D .11[答案]A[解析]⎩⎪⎨⎪⎧a 1+a 2+…+a 50=9,(a 1+1)2+(a 2+1)2+…+(a 50+1)2=107,⇒a 21+a 22+…+a 250=39. 故a 1,a 2,…,a 50中有11个零,设有x 个1,y 个-1,则⎩⎪⎨⎪⎧ x +y =39,x -y =9,⇒⎩⎪⎨⎪⎧x =24,y =15.故选A. 2.已知定义在R 上的函数f (x ),g (x )满足f (x )g (x )=a x ,且f ′(x )g (x )<f (x )g ′(x ),f (1)g (1)+f (-1)g (-1)=52,若有穷数列{f (n )g (n )}(n ∈N *)的前n 项和等于3132,则n 等于( ) A .4 B .5 C .6 D .7[答案]B[解析]f ′(x )g (x )<f (x )g ′(x )⇒f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0 ⇒[f (x )g (x )]′<0⇒0<a <1, f (1)g (1)+f (-1)g (-1)=52⇒a +a -1=52⇒2a 2-5a +2=0 ⇒a =12或a =2(舍去),∴f (n )g (n )=(12)n , ∴{f (n )g (n )}(n ∈N *)是以12为首项,12为公比的等比数列. ∴12[1-(12)n ]1-12=3132, ∴(12)n =132,∴n =5.故选B. 3.已知数列{a n }满足a 1=0,a n +1=a n +2n ,那么a 2014的值是( )A .2012×2013B .2013×2014C .2010×2011D .2011×2012[答案]B[解析]解法1:a 1=0,a 2=2,a 3=6,a 4=12,考虑到所给结论都是相邻两整数乘积的形式,可变形为:a 1=0×1,a 2=1×2,a 3=2×3,a 4=3×4,猜想a 2014=2013×2014,故选B.解法2:a n -a n -1=2(n -1),a n -1-a n -2=2(n -2),…a 3-a 2=2×2,a 2-a 1=2×1.∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1 =2[(n -1)+(n -2)+…+1].=2(n -1)(n -1+1)2=n (n -1). ∴a 2014=2013×2014.。
基础巩固强化一、选择题1.(文)等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则公比q 的值是( )A .2B .-2C .3D .-3 [答案] A[解析] ∵S 6=S 3+S 3q 3=S 3·(1+q 3),∴q =2.(理)在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21.则a 3+a 4+a 5等于( )A .33B .72C .84D .189 [答案] C[解析] 由前三项和为21可知a 1(1+q +q 2)=21,将a 1=3代入解之得q =2或-3(舍).则a 3+a 4+a 5=(a 1+a 2+a 3)q 2=21×4=84.2.(文)(2013·沈阳质检)已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则该数列的通项a n =( )A .4×(23)n -1B .4×(23)nC .4×(32)nD .4×(32)n -1[答案] D[解析] 据前三项可得(a +1)2=(a -1)(a +4),解得a =5,故等比数列的首项为4,q =a 2a 1=32,故a n =4×(32)n -1.(理)(2013·安徽省级示范高中名校联考)三个实数a ,b ,c 成等比数列,且a +b +c =3,则b 的取值范围是( )A .[-1,0)B .(0,1]C .[-1,0)∪(0,3]D .[-3,0)∪(0,1][答案] D[解析] 设公比为q ,显然q ≠0,a +b +c =b (1q +1+q )=3⇒b =31+1q +q. 当q >0时,q +1q ≥2,当且仅当q =1时等号成立,∴0<b ≤1;当q <0时,q +1q ≤-2,当且仅当q =-1时等号成立,∴-3≤b <0.故选D.3.(文)(2013·广东珠海质监)在各项都为正数的等比数列{a n }中,首项为3,前3项和为21,则a 3+a 4+a 5=( )A .33B .72C .84D .189 [答案] C[解析]设公比为q ,则⎩⎪⎨⎪⎧a 1=3,a 1(1+q +q 2)=21,q >0⇒⎩⎪⎨⎪⎧a 1=3,q =2.那么a 3+a 4+a 5=a 1q 2(1+q +q 2)=3×22×7=84. (理)已知数列{a n }的前n 项的和S n 满足S n =2n -1(n ∈N *),则数列{a 2n }的前n 项的和为( )A .4n-1 B.13(4n-1) C.43(4n-1) D .(2n -1)2[答案] B[解析] n ≥2时,a n =S n -S n -1=(2n -1)-(2n -1-1)=2n -1, 又a 1=S 1=21-1=1也满足,∴a n =2n -1(n ∈N *).设b n =a 2n ,则b n =(2n -1)2=4n -1,∴数列{b n }是首项b 1=1,公比为4的等比数列,故{b n }的前n 项和T n =1×(4n -1)4-1=13(4n-1).4.(文)(2013·广元二模)等比数列{a n }的公比q >0.已知a 2=1,a n +2+a n +1=6a n ,则{a n }的前4项和S 4=( )A .-20B .15 C.152 D.203 [答案] C[解析] ∵a n +2+a n +1=6a n ,∴a n ≠0, ∴q 2+q -6=0,∵q >0,∴q =2,∴a 1=12, ∴S 4=12(1-24)1-2=152.(理)(2013·西安标准化考试)等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则公比q 为( )A .q =-2B .q =1C .q =-2或q =1D .q =2或q =-1[答案] A[解析] 本题有两种处理策略,一是设出首项a 1,建立方程2a 1(1-q n )1-q =a 1(1-q n +1)1-q +a 1(1-q n +2)1-q 求解,解得q =-2.此法为通法,但运算复杂;二是特例探路,不妨设n =1,则S n +1,S n ,S n +2即是S 2,S 1,S 3,根据等差数列的性质可知,2S 1=S 2+S 3,即2a 1=a 1(1+q )+a 1(1+q +q 2),易得q =-2.故选A.5.(文)若数列{a n }是正项递减等比数列,T n 表示其前n 项的积,且T 8=T 12,则当T n 取最大值时,n 的值等于( )A .9B .10C .11D .12 [答案] B[解析] ∵T 8=T 12,∴a 9a 10a 11a 12=1,又a 9a 12=a 10a 11=1,且数列{a n }是正项递减数列,所以a 9>a 10>1>a 11>a 12,因此T 10取最大值.(理)在由正数组成的等比数列{a n }中,设x =a 5+a 10,y =a 2+a 13,则x 与y 的大小关系是( )A .x =yB .x ≥yC .x ≤yD .不确定 [答案] C[解析] x -y =a 1q (1-q 3)(q 8-1). 当q =1时,x =y ;当q >1时,1-q 3<0而q 8-1>0,x -y <0; 当0<q <1时,1-q 3>0而q 8-1<0,x -y <0.故选C.6.将正偶数集合{2,4,6,…}从小到大按第n 组有2n 个偶数进行分组如下:第一组 第二组 第三组 … {2,4} {6,8,10,12} {14,16,18,20,22,24,26,28} … 则2014位于( ) A .第7组B .第8组C .第9组D .第10组[答案] C[解析] 前n 组共有2+4+8+ (2)=2×(2n-1)2-1=2n +1-2个数.由a n =2n =2014知,n =1007,∴2014为第1007个偶数, ∵29=512,210=1024,故前8组共有510个数,前9组共有1022个数,即2014在第9组.二、填空题7.(2013·莆田一模)若等比数列{a n }(a n ∈R )对任意的正整数m ,n 满足a m +n =a m a n ,且a 3=22,那么a 12=________.[答案] 64[解析] 令m =1,则a n +1=a n a 1⇒a 1=q ,a n =q n , ∵a 3=q 3=22,∴a 12=q 12=64.8.(文)在公差不为零的等差数列{a n }中,a 1、a 3、a 7依次成等比数列,前7项和为35,则数列{a n }的通项a n =________.[答案] n +1[解析] 设等差数列首项a 1,公差d ,则∵a 1、a 3、a 7成等比,∴a 23=a 1a 7,∴(a 1+2d )2=a 1(a 1+6d ),∴a 1=2d , 又S 7=7a 1+7×62d =35d =35, ∴d =1,∴a 1=2,∴a n =n +1.(理)(2013·浙江湖州中学)已知数列{a n }是正项等比数列,若a 1=32,a 4=4,则数列{log 2a n }的前n 项和S n 的最大值为________.[答案] 15[解析] ∵a 1=32,a 4=4,∴q =12,a n =32·(12)n -1,log 2a n =log 232·(12)n -1=5+(n -1)log 212=6-n ,由6-n ≥0,得n ≤6,∴前5项(或6项)和最大,S 5=5×(5+1)2=15.9.(2012·江苏,6)现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.[答案] 35[解析] 等比数列的通项公式为a n =(-3)n -1.所以此数列中偶数项都为负值,奇数项全为正值.若a n ≥8,则n 为奇数且(-3)n -1=3n -1≥8,则n -1≥2,∴n ≥3,∴n =3,5,7,9,共四项满足要求.∴p =1-410=35.[点评] 直接考虑情况较多时,可以从其对立面来考虑问题. 三、解答题10.(文)(2013·陕西)设S n 表示数列{a n }的前n 项和. (1)若{a n }是等差数列,推导S n 的计算公式;(2)若a 1=1,q ≠0,且对所有正整数n ,有S n =1-q n 1-q .判断{a n }是否为等比数列,并证明你的结论.[解析] (1)方法一:设{a n }的公差为d ,则S n =a 1+a 2+…+a n =a 1+(a 1+d )+…+[a 1+(n -1)d ], 又S n =a n +a n -1+…+a 1=[a 1+(n -1)d ]+[a 1+(n -2)d ]+…+a 1,∴2S n =[2a 1+(n -1)d ]+[2a 1+(n -1)d ]+…+[2a 1+(n -1)d ]=2na 1+n (n -1)d ,∴S n =na 1+n (n -1)2d .方法二:设{a n }的公差为d ,则S n =a 1+a 2+…+a n =a 1+(a 1+d )+…+[a 1+(n -1)d ], 又S n =a n +(a n -d )+…+[a n -(n -1)d ],两式相加得2S n =n (a 1+a n ),∴S n =n (a 1+a n )2. (2){a n }是等比数列,证明如下:∵S n =1-q n 1-q ,∴a n +1=S n +1-S n =1-q n +11-q -1-q n 1-q =q n (1-q )1-q =q n.∵a 1=1,q ≠0,∴当n ≥1时,有a n +1a n =q nq n -1=q ,因此,{a n }是首项为1且公比为q 的等比数列.(理)(2013·湖北)已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18.(1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.[解析] (1)设数列{a n }的公比为q ,则a 1≠0,q ≠0,由条件易知q ≠1.由题意得⎩⎪⎨⎪⎧2S 2=S 3+S 4,a 2+a 3+a 4=-18.即⎩⎪⎨⎪⎧2a 1(1-q 2)1-q =a 1(1-q 3)1-q +a 1(1-q 4)1-q ,a 1q (1+q +q 2)=-18.解得⎩⎪⎨⎪⎧a 1=3,q =-2.故数列{a n }的通项公式为a n =3×(-2)n -1. (2)由(1)有S n =3·[1-(-2)n ]1-(-2)=1-(-2)n .若存在n ,使得S n ≥2013,则1-(-2)n ≥2013, 即(-2)n ≤-2012.当n 为偶数时,(-2)n >0,上式不成立;当n 为奇数时,(-2)n =-2n ≤-2012,即2n ≥2012,则n ≥11. 综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}.能力拓展提升一、选择题11.(文)已知等比数列{a n }的公比q >0,其前n 项的和为S n ,则S 4a 5与S 5a 4的大小关系是( )A .S 4a 5<S 5a 4B .S 4a 5>S 5a 4C .S 4a 5=S 5a 4D .不确定[答案] A[解析] (1)当q =1时,S 4a 5-S 5a 4=4a 21-5a 21=-a 21<0.(2)当q ≠1且q >0时,S 4a 5-S 5a 4=a 211-q (q 4-q 8-q 3+q 8)=a 21q 31-q (q -1)=-a 21q 3<0.[点评] 作差,依据前n 项和与通项公式化简后判断符号是解决这类问题的基本方法,应注意对公比分类讨论,请再做下题:已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,试比较S 3a 3与S 5a5的大小.[解析] 当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5;当q >0且q ≠1时,S 3a 3-S 5a 5=a 1(1-q 3)a 1q 2(1-q )-a 1(1-q 5)a 1q 4(1-q )=q 2(1-q 3)-(1-q 5)q 4(1-q )=-q -1q 4<0,所以有S 3a 3<S 5a 5.综上可知有S 3a 3<S 5a 5.(理)(2012·云南省二检)已知等比数列{a n }的公比q =2,它的前9项的平均值等于5113,若从中去掉一项a m ,剩下的8项的平均值等于14378,则m 等于( )A .5B .6C .7D .8 [答案] B[解析] 数列{a n }前9项的和为S 9=5113×9=1533,即a 1(1-29)1-2=1533,解得a 1=3.又知a m =S 9-14378×8=96,而a m =3·2m -1,即3·2m-1=96,解得m =6.12.(文)已知等比数列{a n }的各项均为正数,公比q ≠1,设P =12(log 0.5a 5+log 0.5a 7),Q =log 0.5a 3+a 92,P 与Q 的大小关系是( )A .P ≥QB .P <QC .P ≤QD .P >Q[答案] D[解析] P =log 0.5a 5a 7=log 0.5a 3a 9,Q =log 0.5a 3+a 92, ∵q ≠1,∴a 3≠a 9, ∴a 3+a 92>a 3a 9,又∵y =log 0.5x 在(0,+∞)上递减, ∴log 0.5a 3+a 92<log 0.5a 3a 9,即Q <P .故选D.(理)两个正数a 、b 的等差中项是52,一个等比中项是6,且a >b ,则双曲线x 2a 2-y 2b 2=1的离心率e 等于( )A.32B.152C.13D.133 [答案] D[解析] ∵a +b =5,a ·b =6,a >b >0, ∴a =3,b =2.∴e =c a =a 2+b 2a =133.13.(文)某程序框图如图所示,该程序运行后输出的k 的值是( )A .4B .5C .6D .7 [答案] D[解析] 由程序框图可知,S =1+2+22+…+2k =2k +1-1,由S <100得,2k +1<101,∵26=64,27=128,∴k +1=7,∴k =6,结合语句k =k +1在S =S +2k 后面知,当k =6时,S =127,k 的值再增加1后输出k 值为7.[点评] 这是最容易出错的地方,解这类题时,既要考虑等比数列求和,在k 取何值时,恰满足S ≥100,又要顾及S 与k 的赋值语句的先后顺序.(理)已知a n =⎝ ⎛⎭⎪⎫13n,把数列{a n }的各项排列成如下的三角形状:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 ……………………记A (m ,n )表示第m 行的第n 个数,则A (11,12)=( )A.⎝ ⎛⎭⎪⎫1367 B.⎝ ⎛⎭⎪⎫1368C.⎝ ⎛⎭⎪⎫13111D.⎝ ⎛⎭⎪⎫13112 [答案] D[解析] 由图形知,各行数字的个数构成首项为1,公差为2的等差数列,∴前10行数字个数的和为10×1+10×92×2=100,故A (11,12)为{a n }的第112项,∴A (11,12)=a 112=⎝ ⎛⎭⎪⎫13112.二、填空题14.(文)已知a 、b 、c 成等比数列,如果a 、x 、b 和b 、y 、c 都成等差数列,则a x +cy =________.[答案] 2[解析] 由条件知x =a +b 2,y =b +c 2,c =bq ,a =bq , ∴a x +c y =2a a +b +2c b +c =2b q b q +b +2bqb +bq=21+q +2q 1+q=2. (理)(2012·北京东城练习)已知等差数列{a n }首项为a ,公差为b ,等比数列{b n }首项为b ,公比为a ,其中a 、b 都是大于1的正整数,且a 1<b 1,b 2<a 3,那么a =________;若对于任意的n ∈N *,总存在m ∈N *,使得b n =a m +3成立,则a n =________.[答案] 2 5n -3[解析] 由已知条件可得⎩⎪⎨⎪⎧ a <b ,ab <a +2b ,即⎩⎪⎨⎪⎧a <b ,(a -2)b <a ,若a =2,显然符合条件;若a >2,则a <b <aa -2,解得a <3,即2<a <3,即不存在a 满足条件,由此可得a =2.当a =2时,a n =2+(n -1)b ,b n =b ×2n -1,若存在m ∈N *,使得b n =a m +3成立,则b ×2n -1=2+(m -1)b +3,即得b ×2n -1=bm +5-b ,当b =5时,方程2n -1=m 总有解,此时a n =5n -3.15.(2013·合肥二模)已知等比数列{a n }中,a 2>a 3=1,则使不等式(a 1-1a 1)+(a 2-1a 2)+…+(a n -1a n)≥0成立的最大自然数是________.[答案] 5[解析] ∵a 2>a 3=1,∴0<q =a 3a 2<1,a 1=1q 2>1.由(a 1-1a 1)+(a 2-1a 2)+…+(a n -1a n)=(a 1+a 2+…+a n )-(1a 1+1a2+…+1a n)=a 1(1-q n )1-q-1a 1(1-1q n )1-1q =a 1(1-q n )1-q -1-q n a 1(1-q )q n -1≥0,得a 1(1-q n )1-q ≥1-q n a 1(1-q )q n -1.∵0<q <1,∴上式可化为a 21≥1qn -1,∴q 4≤q n -1.∴4≥n -1,n ≤5,即n 的最大值为5.三、解答题16.(文)(2013·洛阳统考)已知数列{a n }中,a 1=2,其前n 项和S n满足S n +1-S n =2n +1(n ∈N *).(1)求数列{a n }的通项公式a n 以及前n 项和S n ; (2)令b n =2log 2a n +1,求数列{1b n ·b n +1}的前n 项和T n .[解析] (1)由S n +1-S n =2n +1得a n +1=2n +1,即a n =2n (n ≥2). 又a 1=2,所以a n =2n (n ∈N *).从而S n =2+22+…+2n =2(1-2n )1-2=2n +1-2.(2)因为b n =2log 2a n +1=2log 22n +1=2n +1, 所以1b n ·b n +1=1(2n +1)·(2n +3)=12(12n +1-12n +3).于是T n =12[(13-15)+(15-17)+…+(12n +1-12n +3)]=12(13-12n +3)=n3(2n +3). (理)(2013·长春三校调研)已知等比数列{a n }满足a n +1+a n =9·2n -1,n ∈N .(1)求数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,若不等式S n >ka n -2对一切n ∈N *恒成立,求实数k 的取值范围.[解析] (1)设等比数列{a n }的公比为q ,∵a n +1+a n =9·2n -1,n ∈N *,∴a 2+a 1=9,a 3+a 2=18, ∴q =a 3+a 2a 2+a 1=189=2,∴2a 1+a 1=9,∴a 1=3.∴a n =3·2n -1,n ∈N *.(2)由(1)知S n =a 1(1-q n )1-q =3(1-2n )1-2=3(2n -1),∴不等式化为3(2n -1)>k ·3·2n -1-2, 即k <2-13·2-对一切n ∈N *恒成立.令f (n )=2-13·2n -1,易知f (n )随n 的增大而增大,∴f (n )min =f (1)=2-13=53,∴k <53. ∴实数k 的取值范围为(-∞,53).考纲要求1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题.4.了解等比数列与指数函数的关系. 补充说明与等比数列有关的常用求和方法 (1)分组求和法若数列{a n }是由等差数列与等比数列的和形式给出的,可先分别对它们求和,再将其和相加,该方法称为分组求和法.(2)错位相减法一般地,{a n }是等差数列,{b n }是等比数列(公差d ≠0,公比q ≠1),c n =a n b n ,求数列{c n }前n 项的和用“乘公比、错位相减法”.备选习题1.(2013·温州第一次适应性测试)已知等比数列{a n }中,a 1=2,且a 4a 6=4a 27,则a 3=( )A.12 B .1 C .2 D.14 [答案] B[解析] 设等比数列{a n }的公比为q ,依题意可得a 25=a 4a 6=4a 27=4·a 25q 4,∴q 4=14,q 2=12,∴a 3=a 1q 2=2×12=1.2.(2013·深圳第一次调研)设数列{(-1)n }的前n 项和为S n ,则对任意正整数n ,S n =( )A.n [(-1)n -1]2B.(-1)n -1+12 C.(-1)n +12 D.(-1)n -12[答案] D[解析] 因为数列{(-1)n }是首项与公比均为-1的等比数列,所以S n =-1·[1-(-1)n ]1-(-1)=(-1)n -12,选D. 3.已知数列{a n }中,a 1=1,S n 是数列{a n }的前n 项和,且对任意n ∈N *,有a n +1=kS n +1(k 为常数).(1)当k =2时,求a 2、a 3的值;(2)试判断数列{a n }是否为等比数列?请说明理由. [解析] (1)当k =2时,a n +1=2S n +1,令n =1得a 2=2S 1+1,又a 1=S 1=1,得a 2=3; 令n =2得a 3=2S 2+1=2(a 1+a 2)+1=9,∴a 3=9.∴a 2=3,a 3=9.(2)由a n +1=kS n +1,得a n =kS n -1+1, 两式相减,得a n +1-a n =ka n (n ≥2), 即a n +1=(k +1)a n (n ≥2),且a 2a 1=k +11=k +1,故a n +1=(k +1)a n .故当k =-1时,a n =⎩⎪⎨⎪⎧1,(n =1),0.(n ≥2).此时,{a n }不是等比数列;当k ≠-1时,a n +1a n=k +1≠0,此时,{a n }是首项为1,公比为k+1的等比数列.综上,当k =-1时,{a n }不是等比数列; 当k ≠-1时,{a n }是等比数列.4.已知数列{a n }的前n 项和为S n ,点(a n +2,S n +1)在直线y =4x -5上,其中n ∈N *.令b n =a n +1-2a n ,且a 1=1.(1)求数列{b n }的通项公式;(2)若f (x )=b 1x +b 2x 2+b 3x 3+…+b n x n ,求f ′(1)的表达式. [解析] (1)∵S n +1=4(a n +2)-5,∴S n +1=4a n +3. ∴S n =4a n -1+3(n ≥2),∴a n +1=4a n -4a n -1(n ≥2), ∴a n +1-2a n =2(a n -2a n -1)(n ≥2). ∴b n b n -1=a n +1-2a n a n -2a n -1=2(n ≥2). ∴数列{b n }为等比数列,其公比为q =2,首项b 1=a 2-2a 1, 而a 1+a 2=4a 1+3,且a 1=1,∴a 2=6. ∴b 1=6-2=4,∴b n =4×2n -1=2n +1. (2)∵f (x )=b 1x +b 2x 2+b 3x 3+…+b n x n ,∴f ′(1)=b 1+2b 2+3b 3+…+nb n . ∴f ′(1)=22+2·23+3·24+…+n ·2n +1① ∴2f ′(1)=23+2·24+3·25+…+n ·2n +2② ①-②得-f ′(1)=22+23+24+…+2n +1-n ·2n +2 =4(1-2n )1-2-n ·2n +2=-4(1-2n )-n ·2n +2,∴f ′(1)=4+(n -1)·2n +2.5.(2012·北京东城练习)已知数列{a n }的前n 项和为S n ,且S n =4a n -3(n ∈N *).(1)证明:数列{a n }是等比数列;(2)若数列{b n }满足b n +1=a n +b n (n ∈N *),且b 1=2,求数列{b n }的通项公式.[解析] (1)证明:因为S n =4a n -3,所以n =1时,a 1=4a 1-3,解得a 1=1.因为S n =4a n -3,则S n -1=4a n -1-3(n ≥2), 所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1. 又a 1=1≠0,所以{a n }是首项为1,公比为43的等比数列. (2)因为a n =(43)n -1,b n +1=a n +b n (n ∈N *), 所以b n +1-b n =(43)n -1.可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-(43)n -11-43=3·(43)n -1-1(n ≥2),当n =1时也符合上式,∴b n =3·(43)n -1-1.。
2015届高考数学一轮总复习 6-4数列的综合问题与数列的应用基础巩固强化一、选择题1.(文)若a 、b 、c 成等比数列,则函数f (x )=ax 2+bx +c 的图象与x 轴交点的个数是( ) A .0 B .1 C .2 D .不确定 [答案] A[解析] 由题意知,b 2=ac >0,∴Δ=b 2-4ac =-3ac <0,∴f (x )的图象与x 轴无交点. (理)已知数列{a n },{b n }满足a 1=1,且a n 、a n +1是函数f (x )=x 2-b n x +2n 的两个零点,则b 10等于( )A .24B .32C .48D .64 [答案] D[解析] 依题意有a n a n +1=2n ,所以a n +1a n +2=2n +1,两式相除得a n +2a n=2,所以a 1,a 3,a 5,…成等比数列,a 2,a 4,a 6,…成等比数列,而a 1=1,a 2=2,所以a 10=2×24=32,a 11=1×25=32.又因为a n +a n +1=b n ,所以b 10=a 10+a 11=64,故选D.2.(文)小正方形按照下图中的规律排列:每小图中的小正方形的个数就构成一个数列{a n },有以下结论:①a 5=15;②数列{a n }是一个等差数列;③数列{a n }是一个等比数列;④数列的递推公式为:a n=a n -1+n (n ∈N *),其中正确的为( )A .①②④B .①③④C .①②D .①④[答案] D[解析] 观察图形可知a n =1+2+3+…+n =n (n +1)2.∴选D.(理)某同学在电脑中打出如下若干个圈:●○●○○●○○○●○○○○●○○○○○●……若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前2014个圈中的●的个数是( ) A .60 B .61 C .62 D .63 [答案] C[解析] 第一次出现●在第1个位置;第二次出现●在第(1+2)个位置;第三次出现●在第(1+2+3)个位置;…;第n 次出现●在第(1+2+3+…+n )个位置.∵1+2+3+…+n =n (n +1)2,当n =62时,n (n +1)2=62×(62+1)2=1953,2014-1953=61<63,∴在前2014个圈中的●的个数是62.3.(2012·沈阳市二模)设等差数列{a n }的前n 项和为S n ,若a 2、a 4是方程x 2-x -2=0的两个实数根,则S 5的值为( )A.52 B .5 C .-52 D .-5 [答案] A[解析] ∵a 2、a 4是方程x 2-x -2=0的两实根, ∴a 2+a 4=1,∴S 5=5×(a 1+a 5)2=5(a 2+a 4)2=52.4.(文)已知{a n }为等差数列,{b n }为正项等比数列,公式q ≠1,若a 1=b 1,a 11=b 11,则( ) A .a 6=b 6 B .a 6>b 6 C .a 6<b 6 D .以上都有可能[答案] B[解析] a 6=a 1+a 112,b 6=b 1b 11=a 1a 11,由q ≠1得,a 1≠a 11. 故a 6=a 1+a 112>a 1a 11=b 6.(理)(2012·吉林省实验中学模拟)已知正数组成的等差数列{a n }的前20项的和是100,那么a 6·a 15的最大值是( )A .25B .50C .100D .不存在 [答案] A[解析] 由条件知,a 6+a 15=a 1+a 20=110S 20=110×100=10,a 6>0,a 15>0,∴a 6·a 15≤(a 6+a 152)2=25,等号在a 6=a 15=5时成立,即当a n =5(n ∈N *)时,a 6·a 15取最大值25.5.已知{a n }是等差数列,S n 为其前n 项和,若S 29=S 4000,O 为坐标原点,点P (1,a n ),点Q (2015,a 2015),则OP →·OQ →=( )A .2015B .-2015C .0D .1[答案] A[解析] 由S 29=S 4000得到S n 关于n =29+40002=2014.5对称,故S n 的最大(或最小)值为S 2014=S 2015,故a 2015=0,OP →·OQ →=2015+a n ·a 2015=2015+a n ×0=2015,故选A.6.(2013·江南十校联考)已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2013=( )A.2012-1B.2013-1C.2014-1D.2014+1[答案] C[解析] 由f (4)=2可得4a=2,解得a =12,则f (x )=x 12 .∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2013=a 1+a 2+a 3+…+a 2013=(2-1)+(3-2)+(4-3)+…+(2014-2013)=2014-1. 二、填空题7.(文)已知{a n }是公差不为0的等差数列,{b n }是等比数列,其中a 1=2,b 1=1,a 2=b 2,2a 4=b 3,且存在常数α、β,使得a n =log αb n +β对每一个正整数n 都成立,则αβ=________.[答案] 4[解析] 设{a n }的公差为d ,{b n }的公比为q ,则⎩⎪⎨⎪⎧ 2+d =q ,2(2+3d )=q 2.解得⎩⎪⎨⎪⎧ q =2,d =0,(舍去)或⎩⎪⎨⎪⎧q =4,d =2.所以a n =2n ,b n =4n -1.若a n =log αb n +β对每一个正整数n 都成立,则满足2n =log α4n -1+β,即2n =(n -1)log α4+β,因此只有当α=2,β=2时上式恒成立,所以αβ=4.(理)在等比数列{a n }中,首项a 1=23,a 4=⎠⎛14(1+2x )d x ,则公比q 为________.[答案] 3[解析] ∵a 4=⎠⎛14(1+2x )d x =(x +x 2)|41=(4+42)-(1+12)=18,∴q 3=a 4a 1=27, ∴q =3.8.小王每月除去所有日常开支,大约结余a 元.小王决定采用零存整取的方式把余钱积蓄起来,每月初存入银行a 元,存期1年(存12次),到期取出本和息.假设一年期零存整取的月利率为r ,每期存款按单利计息.那么,小王存款到期利息为________元.[答案] 78ar[解析] 依题意得,小王存款到期利息为12ar +11ar +10ar +…+3ar +2ar +ar =12(12+1)2ar =78ar 元.9.(文)已知m 、n 、m +n 成等差数列,m 、n 、mn 成等比数列,则椭圆x 2m +y 2n =1的离心率为________.[答案]22[解析] 由2n =2m +n 和n 2=m 2n 可得m =2,n =4,∴e =n -m n=22. (理)已知双曲线a n -1y 2-a n x 2=a n -1a n (n ≥2,n ∈N *)的焦点在y 轴上,一条渐近线方程是y =2x ,其中数列{a n }是以4为首项的正项数列,则数列{a n }的通项公式是________.[答案] a n =2n +1[解析] 双曲线方程为y 2a n -x 2a n -1=1,∵焦点在y 轴上, 又渐近线方程为y =2x , ∴a na n -1=2, 又a 1=4,∴a n =4×2n -1=2n +1. 三、解答题10.(文)(2013·浙江萧山五校联考)已知二次函数y =f (x )的图象经过坐标原点,其导函数f ′(x )=2x +2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)设b n =2n ·a n ,T n 是数列{b n }的前n 项和,求T n . [解析] (1)设f (x )=ax 2+bx ,f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x , ∴S n =n 2+2n ,∴当n ≥2时,a n =S n -S n -1=(n 2+2n )-[(n -1)2+2(n -1)]=2n +1, 又a 1=S 1=3,适合上式,∴a n =2n +1. (2)b n =(2n +1)·2n ,∴T n =3·21+5·22+7·23+…+(2n +1)·2n , ∴2T n =3·22+5·23+7·24+…+(2n +1)·2n +1,相减得-T n =3·21+2·(22+23+…+2n )-(2n +1)·2n +1=6+2·4·(1-2n -1)1-2-(2n +1)·2n +1=(1-2n )·2n +1-2,∴T n =(2n -1)·2n +1+2.(理)已知函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)若数列{a n }和数列{b n }满足等式:a n =b 12+b 222+b 323+…+b n2n (n ∈N *),求数列{b n }的前n 项和T n .[解析] (1)由题意可设f (x )=ax 2+bx +c , 则f ′(x )=2ax +b =6x -2,∴a =3,b =-2,∵f (x )过原点,∴c =0,∴f (x )=3x 2-2x .依题意得S n =3n 2-2n .n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5, n =1时,a 1=S 1=1适合上式. ∴a n =6n -5(n ∈N *). (2)∵a n =b 12+b 222+b 323+…+b n2n ,∴a n -1=b 12+b 222+b 323+…+b n -12n 1(n ≥2).相减得b n2n =6,∴b n =6·2n (n ≥2).b 1=2a 1=2,∴b n =⎩⎪⎨⎪⎧2 (n =1),6·2n (n ≥2).∴T n =2+6(22+23+…+2n )=3·2n +2-22.能力拓展提升一、选择题11.椭圆x 24+y 23=1上有n 个不同的点P 1、P 2、…、P n ,椭圆的右焦点为F ,数列{|P n F |}是公差大于11000的等差数列,则n 的最大值为( )A .2001B .2000C .1999D .1998[答案] B[分析] 公差确定后,首项和末项之差越大,等差数列的项数就越多(即n 越大),故P 1与P n 取长轴两端点时n 取最大值,可依据公差大于11000列不等式解. [解析] ∵|P n F |max =a +c =3,|P n F |min =a -c =1, d =a n -a 1n -1=3-1n -1>11000,n ∈N ,∴n max =2000,故选B.12.(文)数列{a n }是公差d ≠0的等差数列,数列{b n }是等比数列,若a 1=b 1,a 3=b 3,a 7=b 5,则b 11等于( )A .a 63B .a 36C .a 31D .a 13 [答案] A[解析] 设数列{b n }的首项为b 1,公比为q ,则⎩⎪⎨⎪⎧a 1+2d =a 1q 2,a 1+6d =a 1q 4.得d =a 14(q 4-q 2).∴a 1+a 12(q 4-q 2)=a 1q 2,∵q ≠1,∴q 2=2,d =a 12,于是b 11=a 1q 10=32a 1.设32a 1=a 1+(n -1)·a 12,则n =63,∴b 11=a 63.(理)(2013·河北教学质量监测)已知数列{a n }满足:a 1=1,a n +1=a n a n +2(n ∈N *).若b n +1=(n -λ)(1a n +1)(n ∈N *),b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值范围为( )A .λ>2B .λ>3C .λ<2D .λ<3[答案] C[解析] 由已知可得1a n +1=2a n +1,1a n +1+1=2(1a n +1),1a 1+1=2≠0,则1a n +1=2n ,b n +1=2n (n -λ),b n =2n -1(n -1-λ)(n ≥2,n ∈N *),b 1=-λ也适合上式,故b n =2n -1(n -1-λ)(n ∈N *).由b n +1>b n ,得2n (n -λ)>2n -1(n -1-λ),即λ<n +1恒成立,而n +1的最小值为2,故实数λ的取值范围为λ<2.13.(文)如图,是一个算法的程序框图,该算法输出的结果是( )A.12B.23C.34D.45 [答案] C[解析] 循环过程为i =1<4→i =2,m =1,S =11×2; i =2<4→i =3,m =2,S =11×2+12×3;i =3<4→i =4,m =3,S =11×2+12×3+13×4;i =4<4不成立,输出S 的值.故S =11×2+12×3+13×4=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14 =1-14=34.(理)已知数列{a n }的各项均为正数,如图给出程序框图,当k =5时,输出的S =511,则数列{a n }的通项公式为( )A .a n =2nB .a n =2n -1C .a n =2n +1D .a n =2n -3[答案] B[解析] 由a i +1=a i +2知数列{a n }是公差为2的等差数列,由M =1a i ai +1及S =S +M 知,S =1a 1a 2+1a 2a 3+…+1a i a i +1, 由条件i ≤k 不满足时输出S 及输入k =5,输出S =511知,1a 1a 2+1a 2a 3+…1a 5a 6=12[(1a 1-1a 2)+(1a 2-1a 3)+…(1a 5-1a 6)]=12(1a 1-1a 6)=12(1a 1-1a 1+10)=5a 1(a 1+10)=511, ∵a 1>0,∴a 1=1,∴a n =2n -1. 二、填空题14.(2013·广东佛山一模)我们可以利用数列{a n }的递推公式,求出这个数列各项的值,使得这个数列中的每一项都是奇数,则a 24+a 25=________;研究发现,该数列中的奇数都会重复出现,那么第8个5是该数列的第________项.[答案] 28 640[解析] a 24+a 25=a 12+25=a 6+25=a 3+25=3+25=28. 5=a 5=a 10=a 20=a 40=a 80=a 160=a 320=a 640.15.已知数列{a n }的通项公式为a n =2n (n ∈N *),把数列{a n }的各项排列成如图所示的三角形数阵:2 22 23 24 25 26 27 28 29 210……记M (s ,t )表示该数阵中第s 行的第t 个数,则M (11,2)对应的数是________(用2n 的形式表示,n ∈N ).[答案] 257[解析] 由数阵的排列规律知,第m 行的最后一个数是数列{a n }的第1+2+3+…+m =m (m +1)2项,且该行有m 项,由此可知第11行的第2个数是数列{a n }的第10×112+2=57项,对应的数是257.三、解答题16.(文)已知数列{a n }是公差d ≠0的等差数列,记S n 为其前n 项和. (1)若a 2、a 3、a 6依次成等比数列,求其公比q .(2)若a 1=1,证明点P 1⎝⎛⎭⎫1,S 11,P 2⎝⎛⎭⎫2,S 22,…,P n ⎝⎛⎭⎫n ,S nn (n ∈N *)在同一条直线上,并写出此直线方程.[解析] (1)∵a 2、a 3、a 6依次成等比数列, ∴q =a 3a 2=a 6a 3=a 6-a 3a 3-a 2=3dd =3,即公比q =3.(2)证明:∵S n =na 1+n (n -1)2d ,∴S nn =a 1+n -12d =1+n -12d . ∴点P n ⎝⎛⎭⎫n ,S n n 在直线y =1+x -12d 上. ∴点P 1,P 2,…,P n (n ∈N *)都在过点(1,1)且斜率为d2的直线上.此直线方程为y -1=d2(x -1).即dx -2y +2-d =0.(理)在等差数列{a n }中, 设S n 为它的前n 项和,若S 15>0,S 16<0,且点A (3,a 3)与B (5,a 5)都在斜率为-2的直线l 上,(1)求a 1的取值范围;(2)指出S 1a 1,S 2a 2,…,S 15a 15中哪个值最大,并说明理由.[解析] (1)由已知可得a 5-a 35-3=-2,则公差d =-2,∴⎩⎨⎧S 15=15a 1+15×142×d =15(a 1-14)>0,S16=16a 1+16×152×d =16(a 1-15)<0.∴14<a 1<15. (2)最大的值是S 8a 8,∵S 15=15a 8>0,S 16=8(a 8+a 9)<0, ∴a 8>0,a 9<0,即S 8最大.又当1≤i ≤8时,S i a i >0;当9≤i ≤15时,S ia i <0,∵数列{a n }递减,∴S 1a 1≤S 2a 2≤…≤S 8a 8,S 8a 8≥S 9a 9≥…≥S 15a 15⇒S 8a 8最大.考纲要求能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题. 补充说明1.等比数列综合问题的解题思路在解答等差、等比数列综合问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,往往能取得与“巧用性质”相同的解题效果,既要掌握“通法”,又要注重“特法”.2.通过数列通项公式观察数列特点和规律,在分析数列通项的基础上,判断求和类型,寻找求和的方法,将数列拆为基本数列,或转化为基本数列求和.求和过程中同时要对项数作出准确判断.3.含有字母的数列求和,常伴随着分类讨论.4.数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解,深刻领悟它在解题中的重大作用,常用的数学思想方法有:“函数与方程”、“数形结合”、“分类讨论”、“等价转换”等.备选习题1.设正项等比数列{a n }的前n 项之积为T n ,且T 10=32,则1a 5+1a 6的最小值为( )A .2 2 B. 2 C .2 3 D. 3 [答案] B[解析] 由条件知,T 10=a 1a 2…a 10=(a 5a 6)5=32,∵a n >0,∴a 5a 6=2,∴1a 5+1a 6=12·a 5a 6·(1a 5+1a 6)=12(a 5+a 6)≥12×2a 5a 6=2,等号在a 5=a 6=2时成立. 2.设等差数列{a n }的前n 项和为S n ,则a 6+a 7>0是S 9≥S 3的( ) A .充分但不必要条件 B .必要但不充分条件 C .充要条件 D .既不充分也不必要条件[答案] A[解析] ∵S 9≥S 3⇔a 4+a 5+a 6+a 7+a 8+a 9≥0⇔3(a 6+a 7)≥0⇔a 6+a 7≥0,∴a 6+a 7>0⇒a 6+a 7≥0,但a 6+a 7≥0⇒/ a 6+a 7>0,故选A.3.已知数列{a n }、{b n }满足a 1=12,a n +b n =1,b n +1=b n 1-a 2n ,则b 2014=( )A.20132014B.20142013C.20142015D.20152014 [答案] C[解析] ∵a n +b n =1,a 1=12,∴b 1=12,∵b n +1=b n 1-a 2n ,∴b 2=b 11-a 21=23, ∴a 2=13,b 3=b 21-a 22=34,a 3=14,b 4=b 31-a 23=45,a 4=15,…,观察可见a n=1n +1,b n =n n +1,∴b 2014=20142015,故选C.4.(2013·武汉调研)在如图所示的数表中,第i 行第j 列的数记为a i ,j ,且满足a 1,j =2j -1,a i,1=i ,a i +1,j +1=a i ,j +a i +1,j (i ,j ∈N *);又记第3行的3,5,8,13,22,39,…,为数列{b n },则(1)(2)数列{b n }的通项公式为________. [答案] (1)129 (2)b n =2n -1+n +1,n ∈N *5.已知f (x )=a 1x +a 2x 2+…+a n x n (n 为正偶数)且{a n }为等差数列,f (1)=n 2,f (-1)=n ,试比较f ⎝⎛⎭⎫12与3的大小,并证明你的结论.[解析] 由f (1)=n 2,f (-1)=n 得,a 1=1,d =2.11 ∴f ⎝⎛⎭⎫12=⎝⎛⎭⎫12+3⎝⎛⎭⎫122+5⎝⎛⎭⎫123+…+(2n -1)· ⎝⎛⎭⎫12n , 两边同乘以12得,12f ⎝⎛⎭⎫12=⎝⎛⎭⎫122+3⎝⎛⎭⎫123+…+(2n -3)⎝⎛⎭⎫12n +(2n -1)⎝⎛⎭⎫12n +1, 两式相减得,12f ⎝⎛⎭⎫12=12+2⎝⎛⎭⎫122+2⎝⎛⎭⎫123+…+2⎝⎛⎭⎫12n -(2n -1)⎝⎛⎭⎫12n +1=12+12⎝⎛⎭⎫1-12n -11-12-(2n -1)12n +1. ∴f ⎝⎛⎭⎫12=3-2n +32n<3.。
【走向高考】2015届高考数学一轮总复习 8-6抛物线课后强化作业新人教A 版基础巩固强化一、选择题1.(文)(2013·某某某某模拟)若点P 到点F (0,2)的距离比它到直线y +4=0的距离小2,则点P 的轨迹方程为( )A .y 2=8xB .y 2=-8xC .x 2=8yD .x 2=-8y [答案]C[解析]由题意知点P 到点F (0,2)的距离比它到直线y +4=0的距离小2,因此点P 到点F (0,2)的距离与到直线y +2=0的距离相等,故点P 的轨迹是以F 为焦点,y =-2为准线的抛物线,∴P 的轨迹方程为x 2=8y .选C.(理)(2013·东北三校模拟)已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )A .|FP 1|+|FP 2|=|FP 3|B .|FP 1|2+|FP 2|2=|FP 3|2C .2|FP 2|=|FP 1|+|FP 3|D .|FP 2|2=|FP 1|·|FP 3| [答案]C[解析]抛物线的准线方程为x =-p 2,由定义得|FP 1|=x 1+p 2,|FP 2|=x 2+p 2,|FP 3|=x 3+p 2,则|FP 1|+|FP 3|=x 1+p 2+x 3+p2=x 1+x 3+p,2|FP 2|=2x 2+p ,由2x 2=x 1+x 3,得2|FP 2|=|FP 1|+|FP 3|,故选C.2.(文)抛物线y 2=8x的焦点到双曲线x 212-y 24=1的渐近线的距离为( )A .1 B. 3 C.33D.36[答案]A [解析]抛物线y 2=8x的焦点F (2,0)到双曲线x 212-y 24=1的渐近线y =±33x 的距离d =1.(理)设椭圆x 2m 2+y 2n 2=1(m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为( )A.x 212+y 216=1B.x 216+y 212=1 C.x 248+y 264=1 D.x 264+y 248=1 [答案]B[解析]抛物线y 2=8x 的焦点F (2,0),由条件得⎩⎪⎨⎪⎧m 2-n 2=4,2m =12.∴⎩⎪⎨⎪⎧m 2=16,n 2=12.故选B.3.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值X 围是( )A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞) [答案]C[解析]设圆的半径为r ,因为F (0,2)是圆心,抛物线C 的准线方程y =-2.圆与准线相切时半径为4.若圆与准线相交则r >4.又因为点M (x 0,y 0)为抛物线x 2=8y 上一点,所以有x 20=8y 0.又点M (x 0,y 0)在圆x 2+(y -2)2=r 2上.所以x 20+(y 0-2)2=r 2>16,所以8y 0+(y 0-2)2>16,即有y 20+4y 0-12>0,解得y 0>2或y 0<-6(舍),∴y 0>2.故选C.4.(2013·某某省级示X 高中联考)设O 是坐标原点,F 是抛物线y 2=4x 的焦点,A 是抛物线上的一点,F A →与x 轴正方向的夹角为60°,则△OAF 的面积为( )A.32B .2 C.3D .1 [答案]C[解析]由题意知,F (1,0),过A 作AD ⊥x 轴于D .令|FD |=m ,则|F A |=2m ,由抛物线的定义知|AF |=p +|FD |=2+m =2m ,即m =2,所以|AD |=23,S △OAF =12|OF |·|AD |=12×1×23= 3.5.(文)已知抛物线y 2=2px (p >0)的准线与曲线x 2+y 2-6x -7=0相切,则p 的值为( ) A .2 B .1 C.12D.14[答案]A[解析]抛物线y 2=2px 的准线方程是x =-p2,曲线x 2+y 2-6x -7=0,即(x -3)2+y 2=16是圆心为(3,0),半径为4的圆,依题意有|p 2+3|=4.因为p >0,所以有p2+3=4,解得p =2,故选A.(理)设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若OA →·AF →=-4,则点A 的坐标为( )A .(2,±22)B .(1,±2)C .(1,2)D .(2,22) [答案]B[解析]设点A 的坐标为(x 0,y 0),∴y 20=4x 0①又F (1,0),∴OA →=(x 0,y 0),AF →=(1-x 0,-y 0), ∵OA →·AF →=-4,∴x 0-x 20-y 20=-4,②解①②组成的方程组得⎩⎪⎨⎪⎧ x 0=1,y 0=2,或⎩⎪⎨⎪⎧x 0=1,y 0=-2.[点评] 向量与解析几何相结合,向量往往要化为坐标的形式.6.(文)(2013·某某市部分学校联考)过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,它们到直线x =-2的距离之和等于7,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在 [答案]B[解析]抛物线y 2=4x 的通径(过焦点垂直于对称轴的线段)长为4,由抛物线的定义及题设条件知,|AB |=7-2=5>4,故这样的直线有且仅有两条.(理)已知直线l 1:4x -3y +6=0和直线l 2:x =-1,P 是抛物线y 2=4x 上一动点,则点P 到直线l 1和直线l 2的距离之和的最小值是( )A .2B .3 C.115D.3716 [答案]A[解析]直线l 2:x =-1为抛物线y 2=4x 的准线,由抛物线的定义知,P 到l 2的距离等于P 到抛物线的焦点F (1,0)的距离,故本题化为在抛物线y 2=4x 上找一个点P ,使得P 到点F (1,0)和直线l 2的距离之和最小,最小值为F (1,0)到直线l 1:4x -3y +6=0的距离,即d min =|4-0+6|5=2,故选A.二、填空题7.(2013·某某某某一模)已知直线l 与抛物线y 2=8x 交于A ,B 两点,且l 经过抛物线的焦点F ,A 点的坐标为(8,8),则线段AB 的中点到准线的距离是________.[答案]254[解析]由y 2=8x 知2p =8,∴p =4,则点F 的坐标为(2,0).由题设可知,直线l 的斜率存在,设l 的方程为y =k (x -2),点A ,B 的坐标分别为(8,8),(x B ,y B ).又点A (8,8)在直线l 上,∴8=k (8-2), 解得k =43.∴直线l 的方程为y =43(x -2).①将①代入y 2=8x ,整理得2x 2-17x +8=0, 则8+x B =172,∴x B =12.∴线段AB 的中点到准线的距离是 x A +x B 2+p 2=174+2=254. [解法探究] 求得x B =12后,进一步可得y B =-2,∴|AB |=252. ∴AB 的中点到准线距离d =12(|AF |+|BF |)=12|AB |=254.8.(2013·某某某某调研)已知P 为抛物线y =14x 2上的动点,点P 在x 轴上的射影为M ,点A 的坐标是(2,0),则|P A |+|PM |的最小值是________.[答案]5-1[解析]如图,抛物线y=14x2,即x2=4y的焦点F(0,1),记点P在抛物线的准线l:y=-1上的射影为P′,根据抛物线的定义知,|PP′|=|PF|,则|PP′|+|P A|=|PF|+|P A|≥|AF|=22+12= 5.所以(|P A|+|PM|)min=(|P A|+|PP′|-1)min=5-1.9.(文)已知抛物线型拱桥的顶点距离水面2m时,测量水面宽为8m,当水面上升12m后,水面的宽度是________m.[答案]4 3[解析]建立平面直角坐标系如图,设开始时水面与抛物线的一个交点为A,由题意可知A(4,-2),故可求得抛物线的方程为y=-18x2,设水面上升后交点为B,则点B的纵坐标为-32,代入抛物线方程y=-18x2可求出B点的横坐标为23,所以水面宽为43m.(理)(2012·某某理,13)下图是抛物线形拱桥,当水面在l时,拱顶离水面2m,水面宽4m,水位下降1m后,水面宽________m.[答案]2 6[解析]本题考查了抛物线方程在实际问题中的应用.如图建立坐标系设方程x 2=-2py (p >0),由题意知点(2,-2)在抛物线上,可得p =1, 则方程为x 2=-2y ,当y =-3时,x =±6, 所以水面宽26m.[点评] 抛物线方程在实际问题中的应用,关键是合理建立平面直角坐标系,还要注意数据的实际意义.三、解答题10.(2013·某某三校调研)在直角坐标系xOy 中,点M (2,-12),点F 在抛物线C :y =mx 2(m >0)的焦点,线段MF 恰被抛物线C 平分.(1)求m 的值;(2)过点M 作直线l 交抛物线C 于A 、B 两点,设直线F A 、FM 、FB 的斜率分别为k 1、k 2、k 3,问k 1、k 2、k 3能否成公差不为零的等差数列?若能,求直线l 的方程;若不能,请说明理由.[解析](1)由题得抛物线C 的焦点F 的坐标为(0,14m ),线段MF 的中点N (1,18m -14)在抛物线C 上,∴18m -14=m,8m 2+2m -1=0,∴m =14(m =-12舍去).(2)由(1)知抛物线C :x 2=4y ,F (0,1).设直线l 的方程为y +12=k (x -2),A (x 1,y 1)、B (x 2,y 2),由⎩⎪⎨⎪⎧y +12=k (x -2),x 2=4y ,得x 2-4kx +8k +2=0, Δ=16k 2-4(8k +2)>0,∴k <2-62或k >2+62. ⎩⎪⎨⎪⎧x 1+x 2=4k ,x 1x 2=8k +2. 假设k 1、k 2、k 3能成公差不为零的等差数列,则k 1+k 3=2k 2. 而k 1+k 3=y 1-1x 1+y 2-1x 2=x 2y 1+x 1y 2-x 2-x 1x 1x 2=x 2x 214+x 1x 224-x 2-x 1x 1x 2=(x 1x 24-1)(x 1+x 2)x 1x 2=(8k +24-1)·4k 8k +2=4k 2-k 4k +1,k 2=-34,∴4k 2-k 4k +1=-32,8k 2+10k +3=0,解得k =-12(符合题意)或k =-34(不合题意,舍去).∴直线l 的方程为y +12=-12(x -2),即x +2y -1=0.∴k 1、k 2、k 3能成公差不为零的等差数列,此时直线l 的方程为x +2y -1=0.能力拓展提升一、选择题11.(文)若抛物线y 2=4x 的焦点是F ,准线是l ,则经过点F 、M (4,4)且与l 相切的圆共有( )A .0个B .1个C .2个D .3个 [答案]C[解析]经过F 、M 的圆的圆心在线段FM 的垂直平分线上,设圆心为C ,则|CF |=|CM |,又圆C 与l 相切,所以C 到l 距离等于|CF |,从而C 在抛物线y 2=4x 上.故圆心为FM 的垂直平分线与抛物线的交点,显然有两个交点,所以共有两个圆. (理)将两个顶点在抛物线y 2=2px (p >0)上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则( )A .n =0B .n =1C .n =2D .n ≥3 [答案]C [解析]设抛物线上点A (y 212p ,y 1),B (y 222p ,y 2),且y 1≠y 2,焦点F (p2,0),由|AF |=|BF |得,(y 21-y 22)(y 21+y 22+2p 24p 2)=0, ∵y 1≠y 2,∴y 1=-y 2.∴A 、B 关于x 轴对称. 过点F 作直线y =33(x -p 2),y =-33(x -p2)分别与抛物线有2个交点. ∴等边三角形有△AFB 和△A ′FB ′,2个,故选C.12.(2013·某某第一次质量预测)过抛物线y 2=8x 的焦点F 作倾斜角为135°的直线交抛物线于A 、B 两点,则弦AB 的长为( )A .4B .8C .12D .16 [答案]D[解析]抛物线y 2=8x 的焦点F 的坐标为(2,0),直线AB 的倾斜角为135°,故直线AB 的方程为y =-x +2,代入抛物线方程y 2=8x ,得x 2-12x +4=0.设A (x 1,y 1),B (x 2,y 2),则弦AB 的长|AB |=x 1+x 2+4=12+4=16.13.(2013·乌鲁木齐第一次诊断)设平面区域D 是由双曲线y 2-x 24=1的两条渐近线和抛物线y 2=-8x 的准线所围成的三角形(含边界与内部).若点(x ,y )∈D ,则x +y 的最小值为( )A .-1B .0C .1D .3 [答案]B[解析]由题意知,双曲线的渐近线方程为y =±12x ,抛物线的准线方程为x =2,设z =x+y ,得y =-x +z ,平移直线y =-x 过点O (0,0)时,直线y =-x +z 的纵截距最小,故z min =0.二、填空题14.(文)已知点A (2,0)、B (4,0),动点P 在抛物线y 2=-4x 上运动,则AP →·BP →取得最小值时的点P 的坐标是______.[答案](0,0)[解析]设P ⎝ ⎛⎭⎪⎫-y 24,y ,则AP →=⎝⎛⎭⎫-y 24-2,y ,BP →=⎝⎛⎭⎫-y 24-4,y ,AP →·BP →=⎝⎛⎭⎫-y 24-2⎝⎛⎭⎫-y 24-4+y 2=y 416+52y 2+8≥8,当且仅当y =0时取等号,此时点P 的坐标为(0,0). (理)已知抛物线y 2=2px (p >0)上一点M (1,m )(m >0)到其焦点的距离为5,双曲线x 2a-y2=1的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是________.[答案]19[解析]根据抛物线定义可得,抛物线准线方程为x =-4,则抛物线方程为y 2=16x . 把M (1,m )代入y 2=16x 得m =4,即M (1,4). 在双曲线x 2a -y 2=1中,A (-a ,0),则k AM =41+a=1a .解得a =19.15.(2013·某某五校联考)设抛物线x 2=12y 的焦点为F ,经过点P (2,1)的直线l 与抛物线相交于A ,B 两点,又知点P 恰为AB 的中点,则|AF |+|BF |=________.[答案]8[解析]分别过点A ,B ,P 作准线的垂线,垂足分别为M ,N ,Q ,根据抛物线上的点到焦点的距离等于该点到准线的距离,得|AF |+|BF |=|AM |+|BN |=2|PQ |=8.三、解答题16.(文)若椭圆C 1:x 24+y 2b 2=1(0<b <2)的离心率等于32,抛物线C 2:x 2=2py (p >0)的焦点在椭圆C 1的顶点上.(1)求抛物线C 2的方程;(2)若过M (-1,0)的直线l 与抛物线C 2交于E 、F 两点,又过E 、F 作抛物线C 2的切线l 1、l 2,当l 1⊥l 2时,求直线l 的方程.[解析](1)已知椭圆的长半轴长为a =2,半焦距c =4-b 2, 由离心率e =ca=4-b 22=32得,b 2=1. ∴椭圆的上顶点为(0,1),即抛物线的焦点为(0,1), ∴p =2,抛物线的方程为x 2=4y .(2)由题知直线l 的斜率存在且不为零,则可设直线l 的方程为y =k (x +1),E (x 1,y 1),F (x 2,y 2),∵y =14x 2,∴y ′=12x ,∴切线l 1、l 2的斜率分别为12x 1、12x 2,当l 1⊥l 2时,12x 1·12x 2=-1,即x 1·x 2=-4,由⎩⎪⎨⎪⎧y =k (x +1),x 2=4y .得x 2-4kx -4k =0, 由Δ=(-4k )2-4×(-4k )>0,解得k <-1或k >0. 又x 1·x 2=-4k =-4,得k =1. ∴直线l 的方程为y =x +1.(理)已知点C (1,0),点A 、B 是⊙O :x 2+y 2=9上任意两个不同的点,且满足AC →·BC →=0,设P 为弦AB 的中点.(1)求点P 的轨迹T 的方程;(2)试探究在轨迹T 上是否存在这样的点:它到直线x =-1的距离恰好等于到点C 的距离?若存在,求出这样的点的坐标;若不存在,说明理由.[解析](1)法一:连接CP ,由AC →·BC →=0知,AC ⊥BC ,∴|CP |=|AP |=|BP |=12|AB |, 由垂径定理知|OP |2+|AP |2=|OA |2,即|OP |2+|CP |2=9,设点P (x ,y ),有(x 2+y 2)+[(x -1)2+y 2]=9,化简得,x 2-x +y 2=4.法二:设A (x 1,y 1),B (x 2,y 2),P (x ,y ),根据题意知,x 21+y 21=9,x 22+y 22=9,2x =x 1+x 2,2y =y 1+y 2,∴4x 2=x 21+2x 1x 2+x 22,4y 2=y 21+2y 1y 2+y 22,故4x 2+4y 2=(x 21+y 21)+(2x 1x 2+2y 1y 2)+(x 22+y 22)=18+2(x 1x 2+y 1y 2),①又∵AC →·BC →=0,∴(1-x 1,-y 1)·(1-x 2,-y 2)=0,∴(1-x 1)×(1-x 2)+y 1y 2=0,故x 1x 2+y 1y 2=(x 1+x 2)-1=2x -1,代入①式得,4x 2+4y 2=18+2(2x -1),化简得,x 2-x +y 2=4.(2)根据抛物线的定义,到直线x =-1的距离等于到点C (1,0)的距离的点都在抛物线y 2=2px 上,其中p 2=1,∴p =2,故抛物线方程为y 2=4x , 由方程组⎩⎪⎨⎪⎧y 2=4x ,x 2-x +y 2=4.得,x 2+3x -4=0, 解得x 1=1,x 2=-4,由于x ≥0,故取x =1,此时y =±2,故满足条件的点存在,其坐标为(1,-2)和(1,2).考纲要求1.理解抛物线的定义、几何图形和标准方程,知道它的简单几何性质.2.理解数形结合的思想,了解抛物线的简单应用.补充说明1.由于抛物线的标准方程有四种不同形式,故求抛物线标准方程时,一定要注意区分焦点在哪个轴上加以讨论.抓准抛物线的开口方向及p 的几何意义是准确迅速求解的关键.2.抛物线的焦点弦涉及抛物线的焦半径或焦点弦的问题,常考虑应用定义求解.(1)若抛物线y 2=2px (p >0)的焦点弦为AB ,A (x 1,y 1),B (x 2,y 2),则有如下结论: ①|AB |=x 1+x 2+p ; ②y 1y 2=-p 2; ③x 1x 2=p 24. (2)直线l 过抛物线y 2=2px (p >0)的焦点F ⎝⎛⎭⎫p 2,0时,常设l :x =my +p 2以简化运算. 3.韦达定理的应用涉及抛物线的弦长、弦的中点、弦的斜率问题时要注意利用韦达定理,以避免求交点坐标的复杂运算.4.关于抛物线的最值问题(1)A 为抛物线弧内一定点,F 为焦点,P 为抛物线上任一点,求|P A |+|PF |的最小值问题常用定义转化,由A 向抛物线的准线作垂线与抛物线的交点为取到最小值的P 点.(2)直线l 与抛物线无公共点,求抛物线上的点到l 的最小值问题,一般可设出抛物线上的点,用点到直线距离公式转化为二次函数求最值,或设出与l 平行且与抛物线相切的直线,转化为两平行直线间的距离,后者更简便.(3)解题原理:“两点之间线段最短”,“点到直线的垂线段最短”,三点A 、B 、C 中,|AB |+|BC |≥|AC |等.5.求参数X 围的方法有两种:①根据题目给出的已知条件列出一个关于参数的函数关系式,将其代入由题目列出的不等式(消元),然后求解不等式;②由题目条件和结论建立目标函数,进而转化为求函数的值域.备选习题1.(2013·某某调研)已知点P 在直线x +y +5=0上,点Q 在抛物线y 2=2x 上,则|PQ |的最小值等于________.[答案]924[解析]设与直线x +y +5=0平行且与抛物线y 2=2x 相切的直线方程是x +y +m =0,则由⎩⎪⎨⎪⎧x +y +m =0y 2=2x 消去x 得y 2+2y +2m =0,令Δ=4-8m =0,得m =12,因此|PQ |的最小值等于直线x +y +5=0与直线x +y +12=0之间的距离,即等于|5-12|2=924. 2.(2013·某某期末)若抛物线y 2=4x 的焦点为F ,过F 且斜率为1的直线交抛物线于A 、B 两点,动点P 在曲线y 2=-4x (y ≥0)上,则△P AB 的面积的最小值为________.[答案]2 2[解析]由题意得F (1,0),直线AB 的方程为y =x -1. 由⎩⎪⎨⎪⎧y =x -1,y 2=4x ,得x 2-6x +1=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=6,x 1x 2=1,∴|AB |=2·(x 1+x 2)2-4x 1x 2=8.设P (-y 204,y 0),则点P 到直线AB 的距离为|y 204+y 0+1|2,∴△P AB 的面积S =|y 20+4y 0+4|2=(y 0+2)22≥22,即△P AB 的面积的最小值是2 2. 3.(2014·扶余一中质检)已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为________.[答案]x =-1[解析]由⎩⎪⎨⎪⎧y 2=2px ,y =x -p 2,消去x 得,y 2-2py -p 2=0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2p ,由条件知,y 1+y 2=4,∴p =2,∴抛物线的准线方程为x =-1.。
数 列一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(文)(2014·甘肃省金昌市二中期中)已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0则有( )A .a 1+a 101>0B .a 2+a 100<0C .a 3+a 99=0D .a 51=51(理)(2014·浙江台州中学期中)公差不为0的等差数列{a n }的前21项的和等于前8项的和.若a 8+a k =0,则k =( )A .20B .21C .22D .232.(2014·浙江杜桥中学期中)已知等比数列{a n }中,a 3=16,a 4=8,则a 8=( )A .128B .64 C.14 D.123.(2014·湖南长沙实验中学、沙城一中联考)已知{a n }是等比数列,对任意n ∈N *,a n >0恒成立,且a 1a 3+2a 2a 5+a 4a 6=36,则a 2+a 5等于( )A .36B .±6C .-6D .64.(2014·抚顺市六校联合体期中)设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9的值等于( )A .54B .45C .36D .275.(2014·哈六中期中)已知正项等比数列{a n }的前n 项和为S n ,若S 13=2563,1a 1+1a 2+1a 3+…+1a 13=83,则log 2(a 6a 8)的值为( ) A .4 B .5 C .16 D .326.(2014·山东省德州市期中)已知{a n }是首项为1的等差数列,S n 是{a n }的前n 项和,且S 5=a 13,则数列{1a n a n +1}的前五项和为( ) A.1011 B.511 C.45 D.257.(2014·北京海淀期中)已知数列{a n }的通项公式a n =2n (3n -13),则数列的前n 项和S n 的最小值是( )A .S 3B .S 4C .S 5D .S 68.设等差数列{a n }的公差为d ,前n 项和为S n ,a 2=1,前6项的方差为353,则a 3S 3的值为( )A .-9B .3C .±9D .99.(2014·浙江台州中学期中)已知数列{a n }是1为首项、2为公差的等差数列,{b n }是1为首项、2为公比的等比数列.设c n =ab n ,T n =c 1+c 2+…+c n (n ∈N *),则当T n >2013时,n 的最小值是( )A .7B .9C .10D .1110.(文)(2014·宝鸡市质检)已知一次函数f (x )=kx +b 的图象经过点P (1,2)和Q (-2,-4),令a n =f (n )f (n +1),n ∈N *,记数列{1a n }的前n 项和为S n ,当S n =625时,n 的值等于( ) A .24 B .25 C .23 D .26(理)(2014·成都七中模拟)已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +9n的最小值为( ) A.83 B.114 C.145 D.17611.(文)(2014·山西曲沃中学期中)已知函数f (x )=⎩⎪⎨⎪⎧ (4-a 2)x +4(x ≤6),a x -5(x >6).(a >0,a ≠1),数列{a n }满足a n =f (n )(n ∈N *)且{a n }是单调递增数列,则实数a 的取值范围是( )A .[7,8)B .(1,8)C .(4,8)D .(4,7)(理)(2014·湖南长沙实验中学、沙城一中联考)已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n 的两个零点,则b 10等于( )A .24B .32C .48D .6412.(2014·海南省文昌市检测)已知函数f (x )=x 2+bx 的图象在点A (1,f (1))处的切线l与直线3x -y +2=0平行,若数列{1f (n )}的前n 项和为S n ,则S 2011的值为( ) A.20102011 B.20092010 C.20112012 D.20122013二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.)13.(2014·北京海淀期中)已知数列{a n }为等比数列,若a 1+a 3=5,a 2+a 4=10,则公比q =________.14.(2014·北京市海淀区期末)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=-2,a 2=b 2=4,则满足a n =b n 的n 的所有取值构成的集合是________.15.(文)(2014·三亚市一中月考)设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2=________.(理)(2014·浙江省五校联考)在等比数列{a n }中,若a 5+a 6+a 7+a 8=158,a 6a 7=-98,则1a 5+1a 6+1a 7+1a 8=________. 16.(文)(2014·浙北名校联盟联考)已知等差数列{a n }的前n 项的和为S n ,且a 1>0,S 7=S10,则使S n取到最大值的n为________.(理)(2014·鄂南高中、孝感高中联考)已知数列{a n},若点(n,a n)(n∈N*)在直线y-3=k(x -6)上,则数列{a n}的前11项和S11=________.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分12分)(文)(2014·三亚市一中月考)等比数列{a n}中,已知a1=2,a4=16.(1)求数列{a n}的通项公式;(2)若a3,a5分别为等差数列{b n}的第3项和第5项,求数列{b n}的通项公式及前n项和S n.(理)(2014·北京东城区联考)在公差不为0的等差数列{a n}中,a4=10,且a3,a6,a10成等比数列.(1)求数列{a n}的通项公式;(2)设b n=2a n(n∈N*),求数列{b n}的前n项和.18.(本小题满分12分)(文)(2014·北京朝阳区期中)已知等差数列{a n}的前n项和为S n,n∈N*,且a3+a6=4,S5=-5.(1)求a n;(2)若T n=|a1|+|a2|+|a3|+…+|a n|,求T5的值和T n的表达式.(理)(2014·安徽程集中学期中)S n表示等差数列{a n}的前n项的和,且S4=S9,a1=-12.(1)求数列的通项a n及S n;(2)求和T n=|a1|+|a2|+…+|a n|.19.(本小题满分12分)(文)(2014·山东省德州市期中)已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列(b n >0),且a 1=b 1=2,a 3+b 3=16,S 4+b 3=34.(1)求数列{a n }与{b n }的通项公式;(2)记T n 为数列{a n b n }的前n 项和,求T n .(理)(2014·辽宁师大附中期中)已知等比数列{a n }中,公比q ∈(0,1),a 2+a 4=54,a 1a 5=14,设b n =12na n (n ∈N *). (1)求数列{a n }的通项公式;(2)求数列{b n }的前n 项和S n .20.(本小题满分12分)(2014·浙北名校联盟联考)已知数列{a n }的前n 项和为S n ,S n =2a n -2.(1)求数列{a n }的通项公式;(2)设b n =a n ·log 2a n +1,求数列{b n }的前n 项和T n .22.(本小题满分14分)(文)(2014·长安一中质检)已知{a n }为等比数列,a 1=2,a 3=18,{b n }是等差数列,b 1=2,b 1+b 2+b 3+b 4=a 1+a 2+a 3>20.(1)求数列{b n }的通项公式及前n 项和S n ;(2)设P n =b 1+b 4+b 7+…+b 3n -2,Q n =b 10+b 12+b 14+…+b 2n +8,其中n ∈N +,试比较P n 与Q n 的大小,并加以证明.。
阶段示范性金考卷六一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在某大学数学专业的160名学生中开展一项社会调查,先将学生随机编号为01,02,03,…,160,采用系统抽样的方法抽取样本,已知抽取的学生中最小的两个编号为07号、23号,那么抽取的最大编号应该是()A.150 B.151C.142 D.143解析:由最小的两个编号为07,23可知,抽样间距为16,因此抽取人数的比例为116,即抽取10名同学,其编号构成首项为07,公差为16的等差数列,故最大编号为7+9×16=151.答案:B2.执行如图所示的程序框图,输出结果S等于()A.1006 B.1007C .1008D .1009解析:根据程序框图,S =(-1+2)+(-3+4)+…+ (-2013+2014)=1007,输出的S 为1007. 答案:B3.已知点P 是圆x 2+y 2+2x -3=0上任意一点,则点P 在第一象限内的概率为( )A. 13B. 14C. 16D. 112解析:将方程配方得(x +1)2+y 2=4,如图,易知∠ACB =60°,圆上的点在第一象限内的概率P =60°360°=16.答案:C4.对具有线性相关关系的变量x ,y ,测得一组数据如下表:根据上表,利用最小二乘法得它们的回归直线方程为y ^=10.5x +a ^,据此模型来预测当x =20时,y 的估计值为( )A .210B .210.5C .211.5D .212.5解析:由数据可知x =2+4+5+6+85=5,y =20+40+60+70+805=54,将(x ,y )代入回归直线方程y ^ =10.5x +a ^ 可得a ^ =54-52.5=1.5,即回归直线方程为y ^=10.5x +1.5,令x =20,得y ^=10.5×20+1.5=211.5,故选C.答案:C5.某商场在春节期间举行抽奖促销活动,规则是:从装有编号为0,1,2,3四个完全相同的金蛇形小玩具抽奖箱中同时抽出两个小玩具.两个小玩具的号码之和等于5中一等奖,等于4中二等奖,等于3中三等奖.则中奖的概率是( )A. 13 B. 23 C. 14D. 34解析:抽出两个小玩具,两个小玩具的号码可能为(0,1),(0,2),(0,3),(1,2),(1,3),(2,3),共6种情况,号码之和等于5的有(2,3),号码之和等于4的有(1,3),号码之和等于3的有(0,3),(1,2),则中奖的情况有4种,故中奖的概率为23.答案:B6.有一个容量为200的样本,其频率分布直方图如图所示,已知样本数据落在区间[10,12)内的频数比样本数据落在区间[8,10)内的频数少40,则m 的值等于( )A .0.18B .0.09C .0.08D .0.1解析:依题意,样本数据落在区间[10,12)内的频率比样本数据落在区间[8,10)内的频率小40200=0.2,因此(n-m)·2=0.2,所以n-m=0.1,而(m+n+0.02+0.05+0.15)·2=1,于是n+m=0.28,解得m=0.09.答案:B7. 在一盒子中有编号为1,2的红色球2个,编号为1,2的白色球2个,现从盒子中摸出2个球,每个球被摸到的概率相同,则摸出的2个球中既含有2种不同颜色又含有2个不同编号的概率为()A. 13 B.23C. 16 D.12解析:从4个球中摸出2个球的情况有(红1,红2),(红1,白1),(红1,白2),(红2,白1),(红2,白2),(白1,白2),共6种,其中2球颜色不同且编号不同的情况有(红1,白2),(红2,白1),共2种,故所求概率P=26=13.答案:A8.甲、乙两名学生的6次数学测验成绩(百分制)的茎叶图如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学的平均分高;③甲同学的平均分比乙同学的平均分低;④甲同学成绩的方差小于乙同学成绩的方差.上面说法正确的是()A.③④B.①②④C.②④D.①③④解析:由茎叶图知甲同学的成绩分别为72,76,80,82,86,90;乙同学的成绩分别为69,78,87,88,92,96.故甲同学成绩的中位数小于乙同学成绩的中位数,①错;计算得甲同学的平均分为81,乙同学的平均分为85,故甲同学的平均分比乙同学的平均分低,②错,③对;计算得甲同学成绩的方差小于乙同学成绩的方差,故④对.所以说法正确的是③④.故选A项.答案:A9.用1,2,3,4这四个数字组成无重复数字的四位数,这个数为恰有一个偶数夹在两个奇数之间的四位数的概率为()A. 13 B.12C. 23 D.34解析:用1,2,3,4这四个数字组成无重复数字的四位数有1234,1243,1324,1342,1423,1432,2134,2143,2314,2341,2413,2431,3142,3124,3214,3241,3412,3421,4123,4132,4213,4231,4312,4321,共24个,其中恰有一个偶数夹在两个奇数之间的四位数有1234,1432,2143,2341,3214,3412,4123,4321,共8个,所以所求概率P =824=13,选A.答案:A10.被戏称成“最牛违建”的北京“楼顶别墅”于2013年8月15日正式拆除.围绕此事件的种种纷争,某媒体通过随机询问100名性别不同的居民对此的看法,得到下表附:K 2=(a +b )(c +d )(a +c )(b +d )参照附表,得到的正确结论是:( )A .在犯错误的概率不超过1%的前提下,认为“认为拆除太可惜了与性别有关”B .在犯错误的概率不超过1%的前提下,认为“认为拆除太可惜了与性别无关”C .有90%以上的把握认为“认为拆除太可惜了与性别有关”D.有90%以上的把握认为“认为拆除太可惜了与性别无关”解析:因为K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=3.030>2.706,所以P(K2>2.706)=0.10,故有90%的把握认为“认为拆除太可惜了与性别有关”.答案:C11.某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生,则按程序框图正确编程运行时输出y的值为1或2的概率为()A. 16 B.13C. 12 D.56解析:变量x是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能.当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故输出y 的值为1的概率P 1=12,当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故输出y 的值为2的概率P 2=13,所以输出y 的值为1或2的概率为12+13=56.答案:D12.若利用计算机在区间(0,1)上产生两个不等的随机数a 和b ,则方程x =22a -2bx 有不等实数根的概率为( )A. 14B. 12C. 34D. 25解析:方程x =22a -2bx ,即x 2-22ax +2b =0,原方程有不等实数根,则需满足Δ=(22a )2-4×2b >0,即a >b .在如图所示的平面直角坐标系内,(a ,b )的所有可能结果是边长为1的正方形(不包括边界),而事件A “方程x =22a -2bx 有不等实数根”的可能结果为图中阴影部分(不包括边界).由几何概型公式可得P (A )=12×1×11×1=12.答案:B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.利用随机数表法对一个容量为500,编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,若选定从第12行第5列的数开始向右读数(下图摘取了随机数表的第11行至第15行),根据下图,读出的第3个数是________.18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 10 55 23 64 05 0526 62 38 97 75 84 16 07 44 99 83 11 46 32 24 20 14 85 88 45 10 93 72 88 7123 42 40 64 74 82 97 77 77 81 07 45 32 14 08 32 92 94 07 72 93 85 79 10 7552 36 28 19 95 50 92 26 11 97 00 56 76 31 38 80 22 02 53 53 86 60 42 04 5337 85 94 35 12 83 39 50 08 30 42 34 07 96 88 54 42 06 87 98 35 85 29 48 39解析:最先读到的1个编号是389,向右读下一个数是775,775大于499,故舍去;下一个数是841,舍去;下一个数是607,舍去;下一个数是449;下一个数是983,舍去;下一个数是114.读出的第3个数是114.答案:11414.[2014·安徽联考]已知x 是1,2,3,x,5,6,7这七个数据的中位数,且1,3,x ,-y 这四个数据的平均数为1,则1x +y 的最小值为________.解析:由已知得3≤x ≤5,1+3+x -y 4=1,∴y =x ,∴1x +y =1x +x ,又函数y =1x +x 在[3,5]上单调递增,∴当x =3时取最小值103. 答案:10315.如图,运行程序框图后输出S 的值是________.解析:因为a 1+a 2+a 3+a 4+a 5+a 6=0,且a i =a i +6,所以输出的S =a 1+a 2+…+a 2014=a 1+a 2+a 3+a 4=cos π3+(-1)1+cos 2π3+(-1)2+cos 3π3+(-1)3+cos 4π3+(-1)4=-32.答案:-3216.如图,⊙C 内切于扇形AOB ,∠AOB =π3.若在扇形内任取一点,则该点在⊙C 内的概率为________.解析:设⊙C 的半径为1,试验发生包含的事件对应的是扇形AOB ,满足条件的事件是圆,⊙C 的面积等于π.连接OC 并延长交扇形于N .过C 作CM ⊥OB ,则∠COM =π6,OC =2,ON =3,∴扇形AOB 的面积为12×π3×32=3π2,∴⊙C 的面积与扇形AOB 的面积比是23,∴所求概率P =23.答案:23三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)在一次抽奖活动中,有a 、b 、c 、d 、e 、f 共6人获得抽奖的机会.抽奖规则如下:主办方先从6人中随机抽取两人均获一等奖,再从余下的4人中随机抽取1人获二等奖,最后还从这4人中随机抽取1人获三等奖.(1)求a 能获一等奖的概率;(2)若a 、b 已获一等奖,求c 能获奖的概率.解:(1)设“a 能获一等奖”为事件A ,事件A 等价于事件“从6人中随机抽取两人,能抽到a ”.从6人中随机抽取两人的基本事件有(a 、b )、(a 、c )、(a 、d )、(a 、e )、(a 、f )、(b 、c )、(b 、d )、(b 、e )、(b 、f )、(c 、d )、(c 、e )、(c 、f )、(d 、e )、(d 、f )、(e 、f )15个,包含a 的有5个,所以,P (A )=515=13,答:a 能获一等奖的概率为13.(2)设“若a 、b 已获一等奖,c 能获奖”为事件B ,a 、b 已获一等奖,余下的四个人中,获奖的基本事件有(c 、c )、(c 、d )、(c 、e )、(c 、f )、(d 、c )、(d 、d )、(d 、e )、(d 、f )、(e 、c )、(e 、d )、(e 、e )、(e 、f )、(f 、c )、(f 、d )、(f 、e )、(f 、f )16个,其中含有c 的有7种,所以,P (B )=716,答:若a 、b 已获一等奖,c 能获奖的概率为716.18.(本小题满分12分)一般来说,一个人脚掌越长,他的身高就越高.现对10名成年人的脚掌长x 与身高y 进行测量.得到的数据(单位均为cm)作为一个样本如表所示.作出散点图后,发现散点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程y ^=b ^x +a ^ ; (2)若某人的脚掌长为26.5 cm ,试估计此人的身高;(3)在样本中,从身高180 cm 以上的4人中随机抽取2人作进一步的分析,求所抽取的2人中至少有1人身高在190 cm 以上的概率.(参考公式及数据:线性回归方程y ^=b ^x +a ^ 中,b ^=∑i =1n (x i -x )(y i -y )∑i =1n (x i -x )2,a ^ =y -b ^ x ,其中x ,y 为样本平均值,∑i =110 (x i-x )(y i -y )=577.5,∑i =110(x i -x )2=82.5)解:(1)记样本中10人的“脚掌长”为x i (i =1,2,…,10), “身高”为y i (i =1,2,…,10),则b ^ =∑i =110 (x i -x )(y i -y )∑i =110 (x i -x )2=577.582.5=7.∵x =x 1+x 2+…+x 1010=24.5, y =y 1+y 2+…+y 1010=171.5, ∴a ^ =y -b ^x =0,∴y ^ =7x .(2)由(1)知y ^ =7x ,当x =26.5时,y ^ =7×26.5=185.5(cm),故估计此人的身高为185.5 cm.(3)将身高为181 cm,188 cm,197 cm,203 cm 的4人分别记为A ,B ,C ,D .记“从身高180 cm 以上的4人中随机抽取2人作进一步的分析,所抽取的2人中至少有1人身高在190 cm 以上” 为事件M ,则基本事件有(AB),(AC),(AD),(BC),(BD),(CD),共6个,M包含的基本事件有(AC),(AD),(BC),(BD),(CD),共5个,∴P(M)=56.19.(本小题满分12分)某市今年10月举办艺术节,现有8名艺术节志愿者,其中志愿者A1,A2,A3通晓英语,B1,B2,B3通晓俄语,C1,C2通晓韩语.从中选出通晓英语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A1被选中的概率;(2)求B1和C1不全被选中的概率.解:(1)从8人中选出通晓英语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2)},共18个基本事件.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M表示事件“A1恰被选中”,则M={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2)},共有6个基本事件.因此P(M)=618=1 3.(2)用N表示事件“B1和C1不全被选中”,则其对立事件N表示事件“B1和C1全被选中”,由于N={(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)},事件N包含3个基本事件,所以P (N )=318=16,由对立事件的概率公式得P (N )=1-P (N )=1-16=56.20.(本小题满分12分)某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有1名志愿者被抽中的概率.解:(1)第3组的人数为0.06×5×100=30,第4组的人数为0.04×5×100=20,第5组的人数为0.02×5×100=10.因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为,第3组:3060×6=3;第4组:2060×6=2;第5组:1060×6=1.所以应从第3,4,5组各抽取3人,2人,1人.(2)记第3组的3名志愿者为A 1,A 2,A 3,第4组的2名志愿者则从6名志愿者中抽取2名志愿者有:(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,C 1),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,C 1),(A 3,B 1),(A 3,B 2),(A 3,C 1),(B 1,B 2),(B 1,C 1),(B 2,C 1),共15种情况.其中第4组的2名志愿者B 1,B 2至少有1名志愿者被抽中的情况有:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2),(B 1,C 1),(B 2,C 1),共9种.所以第4组至少有1名志愿者被抽中的概率为915=35.21.(本小题满分12分)某工厂生产A ,B 两种元件,其质量按测试指标划分为:大于或等于7.5为正品,小于7.5为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:x <y ,且A ,B 两种元件的检测数据的平均数相等,方差也相等.(1)求表格中x 与y 的值;(2)若从被检测的5件B 种元件中任取2件,求2件都为正品的概率.解:(1)由题知x A =15(7+7+7.5+9+9.5)=8,x B =15(6+x +8.5+8.5+y ),由x A =x B ,得x +y =17.①因为s 2A =15(1+1+0.25+1+2.25)=1.1,s 2B =15[4+(x -8)2+0.25+0.25+(y -8)2],由s 2A =s 2B ,得(x -8)2+(y -8)2=1.②由①②解得⎩⎪⎨⎪⎧ x =8y =9或⎩⎪⎨⎪⎧x =9y =8. 因为x <y ,所以x =8,y =9.(2)记被检测的5件B 种元件分别为B 1,B 2,B 3,B 4,B 5,其中B 2,B 3,B 4,B 5为正品,从中任取2件,共有10个基本事件,列举如下:(B 1,B 2),(B 1,B 3),(B 1,B 4),(B 1,B 5),(B 2,B 3),(B 2,B 4),(B 2,B 5),(B 3,B 4),(B 3,B 5),(B 4,B 5),记“2件都为正品”为事件C ,则事件C 包含以下6个基本事件:(B 2,B 3),(B 2,B 4),(B 2,B 5),(B 3,B 4),(B 3,B 5),(B 4,B 5).所以P (C )=610=35,即2件都为正品的概率为35.22.(本小题满分12分)某园艺师用两种不同的方法培育了一批珍贵树苗,在树苗3个月大的时候,随机抽取甲、乙两种方式培育的树苗各20株,测量其高度,得到的茎叶图如图(单位:cm):(1)依茎叶图判断用哪种方法培育的树苗的平均高度大?(2)现从用甲种方式培育的高度不低于80 cm的树苗中随机抽取2件,求高度为86 cm的树苗至少有一株被抽中的概率;(3)如果规定高度不低于85 cm的为生长优秀,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为树苗高度与培育方式有关?”,其中n=a+b+c+d.参考公式:K2=(a+b)(c+d)(a+c)(b+d)解:(1)用甲种方式培育的树苗的高度集中于50~90 cm之间,而用乙种方式培育的树苗的高度集中于60~100 cm之间,所以用乙种方式培养的树苗的平均高度大.(2)记高度为86 cm的树苗为A,B,其他不低于80 cm的树苗为C,D,E,F.从用甲种方式培育的高度不低于80 cm的树苗中随机抽取2株的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.高度为86 cm的树苗至少有一株被抽中所组成的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),共9个.故所求概率P=915=3 5.(3)2×2列联表如下:K2=13×27×20×20≈5.584>5.024,因此在犯错误的概率不超过0.025的前提下,可以认为树苗高度与培育方式有关.。
专项强化训练(六)(45分钟100分)一、选择题(每小题6分,共30分)1.在100个产品中,一等品20个,二等品30个,三等品50个,用分层抽样的方法抽取一个容量为20的样本,则二等品中A被抽取到的概率为( )A. B. C. D.不确定2.从一堆苹果中任取了20个,并得到它们的质量(单位:克)数据分布如表:则这堆苹果中,质量不小于120克的苹果数约占苹果总数的( )A.50%B.30%C.70%D.40%3.总体已经分成A,B,C三层,A,B,C三层个体数之比为2∶3∶5,现从总体中抽取容量为20的一个样本,已知A层中用简单随机抽样抽取样本时,甲被抽到的概率为,则总体的个体个数为( )A.4B.80C.120D.1604.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5)2,[15.5,19.5)4,[19.5,23.5)9,[23.5,27.5)18,[27.5,31.5)11, [31.5,35.5)12,[35.5,39.5)7,[39.5,43.5]3.根据样本的频率分布估计,数据在[31.5,43.5]内的概率约是( )A. B.C. D.5.(2014·郑州模拟)为了研究某高校大学5000名新生的视力情况,随机抽查了该校100名进校新生的视力情况,得到其频率分布直方图如图,若规定视力低于5.0的学生属于近视学生,则估计该校新生中不是近视的人数约为( )A.300B.400C.600D.1 000二、填空题(每小题6分,共18分)6.(2014·日照模拟)某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是.他属于不超过2个小组的概率是.7.(2014·银川模拟)甲、乙两人比赛射击,两人所得的平均环数相同,其中甲所得环数的方差为5,乙所得环数如下:5,6,9,10,5,那么这两人中成绩较稳定的是.8.(2014·石家庄模拟)将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n等于.三、解答题(每小题13分,共52分)9.(2014·兰州模拟)如图所示是某班学生一次数学考试成绩的频数分布直方图(每个分组包括左端点,不包括右端点),其中纵轴表示学生数,观察图形,回答下列问题:(1)全班有多少学生?(2)此次考试平均成绩大概是多少?(3)不及格的人数有多少?占全班多大比例?(4)如果80分及以上的成绩为优良,那么这个班的优良率为多少?10.(2014·枣庄模拟)有编号为A1,A2,A3,…,A6的6位同学,进行100米赛跑,得到下面的成绩:其中成绩在13秒内的同学记为优秀.(1)从上述6名同学中,随机抽取1名,求这名同学成绩优秀的概率.(2)从成绩优秀的同学中,随机抽取2名,用同学的编号列出所有可能的抽取结果,并求这2名同学的成绩都在12.3秒内的概率.11.(2014·天津模拟)某公司由筛选出的男员工14名,女员工6名共20名员工组建甲、乙两个部门,现对这20名员工进行一次综合测试,成绩的茎叶图如图所示(单位:分).现规定180分以上者到“甲部门”工作,180分以下者到“乙部门”工作.(1)求女员工成绩的平均值.(2)现采用分层抽样的方式分别从“甲部门”和“乙部门”中共选出5人参加一项活动.①甲、乙部门分别选出多少人?②若从这5人中随机选出2人,那么至少1人选自“甲部门”的概率是多少?12.(2014·珠海模拟)我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,为此市政府首先采用抽样调查的方法获得了n位居民某年的月均用水量(单位:吨).根据所得的n个数据按照区间[0,0.5),[0.5,1),[1,1.5),[1.5,2),[2,2.5), [2.5,3),[3,3.5),[3.5,4),[4,4.5]进行分组,得到频率分布直方图如图.(1)若已知n位居民中月均用水量小于1吨的人数是12,求n位居民中月均用水量分别在区间[2,2.5)和[2.5,3)内的人数.(2)在该市居民中随意抽取10位,求至少有2位居民月均用水量在区间[2,2.5)或[2.5,3)内的概率.(精确到0.01,参考数据:0.619≈0.012,0.6110≈0.0071)答案解析1.【解析】选A.每个个体被抽到的概率等于=,故二等品中产品A被抽到的概率为.2.【解析】选C.由表中数据可知,质量不小于120克的苹果有14个,一共有苹果20个,所以质量不小于120克的苹果数约占苹果总数的70%.3.【解析】选B.因为从总体中抽取容量为20的一个样本,甲被抽到的概率为,所以在整个抽样过程中每个个体被抽到的概率是,所以总体的个体个数为=80.4.【解析】选 B.根据所给的数据的分组及各组的频数得到数据在[31.5,43.5]范围的有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5]3,所以满足题意的数据有12+7+3=22(个),总的数据有66个,根据等可能数据的概率得到P==,故选B.5.【解析】选C.由频率分布直方图可知,视力在[5.0,5.1],[5.1,5.2]的频率分别为0.7×0.1=0.07,0.5×0.1=0.05.所以在样本中,有100×(0.07+0.05)=12人不是近视,可见不近视率约为0.12, 因为共有5000人,故估计该校新生中不是近视的人数约为5000×0.12=600,故选C.【加固训练】(2014·深圳模拟)某容量为180的样本的频率分布直方图共有n(n>1)个小矩形,若第一个小矩形的面积等于其余(n-1)个小矩形的面积之和的,则第一个小矩形对应的频数为( )A.20B.25C.30D.35【思路点拨】由第一个小矩形的面积和其余(n-1)个小矩形的面积之和的关系,求出第一个小矩形的面积占所有矩形面积的比例,从而得到第一个小矩形的频率,然后乘以样本容量即可得到第一个小矩形对应的频数.【解析】选C.设第一个小矩形的面积为S,则其余(n-1)个小矩形的面积之和为5S,则n个小矩形面积的总和为6S,那么第一个小矩形的面积等于所有n个小矩形的面积之和的.因为样本的频率分布直方图中,矩形的面积就是对应的频率,所以第一个小矩形对应的频率为.则第一个小矩形对应的频数是180×=30.故选C.6.【解析】“至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为P==.“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”. 故他属于不超过2个小组的概率是P=1-=.答案:7.【解析】==7,=[(5-7)2+(6-7)2+(9-7)2+(10-7)2+(5-7)2]=×(4+1+4+9+4)=4.4.因为>,所以乙稳定.答案:乙8.【解析】设第一至第六组数据的频数分别为2x,3x,4x,6x,4x,x,则2x+3x+4x=27,解得x=3,故n=20x=60.答案:609.【解析】(1)由频数分布直方图可知,成绩在[30,40)的有1人,[40,50)的有2人,[50,60)的有3人,[60,70)的有8人,[70,80)的有10人,[80,90)的有14人,[90,100)的有6人,所以总人数为1+2+3+8+10+14+6=44.(2)≈75.45.(3)不及格的人数有1+2+3=6(人),因为全班共有44人,所以占全班比例是×100%≈13.64%.(4)由图知,成绩为优良的有14+6=20(人),因为全班共有44人,所以优良率是×100%≈45.45%.10.【解析】(1)由所给成绩可知,成绩优秀的同学共有5名,设“从6名同学中,随机抽取1名成绩为优秀”为事件A,则P(A)=.(2)成绩优秀的同学编号为A1,A2,A3,A4,A5.从这5名同学中随机抽取2名,所有可能的结果为(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A2,A3),(A2,A4),(A2,A5),(A3,A4),(A3,A5),(A4,A5)共有10种,设“这2名同学的成绩都在12.3秒内”为事件B,则B中所有可能的结果为(A1,A3),(A1,A5),(A3,A5)共3种.所以P(B)=.11.【解析】(1)女员工成绩的平均值为:(160×1+170×2+180×2+190×1+8+7+8+6+5+2)=181.(2)①“甲部门”共有8人,“乙部门”共有12人,按分层抽样从“甲部门”选出2人,“乙部门”共选出3人.②设“甲部门”选出的2人记为a,b,“乙部门”选出的3人记为1,2,3,则所有的选取方式有(a,b),(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),(1,2)(1,3),(2,3)共10种情形,其中满足至少有1人选自“甲部门”的有(a,b),(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),共7种情形,故所求的概率为.12.【解析】(1)根据频率分布直方图可得n位居民中月均用水量小于1吨的频率为(0.08+0.16)×0.5=0.12,所以n==100(人),所以根据频率分布直方图可得n位居民中月均用水量在区间[2,2.5)内的人数是0.5×0.5×100=25(人),在[2.5,3)内的人数是0.28×0.5×100=14(人).(2)设A,B分别表示随机事件“居民月均用水量在区间[2,2.5)内”和“居民月均用水量在区间[2.5,3)内”,则事件A,B互斥,所以居民月均用水量在区间[2,2.5)或[2.5,3)内的概率是P=P(A∪B)=P(A)+P(B)=+==0.39,设X表示10位居民中月均用水量在区间[2,2.5)或[2.5,3)内的人数,则X~B(10,0.39),所以所求概率是P(X≥2)=1-P(X=0)-P(X=1)=1-×0.390×0.6110-×0.391×0.619≈1-0.0071-10×0.39×0.012≈0.95.关闭Word文档返回原板块。