ok换元法解方程
- 格式:ppt
- 大小:122.00 KB
- 文档页数:12
1、(2010•)解方程:.考点:换元法解分式方程;解一元二次方程-因式分解法。
专题:换元法。
分析:方程的两个分式具备平方关系,设=t,则原方程化为t2﹣t﹣2=0.用换元法转化为关于t的一元二次方程.先求t,再求x.解答:解:令=t,则原方程可化为t2﹣t﹣2=0,解得,t1=2,t2=﹣1,当t=2时,=2,解得x1=﹣1,当t=﹣1时,=﹣1,解得x2=,经检验,x1=﹣1,x2=是原方程的解.点评:换元法是解分式方程的常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法求解的分式方程的特点,寻找解题技巧.2、(2010•)(1)解不等式:3x﹣2>x+4;(2)解方程:+=2.考点:换元法解分式方程;解一元一次不等式。
分析:(1)按解一元一次不等式的步骤进行;(2)方程的两个部分具备倒数关系,设y=,则原方程另一个分式为.可用换元法转化为关于y的分式方程.先求y,再求x.结果需检验.解答:解:(1)3x﹣2>x+4,3x﹣x>4+22x>6x>3;(2)设=y,则原方程化为y+=2.整理得,y2﹣2y+1=0,解之得,y=1.当y=1时,=1,此方程无解.故原方程无解.点评:(1)移项时注意符号的变化.(2)用换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.3、(2008•)解方程:考点:换元法解分式方程;解一元二次方程-因式分解法。
专题:计算题;换元法。
分析:本题考查用换元法解分式方程的能力.观察方程由方程特点设=y,则可得:=y2.然后整理原方程化成整式方程求解.解答:解:设=y,则=y2,所以原方程可化为2y2+y﹣6=0.解得y1=﹣2,y2=.即:=﹣2或=.解得x1=2,.经检验,x1=2,是原方程的根.点评:换元法解分式方程可将方程化繁为简,化难为易,是解分式方程的常用方法之一,换元法的应用要根据方程特点来决定,因此要注意总结能够应用换元法解的分式方程的特点.4、(2008•)解方程:考点:换元法解分式方程;解一元二次方程-因式分解法。
一元一次方程换元法一、引言一元一次方程是初中数学中最基础的内容之一,也是代数学的基础。
方程的解可以帮助我们解决实际生活中的问题,而换元法是解决一元一次方程的一种常用方法。
本文将介绍一元一次方程的换元法及其应用。
二、什么是一元一次方程一元一次方程是指只含有一个未知数,并且未知数的最高次数是1的方程。
一元一次方程的一般形式为ax+b=0,其中a和b是已知数,x是未知数。
三、什么是换元法换元法是解决一元一次方程的一种常用方法。
它通过引入一个新的变量来替代原来的未知数,从而将原方程转化为一个更简单的方程,进而求得方程的解。
四、换元法的步骤1. 选定合适的新变量。
根据原方程的特点,选取一个新的变量来替代原来的未知数。
2. 用新变量表示原方程。
将原方程中的未知数用新变量表示出来。
3. 得到新方程。
将原方程中的未知数用新变量表示后,得到一个新的方程。
4. 解新方程。
解新方程得到新变量的值。
5. 求原方程的解。
将新变量的值代入原来的未知数,求得原方程的解。
五、换元法的应用实例例:小明去超市买了一些水果,苹果的价格是3元/个,橙子的价格是2元/个,小明一共花了12元,请问他买了几个苹果和几个橙子?解:设小明买了x个苹果,y个橙子。
根据题意,我们可以列出一个方程:3x + 2y = 12为了使用换元法,我们可以设一个新变量z表示橙子的个数,于是橙子的价格可以表示为2z。
方程可以转化为:3x + 2z = 12解这个新方程,我们可以得到x和z的值。
假设x=2,z=3,则小明买了2个苹果和3个橙子。
将x和z的值代入原方程,可以得到y的值:3*2 + 2y = 126 + 2y = 122y = 6y = 3所以小明买了2个苹果和3个橙子。
六、换元法的优点和注意事项换元法的优点是可以将原方程转化为一个更简单的方程,从而更容易求得解。
但是在使用换元法时需要注意以下几点:1. 选取合适的新变量,使得转化后的方程更简单。
2. 在解新方程时,要注意变量的范围和限制条件,避免出现无解或多解的情况。
绪论在数学研究的许多领域中如代数学、几何学、概率论等都涉及函数方程问题,在计算机科学中迭代理论和方法也涉及函数方程问题,在航空技术、遥感技术、经济学理论、心理学理论等诸多方面也提出了许多函数方程模型.函数方程因此一直受到广泛关注,是当今数学研究的一个十分重要的课题.由于函数方程形式多样,涉及面广,难度大,需要大量的数学基础知识.尤其是在中学数学教学中,函数方程是最基本、最易出现的问题,也是历年高考的重点.在中学教学和国内外数学竞赛中,经常遇到函数方程问题.这类题目一般是求解某一给定的函数方程,而数学上尚无一般方法可循.当然,较大一部分中学生在遇到这类问题时,常常没有比较清晰的解题思路.本文就着重以函数与方程的性质来讨论函数方程在中学数学中的应用,及解决问题的途径,并通过实际问题的求解过程来阐述.首先,我们会给出函数方程的相关概念包括函数方程的定义、函数方程的解以及解函数方程.其次,利用函数与方程的基本性质,就中学数学中常出现的方法进行归纳并结合相应的例题解析.当然由于中学数学中考查点的不同,我们的讨论也有所侧重.对常见的方法包括换元法(代换法)、赋值法、迭代周期法(递推法)、待定系数法等均会加重笔墨,尤其会给出一些较为典型的例题分析以及巧解的方法,而对于不常用的方法本文也会提到,以让读者了解到比较前全面的函数方程问题的解题策略.最后,就种种方法进行总结归纳.“法无定法”,关键在于人们对问题的观察、分析,进而选择最优的方法来解决问题.很多情况下,由于解决的途径并不唯一,所以在解决问题的时候一般采用多种方法同步求解,以达到简化求解过程的目的.1函数方程的一些相关概念1.1函数方程的定义含有未知函数的等式叫做函数方程.如()()f x f x-=,=-,()()f x f x+=等,其中()f x即是未知函数.f x f x(1)()1.2函数方程的解设某一函数()f x对自变量在其定义域内的所有值均满足某已知方程,那么把()f x就叫做函数方程f x就叫做已知函数方程的解.即能使函数方程成立的()的解.函数方程的解可能是一个函数,也可能是若干个函数或无穷多个函数或无解.如偶函数、奇函数、()1=-分别是上述各方程的解.f x x1.3解函数方程求函数方程的解或证明函数方程无解的过程就称为解函数方程.即指的是在不给出具体函数形式,只给出函数的一些性质和一些关系式而要确定这个函数,或求出某些函数值,或证明这个函数所具有的其他性质.2函数方程的常见解法由于函数与方程的性质极多,解题的方法也形式多样,出现较为频繁的有换元法(代换法)、赋值法、迭代周期法(递推法)、待定系数法、数学归纳法等等.2.1换元法(代换法)换元法又叫代换法或引进辅助未知数法或定义法.将函数方程中的自变量适当地以别的自变量代换(代换时应注意使函数的定义域不发生变化),得到一个新的较为简单的函数方程,然后直接求解未知函数.但值得注意的是,某些换元会导致函数的定义域发生变化,这时就需要进行验证换元的可行性.例 2.1已知2-=,求()f x x(1cos)sinf x.分析此题是一个最基本的函数方程问题,要求解函数()f x的表达式,就需要将1cos xsin x进行转化.当然,我们可以先用换元法把x,y用t代替,消+和2去x,y,就得到一个关于t的解析式,再用x替代t,于是得解.但这里我们还给出了另外的解法,就是用()=的参数表达式进行求解.y f x解法一令1cos x t-=,所以c o s1=-,x t因为-≤≤,1cos1x所以x≤-≤,01cos2即t≤≤.02又因为22-==-,f x x x(1cos)sin1cos所以22=--=-+,(02)f t t t t()1(1)2t≤≤,故2=-+,(02)f x x x()2≤≤.x解法二设所求函数()=的参数表达式y f x=-,x t1c o s2y t=,sin即得=-,(1)c o s1t x2s i n t y=. (2)2+,消去参数t,得(1)(2)2-+=,(1)1x y整理,得22y x x =-+,[0x ∈,2],即2()2f x x x =-+,[0x ∈,2].在本题中,由于三角函数可以相互转化,很容易看出1cos x -与2sin x 之间的联系,然后直接利用换元法进行转化,但考虑到x (或t )的定义域,这个环节一般容易出错.故一般采用后面介绍的参数法相对来说也就简单多了.2.2 赋值法赋值和代换是确定适合函数方程的函数性质的基本方法,根据所给条件,在函数定义域内赋与变量一个或几个特殊值,使方程化繁为简,从而使问题获解.例 2.2.1 函数:f N N +→(N +为非负整数),满足:(i ) 对任意非负整数n ,有(1)()f n f n +>;(ii ) 对任意,m n N +∈,有(())()1f n f m f n m +=++.求(2001)f 的值.分析 本题欲求(2001)f 的值,则须了解()f n 有什么性质.由条件(i )、(ii )可以联想到(0)f 的取值是本题的关键,而分别利用条件(i )、(ii )进行推导,并结合反证法推出矛盾,得到(0)f 的唯一值,进而得解.解 令(0)f k =,其中k 为非负整数.由(ii)得()()1f n k f n +=+. (1)若0k =,则()()1f n f n =+,矛盾.故0k ≠,由(i )有(1)()()1f n k f n k f n +-<+=+. (2) 若1k >,则11n k n +-≥+,于是由(i ),得(1)(1)()1f n k f n f n +-≥+≥+, (3) 但(2)与(3)矛盾,故1k =是惟一解.当1k =时,式(1)为(1)()1f n f n +=+,此函数满足条件(i )、(ii ),所以得惟一解(2001)2002f =.例 2.2.2 解函数方程()()2()cos f x y f x y f x y ++-=.分析 此题是函数方程里较为典型的一个问题,在很多文章中都有提到.本题中方程含有,x y 两个未知数,对于一个方程,首先想到的就是消元,考虑到三角函数cos y 的特殊性质,可用一些比较特殊的值分别去代换,x y ,再求得()f x 的表达式.解 在原方程中令0x =,y t =得()()2(0)cos f t f t f t +-=, (1) 再令2x t π=+,2y π=得()()0f t f t π++=, (2) 又再令2x π=,2y t π=+得()()2()sin 2f t f t f t ππ++-=-, (3) (1)+(2)-(3)得()(0)cos ()sin 2f t f t f t π=+. 令(0)a f =,()2b f π=并将t 换成x 得 ()cos sin f x a x b x =+,(a ,b 均为任意常数).代入(1)式验证()()f x y f x y ++-cos()sin()cos()sin()a x y b x y a x y b x y =++++-+-2cos cos 2sin cos a x y b x y =+2cos (cos sin )y a x b x =+2()cos f x y =.所以()f x 是函数方程(1)的解.赋值法是很特殊的一种方法,首先它考验人们的“眼力”,即根据所给出的式子找出其规律;其次,就是“笔力”即计算方面的能力,所赋的值即某些特殊值要有助于解题;最后,不难看出赋值法其实就是与代换法、消元法等方法相结合的一种方法.如例2.2.1就是赋值法与反证法相结合,例2.2.2是赋值法、代换法、消元法结合的典型.2.3迭代周期法(递推法)函数迭代是一类特殊的函数复合形式.一般由函数方程找出函数值之间的关系,通过n 次迭代得到函数方程的解法.例 2.3.1 对任意正整数k ,令()f k 定义为k 的各位数字和的平方,求2001(11)f .分析 本题是迭代的简单运用题,由“()f k 定义为k 的各位数字和的平方”入手,可以找出11与函数方程以及函数值之间的关系,结合数列相关知识通过n 次迭代从而求解.解 由已知有 12(11)(11)4f =+=,2(11)((11))(4)16f f f f ===,322(11)((11))(16)(16)49f f f f ===+=,432(11)((11))(49)(49)169f f f f ===+=,542(11)((11))(169)(169)256f f f f ===++=,652(11)((11))(256)(256)169f f f f ===++=,…从而当n 为大于3的奇数时,(11)256n f =,当n 为大于3的偶数时,(11)169n f =,故2001(11)256f =.例 2.3.2 设()f x 定义在自然数集N 上,且对任意,x y N ∈,都满足(1)1f =,()()()f x y f x f y xy +=++,求()f x . 解 令1y =,得(1)()1f x f x x +=++,再依次令1x =,2…, 1n -,有(2)(1)2f f =+,(3)(2)3f f =+,…(1)(2)(1f n f n n -=-+-,()(1)f n f nn =-+, 依次代入,得()(1)23f n f =+++…(1)(1)2n n n n ++-+=, 所以(1)()2x x f x +=,()x N +∈. 前面的例2.3.1仅是迭代的入门题,可以直接根据函数方程找出函数值之间的关系,然后通过n 次迭代进行求解.而在迭代问题中,很大一部分题目并不是仅借助迭代的思想来解决的,而是综合所学知识进行求解.如例4.2就是赋予一些特殊值,再利用递推法简化问题,从而求解.2.4待定系数法待定系数法适用于所求函数是多项式的情形,且已知所求函数解析式的类型,可先设出一个含有特定系数的代数式,然后利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)而求出待定系数的值,或者消除这些待定系数,使问题得以解决.例 2.4.1 已知()f x 是一次函数,且[()]41f f x x =-,求()f x .解 因为()f x 是一次函数,不妨设()(0)f x ax b a =+≠,又因为[()]41f f x x =-,所以()()41f ax b a ax b b x +=++=-,即241a x ab b x ++=-,于是有24a =,1a b b +=-. 解这个方程组得2a =,或者 2a =-,13b =-, 1b =. 所以1()23f x x =-或()21f x x =-+. 本题考虑到()f x 是一次函数,故可设出()f x 的一般形式,再由条件[()]41f f x x =-代入()f x 进而对应求出a ,b .这属于较简单的待定系数法应用,而对于关系f 有很多次的就另当别论了.例 2.4.2 已知()f x 是一次函数,且10次迭代{[(f f f …())]}10241023f x x =+,求()f x .分析 观察本题,()f x 是一次函数且函数方程是一个10次迭代的方程,要怎样进行思考呢?只能依据题中最基本的条件进行解决,故而给出如下解法:解 设()(0)f x ax b a =+≠,则(2)2()[()]()()(1)f x f f x f ax b a ax b b a x a b ==+=++=++,(3)(2)232()(()){[()]}[(1)](1)f x f f x f f f x f a x a b a x a a b ===++=+++, …(9)1098(())(f f x a x a a =+++…1)a b ++.因为(10)()10241023f x x =+,所以10101024(2)a ==±,98(a a ++…1011)10231a a b b a -++==-. 解方程组得2a =,1b =或2a =-,3b =-.故所求的一次函数为()21f x x =+或()23f x x =--.观察题中条件,问题的难度比例2.4.1的增加了许多,这又怎么做呢?万变不离其宗,仍采用待定系数法进而找出规律,并结合等比数列相关性质而求得a ,b ,但要注意解决这类问题时千万不要漏根.2.5 数学归纳法数学归纳法主要适用于定义域是正整数的函数方程,其解题方法是通过对(1)f ,(2)f ,(3)f ,…的具体计算,加以概括抽象,提出对()f n 的解析式的一个猜想,然后用数学归纳法对猜想进行证明.根据已知条件,首先运用赋值法求出函数()f x 在某些点的特殊值,再猜想()f x 的表达式,最后用数学归纳法证明此猜想.例 2.5.1 函数()f n 的定义域为正整数集,值域为非负整数集,所有正整数m ,n 满足()()()0f m n f m f n +--=或1; (2)0f =,(3)0f >,(9999)3333f = ,求(1982)f .解 由(11)(1)(1)0f f f +--=或1,而0(2)2(1)f f =≥,所以(1)0f =,由(21)(2)(1)0f f f +--=或1,得(3)0f =或1,因为(3)0f >,所以(3)1f =,同理,可推得(32)2f ⨯≥,(33)3f ⨯≥…已知(9999)(33333)3333f f =⨯=,猜想(3)f k k ≥,(3333)k <.下面用数学归纳法证明.(1)由上可知,1k =,2,3时,结论成立.(2)假设对小于k 的一切自然数,结论成立.则(3)[3(1)3]f k f k k =-+[3(1)](3)f k f ≥-+11k ≥-+k =,即(3)(3333)f k k k ≥<,如果(3)1f k k ≥+,则(9999)(99993)(3)f f k f k ≥-+33331k k ≥-++3333>,与题设矛盾,所以(3)f k k =,显然,有660(1982)661f ≤≤.若(1982)661f =,则(9999)(5198289)f f =⨯+5(1982)(89)f f ≥+5661(89)f ≥⨯+330529≥+3333>,与题设矛盾.所以(1982)660f =.例 2.5.2 已知2()2f x x x =+,求()n f x .解 由2()(1)1f x x =+-,因此有22242()(())((1)1)(1)1(1)1f x f f x f x x x ==+-=+-=+-,233222()(())((1)1)(1)1f x f f x f x x ==+-=+-, 猜想2()(1)1nn f x x =+-.下面用归纳法证明.(1)显然2n =时,猜想成立.(2)假设对n 成立,即 2()(1)1nn f x x =+-,则 (1)()(())n n f x f f x +=2((1)1)n f x =+- 22((1)11)1n x =+-+-12(1)n x +=+.综合(1)、(2),对任意n N ∈,有2()(1)1n n f x x =+-.数学归纳法一般适用于证明题,但有时候不排除这类找规律、猜想进而证明猜想的问题.遇到这种问题的时候,首先要找准规律,证明起来也就会很轻松了.2.6数列法利用等比、等差数列相关知识(通项公式、求和求积公式),求定义在N 上的函数()f x .例 2.6 已知(1)1f =,且对任意正整数n 都有(1)3()2f n f n +=+,求()f n . 解 在已知等式两边都加上1,得(1)12f +=,(1)13()213[()1]f n f n f n ++=++=+,所以(1)13()1f n f n ++=+. 因此,数列{()1}f n +是首项为(1)12f +=,公比为3的等比数列,它的第n 项为1()123n f n -+=⋅,故1()231n f n -=⋅-.熟悉等差、等比数列的相关性质如公差(比)、求和公式等,运用起来解决本题就会感到得心应手.2.7 反证法反证法在数学上使用得相当普遍,即一些问题从正面直接证明有困难,而它的结论的相反结论比原结论更具体,更明确,易于导出矛盾,这时一般采用反证法.先从已知条件中得出满足函数方程的一些特殊解,然后再用反证法证明除了这些解以外无其他解.例 2.7 设f :(0,)(0+∞→,)+∞是连续函数,若对x ∀,(0y ∈,)+∞,有 ()(())f x f xf y y=. (1) 证明此函数方程无解.证明 在(1)中取1x y ==,得((1))(1)f f f =, 取(1)y f =,得()(((1)))(1)f x f xf f f =, 再取1y =,得((1))()f xf f x =.从而有()()((1))(((1)))(1)f x f x f xf f xf f f ===, 即(1)1f =.在(1)中取1x =,得(1)1(())f f f y y y==, 联立(1)推出()((()))()()f x x f xf f y f f y y==,即()()()x f x f y f y=. 取x st =,y t =,s ∀,(0t ∈,)+∞,有()()()f s t f t f s =,s ∀,(0t ∈,)+∞, (2) 我们知道满足上面函数方程的连续函数为()a f x x =,(ln ())a f e =. 由1(())f f y y=,知 21a y y -=,即21a =-.矛盾,所以(1)没有连续解. 2.8不等式法在推导过程中,主要利用不等式02a b a +≥≥,0)b ≥的等式成立的充要条件a b =.例 2.8 设()f x 的定义域为(0,1),且()(1)2()(1)f x f x f y f y -+=-,x ∀,(0y ∈,1). (1) 若()0f x >,(0x ∀∈,1)且1()12f =,求f x (). 分析 本题给出了函数()f x 的一系列成立的条件,只要依据条件进行思考就很容易解决了.首先我们知道函数()f x 有一个特殊值1()12f =,而函数方程(1)中有,x y 两个未知量,故而解决问题时考虑到消元,并尽量结合1()2f 的值来使问题简化.解 在(1)式中取12y =,得 ()(1)2()(1)11()(1)22f x f x f x f x f f -=+=+--, (2) 再在(1)式中取12x =,y x =得11()()11222()(1)()(1)f f f x f x f x f x =+=+--, (3) 把(2)和(3)相加得 411()(1)()(1)f x f x f x f x =++-+-≥4=, 所以1()()f x f x =, 即2(())1f x =,因为()f x 是正的,故()1f x ≡,(0x ∀∈,1).3 其它方法前面介绍的几种方法在中学数学中比较常见,应用起来也得心应手.但初等问题何其繁多,解决的途径也就形式多样.还有很多其它的方式,由于本文篇幅有限,在此仅给出方法及其概念.如:参数法、配凑法、通解问题、多项式法以及柯西法等.参数法即先设参数再消去参数得出函数的对应关系,而求出()f x .前面在例2.1.1的解法二已经就参数法进行作答,在此我们就不再讲解了.配凑法是根据函数的概念、对应法则并结合配方法求解函数方程的一种基本方法.当我们不能利用设元法求解时,配凑法不失为一种有效的方法,也是应用定义的一种方法.前面已经介绍了很多求解函数方程的方法.然而,求一个或若干个解也许容易,如果要求出一个函数方程的所有解常常遇到困难.这时就是所谓的通解问题.我们知道,只要给出函数在一个周期内的函数值,则需要将定义域延拓到整个实数域R 上,从而求得的()f x 就是相应函数方程的解.例如函数方程()()f x T f x +=,x R ∈,对以[0,]T 为定义域的任意函数()g x ,都可以得到函数方程的解()g x , 当0x T ≤≤时;()f x =()g x nT -, 当(1)nT x n T ≤≤+时.其中n为整数.当函数方程中的未知函数是多项式时,就称为多项式函数方程.这是函数方程中较为常见、也较简单的一类.多项式法就是利用多项式相等的原理,通过比较等式两边的次数、系数,或通过比较方程的根的个数来求出多项式函数方程的解的方法.方程()()()+=称之为Cauchy方程,是法国数学家Cauchy最早研f x y f x f y究并解决的.他的解法是一种逐步扩充其定义域的推理方法,即先在自然数集上,求其函数方程应具有的形式,然后逐步证明这种解的定义域可扩充到整数、有理数、无理数直到实数.这种解题方法后人称之为Cauchy方法.在()f x单调(或连续)的条件下,先将自变量考虑成自然数求出函数方的解,然后证明该解的表达式当其自变量取成整数、有理数及实数时仍然满足该函数方程,从而获得函数方程的解.但它受函数连续性要求的限制.柯西法在高等数学中的使用频率极高,故在中学里只需了解就可.结论由于函数方程的形式相当多,解决的方式也就相对的丰富.尤其是在高等数学中,运用微积分解决函数方程问题就显得非常简单了;但在初等解法里,方式方法丰富多样:换元法(代换法)、赋值法、待定系数法、迭代周期法(迭代法)、数学归纳法、数列法、反证法及不等式法等,都是常见而且易懂的初等解法.但在解决很多问题时,不仅仅使用一种方法,也有几种方式相结合而进行的,如:例2.2.2就是换元法与赋值法的结合,例2.7是赋值法与反证法的结合.在求解某些问题时,通过构造函数方程,也可以将问题转化为函数方程分解,从而使问题比较简化、明了.参考文献[1] 张伟年、杨地莲、邓圣福.函数方程[M].成都:四川教育出版社,2002,36-72.[2] 陈刚、陈凌云.函数方程的初等解法[J].绥化师专学报.1996,第1期:120.[3] 黄洪琴.函数方程[J].成都教育学院报.2005,第19卷(6):117-118.[4] 毕唐书.全线突破.高考总复习·数学(理科版)[M].北京:中国社会出版社,2005,13.[5] 陈传理、张同君.竞赛数学教程[M].第2版.北京:高等教育出版社,2005,170-170.[6] 聂锡军.函数方程的解法及应用[J].丹东师专学报.1997,总第68期:20.[7] 姚开成.函数方程的几种解法[J].新疆石油教育学院学报.2000,第5卷(5):46-47.[8] 张同君、陈传理.竞赛数学解题研究[M].北京:高等教育出版社,2000(2005重印),72-75.[9] 余元希.初等代数研究(下册)[M].北京:高等教育出版社,1988(2004重印),344-345.[10] 蒋国宝.函数方程的解法[J].宁德师专学报(自然科学版).1998,第10卷(1):37-38.[11] 赵伟.解函数方程的若干初等方法[J].中学数学月刊.2004,第6期:30-31.致谢在本篇论文的选题,以及写作过程中,承蒙指导教师代泽明副教授的悉心指导,多次修改终于完成了本篇论文.在此我向代老师致以诚挚的感谢:通过这次论文的编写我感受到了学术编写的困难和乐趣,深省数学知识在各学科中的重要作用.同时,也感谢同组的所有同学,他们在我写作此篇论文的过程中也给予了我很多帮助.大学四年转瞬即逝,作为一名即将毕业的学生,我感谢绵阳师范学院的所有老师,感谢你们在这四年里对我的谆谆教导;感谢你们在这四年里对我的培养;感谢你们在这四年里对我的关怀;感谢你们为祖国培养了一批又一批优秀的人民教师.最后祝愿绵阳师范学院的明天更美好!祝愿数学与信息科学系前程似锦!祝愿所有老师身体健康,工作顺利!范臣菊 2007年5月30日。
换元法解题技巧和方法初一
1. 嘿,初一的小伙伴们!换元法啊,那可真是解题的一把利器!就像你走路有了一双超级酷的鞋子!比如解方程(x+3)²+3(x+3)-4=0,这时候我们就可以把 x+3 设为一个新的元,比如设它为 y,那方程不就变成了y²+3y-4=0,一下子简单多了吧!
2. 哎呀呀,初一的同学们要好好看看哦!换元法能让那些复杂的题目变得亲切起来呢!好比混乱的线团找到了线头。
比如计算∫(2x+3)/(x²+3x+1)dx,我们令u=x²+3x+1,那积分就好算了很多呢,是不是很神奇呀!
3. 哇塞,初一的朋友们知道吗?换元法的技巧就像魔法一样!可以把难题变得不再可怕,就像给小怪兽施了魔法变可爱啦!像是解不等式(x²-1)/(x-
3)>0,我们把x²-1 换元,问题不就容易解决了嘛!
4. 嘿哟,初一的娃娃们呀!换元法真的超有用处的哟!简直是打开难题大门的钥匙呀!像化简(3x-1)/(2x+1),就可以设 2x+1=t,这样式子就会变得很简单呢,是不是很想不到啊!
5. 哈哈,初一的小可爱们要记住哦!换元法可是解题的妙招呢!像找到了藏在题目里的宝藏通道!比如计算∫(3x+2)/(x²+2x+5)dx,通过设
u=x²+2x+5,哇,积分一下子清晰明了啦!
6. 哎哟喂,初一的同学们可别小看换元法呀!这可是解题的得力助手呢!简直像拥有了超级力量!像求方程 3(x-2)²-4(x-2)-5=0 的解,设 x-2=t 就好啦,然后就能轻松做出来啦,多厉害呀!
我的观点结论就是:换元法对于初一的解题来说真的非常重要且好用呀,大家一定要好好掌握!。
解一元三次方程的方法
一元三次方程是高中数学中的重要内容,解一元三次方程的方法有多种,包括直接代入、因式分解、配方法、换元法等。
下面将逐一介绍这些方法。
直接代入法是解一元三次方程最直接的方法之一。
当一元三次方程的系数较为简单时,可以直接将可能的根代入方程进行验证,找到满足方程的根。
这种方法简单直接,但对于系数较为复杂的一元三次方程来说,不太适用。
因式分解法是解一元三次方程的另一种常用方法。
当一元三次方程可以进行因式分解时,可以通过因式分解的方式将方程化简为一次因式相乘的形式,从而求得方程的根。
这种方法适用于一些特殊的一元三次方程,但并不是所有的一元三次方程都可以通过因式分解来解。
配方法是解一元三次方程的另一种常用方法。
通过合理的配方法,可以将一元三次方程化简为一个完全平方的形式,从而求得方程的根。
这种方法在一些特殊的一元三次方程中比较有效,但对于一般的一元三次方程来说,需要一定的技巧和经验。
换元法是解一元三次方程的另一种常用方法。
通过合理的换元,可以将一元三次方程转化为一个二次方程,从而求得方程的根。
这
种方法在一些特殊的一元三次方程中比较实用,但需要对换元的技
巧有一定的了解和掌握。
综上所述,解一元三次方程的方法有多种,选择合适的方法取
决于方程的具体形式和系数的大小。
在解题过程中,需要根据具体
情况选择合适的方法,并灵活运用各种方法,从而解得一元三次方
程的根。
希望以上方法能够帮助您更好地理解和掌握解一元三次方
程的技巧,提高数学解题的能力。
换元法解一元二次方程专项练习35题(有答案)(1)(x2﹣3x)2﹣2(x2﹣3x)﹣8=0(2)(2x2﹣3x)2+5(2x2﹣3x)+4=0.(3)已知:(x2+2x﹣1)(x2+2x+2)=4,求x2+2x的值”(4)已知:(x2+y2﹣3)(2x2+2y2﹣4)=24,求x2+y2的值.(5)(x2﹣2x)2+(x2﹣2x)﹣2=0 (6)2(﹣x)2﹣(x ﹣)﹣1=0.(7)(x﹣1)2+5(1﹣x)﹣6=0 (8)(x+3)2﹣5(x+3)﹣6=0.(9)2(x﹣1)2+5(x﹣l)+2=0.(10)(x+2)2﹣3(x+2)+2=0.(11)(2x﹣3)2﹣5(2x﹣3)=﹣6(12)(2x﹣x2)2﹣2(x2﹣2x)+1=0.(13)(x2﹣1)2﹣5(x2﹣1)+4=0.(14)(x2﹣x)2﹣2(x2﹣x)﹣3=0(15)已知(a+2b)2﹣2a﹣4b+1=0,求(a+2b)2010的值.(16)(x2﹣x)2﹣5(x2﹣x)+6=0,(17)已知(a2+b2)2﹣(a2+b2)﹣6=0,求a2+b2的值.(18)(2x+1)2﹣6(2x+1)+5=0(19)(x2+3x﹣4)2+(2x2﹣7x+6)2=(3x2﹣4x+2)2.(20)已知(x2+y2)2﹣3(x2+y2)﹣40=0,求x2+y2.(21)(x2+x)(x2+x﹣3)﹣3(x2+x)+8=0.(22)(x+2)2+6(x+2)﹣91=O;(23)(3x﹣2)2+(2﹣3x)=20.(24)(x2﹣3x)2﹣2(x2﹣3x)﹣8=0.(25)(x2﹣2)2﹣7(x2﹣2)=0.(26)已知(x2+y2)(x2+y2+2)﹣8=0,求x2+y2的值.(27)已知x,y满足方程x4+y4+2x2y2﹣x2﹣y2﹣12=0,求x2+y2的值.(28)(x2﹣1)2﹣5(x2﹣1)+4=0,(29)(x2﹣x)2﹣8(x2﹣x)+12=0.(30)(x2+x)2﹣8(x2+x)+12=0. (31)(x2﹣1)2﹣5(x2﹣1)+4=0,(32)(x2﹣2x)2﹣2(x2﹣2x)﹣3=0(33)(x2﹣1)2﹣5(x2﹣1)+4=0,(34)x(x+3)(x2+3x+2)=24.(35)已知:(x2+y2)2﹣(x2+y2)﹣12=0,求x2+y2的值.换元法解一元二次方程35题参考答案:(1)(x2﹣3x)2﹣2(x2﹣3x)﹣8=0解:设x2﹣3x=y则原方程可化为y2﹣2y﹣8=0解得:y1=﹣2,y2=4当y=﹣2时,x2﹣3x=﹣2,解得x1=2,x2=1当y=4时,x2﹣3x=4,解得x1=4,x2=﹣1∴原方程的根是x1=2,x2=1,x3=4,x4=﹣1,(2)(2x2﹣3x)2+5(2x2﹣3x)+4=0.解:设2x2﹣3x=y,原方程转化为:y2+5y+4=0(1分),解得:y1=﹣4,y2=﹣1(3分)当y1=﹣4时,2x2﹣3x+4=0,无实数根.(4分)当y2=﹣1时,2x2﹣3x+1=0,解得x1=,x2=1.故原方程根为x1=,x2=1(3)(x2+2x﹣1)(x2+2x+2)=4,求x2+2x的值”,解:设x2+2x=y,则原方程可变为:(y﹣1)(y+2)=4 整理得y2+y﹣2=4即:y2+y﹣6=0解得y1=﹣3,y2=2∴x2+2x的值为﹣3或2(4)已知:(x2+y2﹣3)(2x2+2y2﹣4)=24,求x2+y2的值.解:设x2+y2=m,则原方程可变为:(m﹣3)(2m﹣4)=24∴2(m﹣3)(m﹣2)=24.∴m2﹣5m+6=12.∴m2﹣5m﹣6=0解得m1=6,m2=﹣1∵x2+y2≥0∴x2+y2的值为6(5)(x2﹣2x)2+(x2﹣2x)﹣2=0解:设y=x2﹣2x原方程可变为:y2+y﹣2=0解方程得y=﹣2或1所以x2﹣2x=﹣2或1.当x2﹣2x=﹣2时,△<0,没实数根,当x2﹣2x=1时,解得x=1±.∴原方程的根是x1=1+,x2=1﹣(6)2(﹣x)2﹣(x ﹣)﹣1=0.解:2(﹣x)2﹣(x ﹣)﹣1=0,变形得:2(x ﹣)2﹣(x ﹣)﹣1=0,设y=x ﹣,则原方程可化为2y2﹣y﹣1=0,…(2分)因式分解得:(2y+1)(y﹣1)=0,解得:y=﹣或y=1,…(5分)当y=﹣时,x ﹣=﹣,解得:x=0;当y=1时,x ﹣=1,解得:x=,∴x1=,x2=0(7)(x﹣1)2+5(1﹣x)﹣6=0解:设x﹣1=y,则原方程可化为:y2﹣5y﹣6=0,∴y1=﹣1,y2=6,∴x﹣1=﹣1,x﹣1=6∴x1=0,x2=7(8)(x+3)2﹣5(x+3)﹣6=0.解:设y=x+3,则原方程可化为y2﹣5y﹣6=0.解得:y1=6,y2=﹣1.当y1=6时,x+3=6,x1=3;当y2=﹣1时,x+3=﹣1,x2=﹣4.∴x1=3,x2=﹣4(8)2(x﹣1)2+5(x﹣l)+2=0.解:设x﹣l=y,则由原方程,得2y2+5y+2=0,即(y+2)(2y+1)=0,∴y+2=0,或2y+1=0,解得,y=﹣2,或y=﹣;①当y=﹣2时,x﹣1=﹣2,解得,x=﹣1;②当y=﹣时,x﹣1=﹣,解得,x=;综上所述,原方程的解是x1=﹣1,x2=(9)(x+2)2﹣3(x+2)+2=0.解:令x+2=t,原方程可化为t2﹣3t+2=0,(t﹣1)(t﹣2)=0,解得t1=1,t2=2,∴x+2=1或x+2=2,∴x1=﹣1,x2=0(10)(2x﹣3)2﹣5(2x﹣3)=﹣6解:(1)∵3x2﹣5x﹣2=0∴(3x+1)(x﹣2)=0即3x+1=0或x﹣2=0解得x1=2;x2=.(11)设t=2x﹣3,则原方程可化为:t2﹣5t+6=0∴(t﹣2)(t﹣3)=0∴t=2或3,即2x﹣3=2或3解得x1=;x2=3(12)根据题意,令y=x2﹣2x,原方程可化为:y2﹣2y+1=0,解得y=1,即x2﹣2x=1,可用公式法求解,其中a=1,b=﹣2,c=﹣1,∴△=8>0,∴方程的解为x==,即x1=1﹣,x2=1+(13)(x2﹣1)2﹣5(x2﹣1)+4=0.解:设x2﹣1=t.则由原方程,得t2﹣5t+4=0,即(t﹣1)(t﹣4)=0,解得,t=1或t=4;①当t=1时,x2﹣1=1,∴x2=2,∴x=±;②当t=4时,x2﹣1=4,∴x2=5,∴x=±.综合①②,原方程的解是:x1=,x2=﹣,x3=,x4=﹣(14)(x2﹣x)2﹣2(x2﹣x)﹣3=0解:设x2﹣x=y,所以原方程变化为:y2﹣2y﹣3=0,解得y=﹣1或3,当y=﹣1时,x2﹣x=﹣1,无解;当y=3时,x2﹣x=3,解得,x1=,x2=,∴原方程的解为x1=,x2=(15)已知(a+2b)2﹣2a﹣4b+1=0,求(a+2b)2010的值.解:根据题意,设a+2b=x,代入原方程得:x2﹣2x+1=0,即(x﹣1)2=0∴x=1,即a+2b=1,所以(a+2b)2010=1(16)(x2﹣x)2﹣5(x2﹣x)+6=0解:根据题意x2﹣x=y,把原方程中的x2﹣x换成y,所以原方程变化为:y2﹣5y+6=0,解得y=2或3,当y=2时,x2﹣x=2,解得:x1=2,x2=﹣1;当y=3时,x2﹣x=3,解得,x3=,x4=,∴原方程的解为x1=2,x2=﹣1,x3=,x4=.(17)已知(a2+b2)2﹣(a2+b2)﹣6=0,求a2+b2的值.解:设a2+b2=y据题意得y2﹣y﹣6=0解得y1=3,y2=﹣2∵a2+b2≥0∴a2+b2=3(18)(2x+1)2﹣6(2x+1)+5=0解:设2x+1=a,原方程可化为a2﹣6a+5=0,解得a=1或5,当a=1时,即2x+1=1,解得x=0;当a=5时,即2x+1=5,解得x=2;∴原方程的解为x1=0,x2=2(19).解:设u=x2+3x﹣4,v=2x2﹣7x+6,则u+v=3x2﹣4x+2.则原方程变为u2+v2=(u+v)2,即u2+v2=u2+2uv+v2,∴uv=0,∴u=0或v=0,即x2+3x﹣4=0或2x2﹣7x+6=0.解得(20)解:设x2+y2=t(t≥0),则t2﹣3t﹣40=0,所以(t﹣8)(t+5)=0,解得,t=8或t=﹣5(不合题意,舍去),故x2+y2=8(21)解:设x2+x=y,原方程可变形为:y(y﹣3)﹣3y+8=0,y2﹣6y+8=0,(y﹣4)(y﹣2)=0,解得:y1=4,y2=2,当y1=4时,x2+x=4,解得:x1=,x2=.当y2=2时,x2+x=2,解得:x3=1,x4=﹣2(22)(x+2)2+6(x+2)﹣91=O;设x+2=y,则原方程可变形为:y2+6y﹣91=0,解得:y1=7,y2=﹣13,当y1=7时,x+2=7,x1=5,当y2=﹣13时,x+2=﹣13,x2=﹣15;(23)设3x﹣2=t,则t2﹣t﹣20=0,∴(t+4)(t﹣5)=0,∴t+4=0或t﹣5=0,解得 t=﹣4或t=5.当t=﹣4时,3x﹣2=﹣4,解得 x=﹣;当t=5时,3x﹣2=5,解得 x=,综上所述,原方程的解为:x=﹣或 x=.(24)解:(x2﹣3x)2﹣2(x2﹣3x)﹣8=0,分解因式得:(x2﹣3x﹣4)(x2﹣3x+2)=0,即(x﹣4)(x+1)(x﹣1)(x﹣2)=0,可得x﹣4=0或x+1=0或x﹣1=0或x﹣2=0,解得:x1=4,x2=﹣1,x3=1,x4=2(25)解:根据题意,把y=x2﹣2代入方程(x2﹣2)2﹣7(x2﹣2)=0得:y2﹣7y=0,解得y1=0,y2=7,当y1=0时,即x2﹣2=0,解得:x1=﹣,x2=,当y2=7时,即x2﹣2=7,解得:x3=﹣3,x4=3,∴原方程的解为:x1=﹣,x2=,x3=﹣3,x4=3(26)已知(x2+y2)(x2+y2+2)﹣8=0,求x2+y2的值.解:设x2+y2=t,则原方程变形为t(t+2)﹣8=0,整理得t2+2t﹣8=0,∴(t+4)(t﹣2)=0,∴t1=﹣4,t2=2,当t=﹣4时,则x2+y2=﹣4,无意义舍去,当t=2时,则x2+y2=2.所以x2+y2的值为2(27)已知x,y满足方程x4+y4+2x2y2﹣x2﹣y2﹣12=0,求x2+y2的值.解:∵x4+y4+2x2y2﹣x2﹣y2﹣12=0,∴(x2+y2)2﹣(x2+y2)﹣12=0,即(x2+y2+3)(x2+y2﹣4)=0,∴x2+y2=﹣3,或x2+y2=4,∵x2+y2≥0,∴x2+y2=4(28)解方程(x2﹣1)2﹣5(x2﹣1)+4=0,设x2﹣1=y原方程可化为y2﹣5y+4=0,解此方程得y1=1,y2=4.当y=1时,x2﹣1=1,∴x=±;当y=4时,x2﹣1=4,∴x=±,∴原方程的解为x1=,x2=﹣,x3=,x4=﹣.(29)解方程:(x2﹣x)2﹣8(x2﹣x)+12=0.设x2﹣x=A,由题意,得A2﹣8A+12=0,解得:A1=6,A2=2.当A=6时,x2﹣x=6,解得:x1=3,x2=﹣2;当A=2时,x2﹣x=2,解得:x3=2,x4=﹣1.∴原方程的解为:x1=6,x2=﹣2,x3=2,x4=﹣1 (30)解方程:(x2+x)2﹣8(x2+x)+12=0.解:设y=x2+x,方程化为y2﹣8y+12=0,即(y﹣2)(y ﹣6)=0,解得y=2或y=6,即x2+x=2或x2+x=6,分解因式得:(x+2)(x﹣1)=0或(x﹣2)(x+3)=0,解得:x1=﹣2,x2=1,x3=2,x4=﹣3(31)解方程(x2﹣1)2﹣5(x2﹣1)+4=0,解;设x2﹣1=y,即(x2﹣1)2=y2,原方程可化为y2﹣5y+4=0,又化为(y﹣1)(y﹣4)=0解得y1=1,y2=4.当y=1即x2﹣1=1时,x2=2,x=±;x1=,x2=﹣当y=4即x2﹣1=4时,x2=5,x=±;x3=,x4=﹣(32)解方程(x2﹣2x)2﹣2(x2﹣2x)﹣3=0解:设x2﹣2x=y,即(x2﹣2x)2=y2,原方程可化为y2﹣2y﹣3=0,解得y1=3,y2=﹣1,当y1=3时,x2﹣2x=3,解得x1=3,x2=﹣1;当y2=﹣1时,x2﹣2x=﹣1,解得x3=x4=1;∴原方程的解为x1=3,x2=﹣1;x3=x4=1(33)解方程(x2﹣1)2﹣5(x2﹣1)+4=0,解:设x2﹣1=y,则原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y1=1时,x2﹣1=1,∴;当y2=4时,x2﹣1=4,∴.因此原方程的解为:.(34)设x2+3x=y.∵x(x+3)(x2+3x+2)=24,∴(x2+3x)(x2+3x+2)=24,∴y(y+2)=24,即(y﹣4)(y+6)=0,解得,y=4或y=﹣6;①当y=4时,x2+3x=4,即(x﹣1)(x+4)=0,解得,x1=﹣4,x2=1;②当y=﹣6时,x2+3x=﹣6,即x2+3x+6=0,∵△=9﹣24=﹣15<0,∴该方程无解;综上所述,原方程的根是:x1=﹣4,x2=1 (35)解:(x2+y2)2﹣(x2+y2)﹣12=0,设x2+y2=a,则有a2﹣a﹣12=0,因式分解得:(a﹣4)(a+3)=0,解得:a1=4,a2=﹣3,∵x2+y2>0,即a>0,∴a=﹣3不合题意,舍去,则x2+y2=a=4。
换元法解分式方程的四种常见类型换元法是初中数学非常重要的思想方法,在解分式方程时有着极为广泛的应用,本文根据各个方程自身的结构特点,举例说明换元法解分式方程的四种常见类型,供大家参考.一、直接换元例1 解方程015)1(2)1(2=----x x x x . 解:设y x x =-1,则原方程可化为01522=--y y . 解得 5,321=-=y y .当3-=y 时,31-=-x x ,解得 43=x ; 当5=y 时,51=-x x ,解得 45=x . 经检验,45,4321==x x 是原方程的根. 二、配方换元例2 解方程 1)1(3)1(222=+-+x x xx . 解:原方程配方,得 05)1(3)1(22=-+-+xx x x . 设,1y xx =+则05322=--y y . 解得 25,121=-=y y . 当1-=y 时,,11-=+x x 即012=++x x . 因为0311412<-=⨯⨯-=∆,所以方程012=++x x 无实数根. 当25=y 时,,251=+x x 即02522=+-x x . 解得 21,221==x x . 经检验,21,221==x x 是原方程的根. 三、倒数换元例3 解方程031)1(21122=-+++++x x x x . 解:设y x x =++112,则原方程可化为032=-+y y .去分母,整理,得0232=+-y y ,解得 2,121==y y . 当1=y 时,1112=++x x ,即02=-x x . 解得 1,021==x x .当2=y 时,2112=++x x ,即0122=--x x . 解得 21,2143-=+=x x .经检验,,1,021==x x 21,2143-=+=x x 都是原方程的根.四、变形换元例4 解方程12222422=+-+-x x x x . 解:原方程可变形为05222)22(222=-+-++-x x x x . 设y x x =+-222,则原方程可化为0522=-+y y . 去分母,整理,得02522=+-y y .解得 21,221==y y . 当2=y 时,2222=+-x x ,即022=-x x .解得 21,021==x x . 当21=y 时,21222=+-x x ,即03242=+-x x . 因为044344)2(2<-=⨯⨯--=∆,所以方程03242=+-x x 无实数根. 经检验,21,021==x x 是原方程的根.。