全国大学生数学建模经验总结
- 格式:doc
- 大小:22.00 KB
- 文档页数:1
数学建模经验我参加了3次“深圳杯”数模,1次全国大学生数模,以及1次全国研究生数模,2016年参加了全国研究生数模的交流会,但没有参加过美赛,应该算是一个江湖老手了吧。
下面内容算是得出的一些经验。
如果你是没有太多数模论文书写经历的小白,我觉得你要找一篇优秀论文对照下面的内容好好看一下。
如果你是高手的话,就作为交流吧。
一、问题分析1.假设的必要性。
任何理论或者问题都是以必要的假设为前提的。
假设可以使你考虑的问题变得简单,降低难度。
只要假设是合理的,别人一般都会认同。
另外,你的假设也表明你考虑问题比较周全。
2.问题的分析。
这个太重要!你需要反复仔细的理解每一个小问题让你考虑什么,解决什么问题。
其实,每一个小问题的内容里都对应着评卷的得分点!3.数据分析。
一般,数模给题目的同时也会提供一些数据。
有的题目可能也会让你上网查数据。
数据的话,首先是看数据元素之间的关联性;然后,数据有没有缺失,缺失数据如何处理,数据里有没有噪声(噪声需不需要处理),数据里的元素需不需要做归一化(这个归一化非常重要)。
二、论文书写数学建模的论文一般分为以下几个部分:[背景概述](可选)、问题重述、模型假设、符号说明、问题分析、模型建立与求解、模型的总结与改进、参考文献、附录。
举个栗子,可以这样安排结构:摘要关键字一、问题重述二、模型假设三、符号说明四、问题1的分析及模型建立与求解4.1 问题分析这里,需要强调,很多人觉得问题分析就是把后面要建立的模型直接说一遍,但不是这样的!这个部分应该是当你刚刚拿到题,你分析问题的切入点是什么,使用哪些信息,大概用什么方法。
即是:问题的主要矛盾+大概思路。
4.2 模型建立与求解(这里可以加一个流程图或者你的总体解决思路,别人看你的文章更容易理解)后面这些模型你可以理解为,解决问题1时,你设计的算法是怎么一步步改进得到的,或者说你的算法分了哪些模块。
4.2.1xxxx模型4.2.2xxx模型4.3实验结果与分析实验结果最好是题目需要的,可以以图片、曲线图、表格等的形式,尽量的展示出的结果。
数学建模实践总结数学建模是一种将实际问题转化为数学模型,并通过数学方法进行求解和分析的过程。
在数学建模实践过程中,我深刻体会到了数学知识的实际应用和解决问题的能力。
通过本次实践,我对数学建模的方法和步骤有了更深刻的理解。
本文将对我参与的数学建模实践进行总结,并分享一些经验和感悟。
首先,我们在实践中遇到了一个实际的问题,即如何合理规划一个小区的绿化布局。
我们的目标是最大限度地提高绿化覆盖率,同时考虑社区居民的需求和经济成本。
为了解决这个问题,我们首先进行了问题的分析和拆解。
我们研究了小区的地理环境、土壤条件、气候特点等因素,并进行了数据的收集和整理。
在分析完实际问题后,我们开始建立数学模型。
我们选择了线性规划模型来解决这个问题。
我们将小区划分为不同的区域,并给每个区域设置了相应的绿化面积和成本。
我们设定了约束条件,如总绿化面积不能超过小区面积的百分之八十,并设置了优化目标,即最小化总成本。
通过线性规划模型,我们得到了最优的绿化布局方案。
接着,我们利用计算机编程工具对模型进行求解和优化。
我们利用MATLAB软件编写了相应的代码,并进行了模拟实验和数据验证。
通过多次实验和调整参数,我们得到了最终的实施方案。
我们将结果进行了可视化展示,并对结果进行了进一步的分析。
通过这次数学建模实践,我收获了许多宝贵的经验和教训。
首先,在实践过程中,团队合作是至关重要的。
我们需要协调各个成员的工作,并及时沟通和解决问题。
其次,数据的准确性和完整性对建模结果有着重要影响。
我们需要对数据进行仔细筛查和校验,并确保数据的可靠性。
最后,灵活运用数学知识和方法是解决实际问题的关键。
我们需要充分发挥数学的优势,灵活运用各种数学工具和技巧来解决实际问题。
总之,数学建模实践是一次宝贵的学习和实践机会。
通过实践,我不仅巩固了数学知识,还提高了解决问题的能力和综合素质。
我相信,在今后的学习和工作中,我会更加积极地运用数学建模方法,解决更加复杂和实际的问题。
数学建模竞赛成功经验分享与案例分析在数学建模竞赛中,取得成功并非易事。
除了扎实的数学基础和分析能力外,团队合作与沟通、解题思维的总结与拓展、时间管理等方面的因素同样重要。
本文将分享一些数学建模竞赛的成功经验,并分析一些经典的案例。
一、团队合作与沟通在数学建模竞赛中,团队合作和沟通是关键。
合理分工,高效协作可以提高团队整体的工作效率。
团队成员之间需要及时沟通与交流,将个人的想法和观点分享出来,以便找到最佳的解决方案。
同时,团队需要制定明确的计划与目标,并进行有效的组织与调度。
案例分析:在某数学建模竞赛中,一支团队面对一个复杂的实际问题,团队成员通过深入讨论,在共同努力下确定了问题的解决思路,并把该思路转化为数学模型。
通过团队成员之间的合作与沟通,大大提高了解题的效率,并且最终获得了竞赛的好成绩。
二、解题思维的总结与拓展数学建模竞赛中的问题往往是实际问题,需要将问题进行数学化建模,设定适当的假设和变量,确定合适的求解方法。
有效的解题思维总结与拓展是成功的关键。
案例分析:在一场数学建模竞赛中,一支团队面对一个涉及交通拥堵的问题。
他们通过总结以往的经验,提出了一种创新的解题思路:将交通拥堵问题看作流体力学问题,并借鉴计算机模拟技术进行仿真实验。
这种新颖的思路帮助他们从一个全新的角度解决问题,并在竞赛中获得好成绩。
三、时间管理数学建模竞赛的时间限制通常较为紧张,在有限的时间内完成解题过程是一项挑战。
因此,良好的时间管理能力对于竞赛中的成功非常重要。
合理规划时间,掌握解题进度,合理分配时间用于建模、求解和分析是必备的能力。
案例分析:在一场数学建模竞赛中,一支团队遇到了一个非常复杂的优化问题。
经过初步分析后,他们立刻制定了详细的时间安排,明确每个环节所需的时间,并进行了合理分配。
这使得他们能够在有限时间内完成建模和求解,最终取得较好的成绩。
综上所述,数学建模竞赛的成功需要团队合作与沟通、解题思维的总结与拓展、以及良好的时间管理能力。
数学建模实战实践经验总结分享数学建模,对于许多人来说,可能是一个既神秘又充满挑战的领域。
但通过亲身参与实战实践,我积累了不少宝贵的经验,在此愿意与大家分享。
首先,让我们来谈谈组队的重要性。
一个优秀的数学建模团队,成员之间应该具备互补的技能和良好的合作精神。
通常来说,团队中需要有擅长数学理论的“高手”,能够熟练运用各种数学工具和方法解决问题;要有精通编程的“码农”,能够将数学模型转化为可计算的程序;还需要有文字功底扎实、逻辑清晰的“写手”,负责将团队的思路和成果清晰准确地表达出来。
我曾经参与过的一个成功团队,就是因为成员之间的这种完美配合,才在比赛中取得了优异的成绩。
在准备阶段,知识的储备是必不可少的。
数学建模涉及到众多领域的知识,如概率论、数理统计、线性代数、微积分等等。
不仅要掌握这些基础知识,还要对一些常见的模型和算法有深入的了解,比如优化模型、预测模型、图论模型等。
同时,要熟悉一些常用的数学软件和编程语言,如 Matlab、Python 等。
此外,阅读优秀的数学建模论文和案例也是一种很好的学习方式,可以从中汲取经验和灵感。
接下来,就是选题环节。
在面对众多的题目时,要仔细阅读题目要求和背景信息,结合团队的优势和兴趣来选择。
不要盲目追求热门或者看似简单的题目,而要选择能够充分发挥团队能力的题目。
比如,如果团队在数据分析方面有较强的能力,就可以选择与数据分析相关的题目。
确定题目后,就是问题的分析和模型的建立。
这是整个数学建模过程中最关键的环节之一。
在分析问题时,要全面、深入,找出问题的本质和关键因素。
可以通过绘制图表、列举数据等方式来帮助理解问题。
模型的建立要基于合理的假设和简化,同时要考虑到模型的可行性和有效性。
有时候,可能需要尝试多种模型,通过比较和验证来选择最优的模型。
在模型求解过程中,往往会遇到各种困难和挑战。
可能会出现计算量大、程序出错、结果不理想等问题。
这时候,不要慌张,要冷静分析问题所在,尝试不同的方法和技巧。
数学建模竞赛的经验分享在数学建模竞赛中获得好成绩并不仅仅依赖于数学水平,还需要团队合作、问题分析和解决能力等多方面素质的综合发展。
本文将从个人经验出发,分享一些在数学建模竞赛中取得成功的经验和技巧。
一、团队合作与分工团队合作是数学建模竞赛中至关重要的一环。
一个团队中的成员需要相互信任、合理分工与密切配合。
在分工方面,可以根据队员的特长和兴趣进行合理的安排,充分发挥每个人的优势。
同时,要做好沟通与交流,及时解决团队中出现的问题。
通过紧密的团队协作,能够充分利用各自的优势,提升整个团队的解题效率和竞争力。
二、问题分析与解决在数学建模竞赛中,问题的分析与解决能力是决定成败的关键。
首先要对问题进行深入的分析,理解问题的背景和要求。
其次,要合理选择解题方法和模型,对问题进行建模与转化。
在解题过程中,要善于利用数学知识和技巧,进行问题求解与验证。
同时,还需要具备一定的编程能力,能够利用计算机进行模拟和数据处理。
通过不断练习和学习,提高自己的问题分析和解决能力,才能在竞赛中取得好成绩。
三、时间管理与备战策略数学建模竞赛通常在有限的时间内完成,因此良好的时间管理能力是至关重要的。
在备战阶段,要制定合理的学习计划和备赛策略。
要根据竞赛的要求和内容,有针对性地进行学习和准备。
在比赛过程中,要控制好时间节奏,合理安排每个环节的时间。
如果在某个环节卡住了,要及时调整思路,不要浪费太多时间。
合理的时间分配和备战策略能够提高解题的效率和质量。
四、综合素质的培养除了数学知识和解题技巧外,一些综合素质的培养也对于在数学建模竞赛中取得好成绩至关重要。
首先是团队合作与沟通能力,要学会与队友进行有效的合作和沟通。
其次是自学和独立思考的能力,要培养独立解题和自主学习的习惯,提高自己的自主学习和问题解决能力。
再次是表达与展示能力,要学会清晰地表达自己的思路和想法,通过书面报告和口头陈述来展示解题过程和结果。
这些素质的培养对于整个团队的竞赛能力和综合素质的提升有着重要的作用。
数学建模方法与实践经验总结在现代社会中,数学建模已经成为了解和解决实际问题的重要工具。
通过数学建模,我们可以将复杂的现实问题转化为数学模型,从而用数学方法进行分析和求解。
在过去的几年中,我有幸参与了一些数学建模项目,并积累了一些实践经验。
在本文中,我将总结一些数学建模的方法和实践经验。
首先,数学建模的第一步是问题的抽象和建模。
在面对一个实际问题时,我们需要仔细分析问题的背景和要求,明确问题的目标和限制条件。
然后,我们可以利用数学语言和符号将问题抽象成数学模型。
模型的建立需要考虑问题的各个因素和变量,并选择适当的数学工具和方法。
在这个过程中,我们需要灵活运用数学知识和技巧,将问题转化为数学形式,以便进行后续的分析和求解。
其次,数学建模的第二步是模型的分析和求解。
一旦建立了数学模型,我们就可以利用数学方法对模型进行分析和求解。
常用的数学方法包括微积分、线性代数、概率论等。
通过对模型进行分析,我们可以得到问题的一些基本特征和性质,如稳定性、敏感性等。
然后,我们可以利用数值方法或解析方法对模型进行求解,得到问题的解析解或数值解。
在这个过程中,我们需要注意数学方法的适用性和精确性,并结合实际情况进行合理的近似和简化。
第三,数学建模的第三步是模型的验证和优化。
在得到问题的解后,我们需要对模型进行验证和优化。
验证模型的正确性是非常重要的,我们可以通过与实际数据进行比较来验证模型的准确性和可靠性。
如果模型与实际数据相符,那么我们可以认为模型是可靠的。
然后,我们可以对模型进行优化,以提高模型的性能和效果。
优化方法包括参数调整、约束条件优化等。
通过模型的验证和优化,我们可以提高模型的可信度和实用性。
最后,数学建模的第四步是模型的应用和推广。
一旦我们建立了一个可靠的数学模型,我们就可以将模型应用到实际问题中。
通过模型的应用,我们可以得到问题的解决方案和决策支持。
同时,我们也可以将模型推广到其他类似的问题中,以解决更广泛的实际问题。
数学建模第一阶段小结今天已经是第三天了,按照全国赛的赛制,是到了要交论文的时候了,可是我们的论文还是只完成了很小的一部分。
矫情的话就不多说了,可总结的东西确实还是挺多的。
现在就自己心中能想的到的,按照我们建模的过程遇到的困难做一个小结:一,事前的准备真的是很重要的。
说到底,数学建模的三天里你真正学到的东西是极少的,最多也就是了解一些背景,看看一些相关方面的论文罢了。
所以在这里,强烈建议:1.1一定要学好理论知识。
“学好”的概念不是随便下的,这里的学好指的是深入理解,不说每个数学模型你都了如指掌,但最起码,你要了解并掌握它的核心东西,要知道这种模型的应用方向。
不要过于高估你的智商,当然,也没人怀疑你的智商,但是你要知道学过和没有学过的最大区别就是当你再次遇见“她“时,你会有似曾相识的感觉,学过的最大好处是能够快速地把知识捡起来,没有人能够做到过目不忘,你也不是照相机。
1.2一定要注重平时的积累。
平时看的一些书籍上面介绍的一些模型,一些算法实例,一定要做个有心人,该记得记,该保存的保存,省的到了比赛的时候到处找资料,找代码。
举个简单的例子,一般建模用到的模型都是前人们写好了的,对吧?短时间内,不要寄望去改进模型,因为如果可以改进的话,那些专家学者们早就会进行改进了,不会等到数学建模的这几天轮到你来改进。
如果我前面说的话是真的,那么这些模型的积累就是有意义的。
因为国赛目前提交论文用的还是word文档,所以可以偏向找些word文档保存的资料。
而且你搜集到几乎所有的word文档资料都是可以Ctrl+c,之后Ctrl+v的,最多到时候调整一下格式。
另外记得编辑公式时Mathtype是不可或缺的,在这里透漏一个小诀窍,,就是 PPT格式保存的资料(这里说的是模型为主),也都是可以复制+粘贴的,但是里面的公式粘下来是图片格式,如果作者加了什么颜色啥的那就不大好办了,实际上这个问题很好解决,这里就要提到公式编辑器的作用了,当你遇到PPT 中有公式时,直接双击就好了,这时Mathtype就开始发挥作用了,你会惊奇的发现直接弹出来一个窗口,也就是Mathtype的主运行窗口了,这时你直接复制,粘贴里面的公式就可以了。
数学专业的数学建模竞赛经验分享在大学的数学专业学习过程中,参加数学建模竞赛是一种很常见的实践活动。
通过这样的竞赛,不仅可以锻炼自己的数学建模能力,还可以提升自己的团队协作和问题解决能力。
在这篇文章中,将分享我个人在数学建模竞赛中的经验和一些有效的解题方法。
一、准备阶段在参加数学建模竞赛之前,首先要做的是充分准备。
这包括熟悉竞赛的规则和要求,阅读过往的获奖团队的论文,了解他们的解题思路和方法。
此外,还要对数学建模所涉及的各个领域进行广泛的知识储备,包括数学、统计学、计算机科学等。
通过扎实的基础知识,能够更好地应对各类问题。
二、团队合作数学建模竞赛通常以团队形式进行,因此团队成员之间的合作十分重要。
在组队阶段,要注重选择合适的队友,互补优势,形成一个协作默契的团队。
在竞赛过程中,要保持良好的沟通,并及时共享所遇到的问题和思考过程。
团队合作能够更好地发挥各个成员的优势,提高解题的效率和质量。
三、问题分析在竞赛开始后,首先要对问题进行全面的分析。
仔细阅读题目,理解题目的要求和限制条件,梳理出问题的关键信息和已知条件。
通过分析问题的特点,可以确定问题所属的数学模型和解题思路。
此外,还要善于利用各类工具和软件,进行数据处理和可视化,以便更好地理解问题和展示解题结果。
四、建立数学模型建立数学模型是数学建模竞赛中的核心环节。
在建模的过程中,需要将实际问题转化为数学问题,并选择适当的数学方法进行求解。
通过归纳总结问题的特点和规律,可以建立起合理且准确的数学模型。
在建模过程中,还要注意模型的简化和合理性,以保证问题的解决方案具有实用性和可行性。
五、问题求解在建立好数学模型后,就可以开始对问题进行求解了。
在求解的过程中,要运用数学和计算机的知识,使用适当的算法和技巧。
同时,要关注问题的实际背景和要求,对模型的结果进行解释和评估。
通过反复验证和调整,不断提升模型的准确性和可靠性。
在解题过程中,要保持清晰的思路和良好的逻辑思维,避免陷入盲目的试错和死胡同。
数学建模总结经验交流材料数学建模是数学、计算机科学与实际问题相结合的一种综合性学科,其目的是利用数学方法和技术对现实世界中的问题进行数学化、建模和求解。
经过一段时间的学习和实践,我对数学建模有了一定的理解和体会,并从中总结了一些经验和交流材料,希望能够与大家分享。
首先,在进行数学建模之前,我们需要了解问题的背景和需求。
不同的问题可能需要采用不同的数学方法和模型,因此了解问题的背景和需求对于解决问题是非常关键的。
在理解问题的基础上,我们可以采集相关的数据和信息,辅助我们建立数学模型和进行求解。
其次,对于建立数学模型,我们需要选择合适的数学方法和技术。
常用的数学方法包括线性规划、非线性规划、动态规划、图论等等。
在选择数学方法时,我们需要考虑问题的特点、数据的特征以及计算的复杂性等因素。
同时,在建立数学模型时,我们也需要考虑模型的可靠性和实用性,以及模型的参数和假设等。
然后,在进行模型求解时,我们需要选择合适的计算方法和工具。
现如今,计算机和计算软件已经成为数学建模中不可或缺的工具,可以帮助我们快速、准确地进行模型求解。
常用的计算软件包括MATLAB、Python、R语言等等,它们提供了各种数学建模和计算的函数和工具,并且具有良好的可视化和交互界面。
在进行模型求解时,我们需要熟悉计算软件的使用方法和技巧,以及灵活应用各种数学算法和实验技术。
最后,在进行模型求解和结果分析时,我们需要对结果进行合理的解释和评价。
我们需要关注模型的精确性和可靠性,对结果进行敏感性分析和稳定性检验,验证模型的有效性和实用性。
同时,我们还需要将结果与实际问题相结合,提出合理的建议和改进措施,为问题的解决提供支持和参考。
在实践过程中,我也遇到了一些困难和挑战。
数学建模需要我们具备一定的数学知识和技能,并且需要不断学习和更新。
同时,数学建模也需要我们具备良好的抽象思维能力和问题解决能力,能够将实际问题进行数学化、建模化和求解化。
此外,数学建模还需要我们具备良好的团队合作能力和沟通协调能力,能够与团队成员共同合作,解决复杂的问题。
数学建模实战实践经验总结分享数学建模,对于很多人来说,可能是一个既熟悉又陌生的概念。
熟悉在于我们在学习数学的过程中或多或少都接触过相关的知识和方法;陌生则在于真正将其应用于实际问题解决时,往往会感到无从下手。
在我参与过多次数学建模的实战实践后,积累了一些宝贵的经验,在此愿与大家分享。
首先,让我们来了解一下什么是数学建模。
简单来说,数学建模就是将实际问题转化为数学问题,并通过建立数学模型来求解,最终将结果返回到实际问题中进行验证和应用。
它是连接数学理论与实际应用的桥梁,能够帮助我们用数学的思维和方法去解决现实世界中的各种复杂问题。
在实战实践中,第一步也是至关重要的一步,就是对问题进行清晰的理解和准确的定义。
很多时候,我们拿到一个实际问题,可能会被各种细节和表象所迷惑,导致无法抓住问题的本质。
这时候,就需要我们静下心来,仔细阅读题目,与问题提出者进行充分的沟通,明确问题的背景、目标和限制条件。
例如,在一次关于城市交通拥堵问题的建模中,我们最初只是关注了道路的宽度、车辆的流量等表面因素,后来经过与交通部门的深入交流,才了解到市民的出行习惯、公共交通的覆盖范围等更深层次的影响因素,这为我们后续建立准确的模型奠定了坚实的基础。
有了对问题的清晰理解,接下来就是选择合适的建模方法。
数学建模的方法多种多样,如线性规划、非线性规划、微分方程、概率统计等等。
在选择方法时,需要结合问题的特点和所掌握的数据进行综合考虑。
比如,如果问题涉及到资源的最优分配,那么线性规划可能是一个不错的选择;如果要研究事物的发展变化规律,微分方程可能更为适用。
同时,不要局限于一种方法,有时候多种方法的结合能够产生更好的效果。
记得在一次关于企业生产计划的建模中,我们先用线性规划确定了生产的大致规模,然后用概率统计对市场需求的不确定性进行了分析,最终制定出了既满足生产效率又能应对市场变化的生产计划。
数据的收集和处理也是建模过程中不可或缺的环节。
全国大学生数学建模经验总结
我坚信:只有想不到的,没有做不到的!
我是一名渝州学院大二学生,2010年加入学院建模队,2011年9月参加了全国大学生数学建模竞赛,获得江西省二等奖,虽然接触建模时间不是很长,但建模给我带来的却很多。
建模对很多人来说是很模糊的东西,但作为一名建模人就应该担任起对建模的责任。
作为一名专科生,我知道自己相对于别人起跑线低,所以进入建模队后以严格的纪律来要求自己,别人懂的我得懂,别人不懂的我也要弄懂,不为别的,只因为要做就要做最好!
我虽在有些方面较强于别人,但我上课时还是认真听取老师的讲解,世上没有相同的人,每个人的想法思路也不可能完全相同,何不把别人的借鉴过来为己所用,多一个思路就证明多一条出路,多一条出路解题时分析题目的能力自然会比别人想的全面!所以在有些时候我还是把自己的思路讲给同学们参考,一起讨论解题的最好办法!
记得高三班主任在送我上大学的时候说过“不论什么时候多从别人的角度出发,凡事不要只为自己,你有足够的能力去做好任何事,多从事物的本身出发去考虑,要不做就不要做,但做就要做最好,以后的一切你自己把握!”担任过班长、学习委员、各科课代表的我曾对大学的录取不屑一顾,是人才总有发挥的地方,不论我的选择怎样家人、老师总会支持我。
人生是用来闯的,不做错事是不可能的,但做错事后我会勇敢承认,人无圣贤,孰能无过!
加入建模队后我认识到,不是任何错误都可以犯的,也许某步棋没走对,那满盘就尽输了!所以不论每次训练我都警告自己失误不是每个人都犯得起的,建模建的是我们的思维,我们分析问题的能力,处理问题的方法,文字的表达能力。
没有人会去当面问你解题的思路,我们唯一能做的就是把自己的思路想法用精炼的文字表达出来,这也锻炼了我对人处事的方式,以前总会想差不多就可以了,不去追求理解事物的本质,但建模不允许我们这么做,任何问题都要求我们刨根问底,对题目不理解何来的思路可循?
单纯从快递的运输方面举例来说,如果让我们设计一种最快、最低廉的运送方案,大多数人会考虑到运输设备的调用、运输路线的选择、接受地点的设置等方面,但对于从建模走过的人来说,我们会考虑的更深一层,例如该选用什么运输方式可以让运费最低,可以结合当地交通情况,利用单文件多种运输方式结合进行递送,通过对各种运输方式了解后,在保证运送时间相当的情况下,选用最低费用的运输方式,当然得结合实际情况。
总之,建模让我从另一个方面看世界,能让我更深入的分析理解问题,以致让我用最好的方法进行处理!
要做就做最好,不论什么时候只要确立了目标就要坚持到底!。