高二数学导数的概念
- 格式:ppt
- 大小:291.00 KB
- 文档页数:10
高二数学《导数》知识要点总结导数:导数的意义-导数公式-导数应用1、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率①k=f/表示过曲线y=f上P)切线斜率。
V=s/表示即时速度。
a=v/表示加速度。
3.常见函数的导数公式:①;②;③;⑤;⑥;⑦;⑧。
4.导数的四则运算法则:5.导数的应用:利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;求可导函数最大值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。
导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。
学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!导数是微积分中的重要基础概念。
当函数y=f 的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'或df/dx。
导数是函数的局部性质。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。
例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。
若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。
然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f,x↦f'也是一个函数,称作f的导函数。
导数是高二上册吗知识点高等数学中的导数是高中数学的内容,通常在高二上学期开始学习。
导数是微积分的一个重要概念,用于研究函数的变化率和函数的局部性质。
在本文中,我们将介绍导数的定义、求导法则以及一些应用。
一、导数的定义在数学中,导数描述了函数在某一点上的变化率。
对于函数f(x),它在点x处的导数可以用极限来定义:f'(x) = lim┬(h→0)〖(f(x+h)-f(x))/h〗其中,f'(x)表示函数f(x)在点x处的导数。
这个定义可以直观地理解为,当x在无限接近于给定点时,函数f(x)在该点的斜率逐渐趋近于某个特定值。
二、求导法则求导法则是计算函数导数的一套规则和方法,便于我们在实际应用中进行计算。
以下是常见的求导法则:1. 基本导数法则:a. 常数导数法则:如果c是一个常数,那么dc/dx = 0。
b. 幂函数导数法则:对于函数f(x) = x^n,其中n是一个实数,则f'(x) = nx^(n-1)。
c. 指数函数导数法则:对于函数f(x) = a^x,其中a是一个正实数且不等于1,则f'(x) = ln(a) * a^x。
d. 对数函数导数法则:对于函数f(x) = logₐ(x),其中a是一个正实数且不等于1,则f'(x) = 1/(x * ln(a))。
2. 导数的四则运算法则:a. 和差法则:(f(x) ± g(x))' = f'(x) ± g'(x)。
b. 积法则:(f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x)。
c. 商法则:(f(x) / g(x))' = (f'(x) * g(x) - f(x) * g'(x)) / (g(x))^2。
3. 复合函数导数法则:如果y = f(g(x)),则y' = f'(g(x)) * g'(x)。
第十讲 导数的概念与运算教学目标:1、了解导数概念的实际背景.2、理解导数的几何意义.3、能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.一、知识回顾 课前热身知识点1、导数的概念(1)函数y =f (x )在x =x 0处的导数:称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →f (x 0+Δx )-f (x 0)Δx =lim Δx →0 ΔyΔx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)导数的几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). (3)函数f (x )的导函数:称函数f ′(x )=lim Δx →f (x +Δx )-f (x )Δx为f (x )的导函数.知识点2、几种常见函数的导数①(C )′= 0 (C 为常数); ②(x n )′= nx n -1 ;(n ∈Q)③(sin x )′= cos_x ; ④(cos x )′= -sin_x ;⑤ (e x )′= e x ; ⑥(a x )′= a x ln_a ;⑦(ln x )′= 1x .⑧(log a x )′= 1x ln a知识点3、导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).知识点4、复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.二、例题辨析 推陈出新例1、 求下列函数的导数(1)y =(1-x )⎝⎛⎭⎫1+1x ; (2)y =ln xx ; (3)y =tan x ; (4)y =3x e x -2x +e.[解答] (1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x-x =x 12--x 12,∴y ′=(x 12-)′-(x 12)′=-12x 32--12x 12-.(2)y ′=⎝⎛⎭⎫ln x x ′=(ln x )′x -x ′ln x x 2=1x ·x -ln xx 2=1-ln x x 2. (3)y ′=⎝⎛⎭⎫sin x cos x ′=(sin x )′cos x -sin x (cos x )′cos 2x =cos x cos x -sin x (-sin x )cos 2x =1cos 2x. (4)y ′=(3x e x )′-(2x )′+e ′=(3x )′e x +3x (e x )′-(2x )′=3x (ln 3)·e x +3x e x -2x ln 2=(ln 3+1)·(3e)x -2x ln 2.若将本例(3)中“tan x ”改为“sin x2⎝⎛⎭⎫1-2cos 2x 4”如何求解? 解:∵y =sin x 2⎝⎛⎭⎫1-2cos 2x 4=-sin x 2cos x 2=-12sin x ∴y ′=-12cos x . 变式练习1.求下列函数的导数(1)y =x +x 5+sin x x 2;(2)y =(x +1)(x +2)(x +3);(3)y =11-x +11+x ;(4)y =cos 2xsin x +cos x . 解:(1)∵y =x 12+x 5+sin x x 2=x 32-+x 3+sin x x2,∴y ′=(x 32-)′+(x 3)′+(x -2sin x )′ =-32x 52-+3x 2-2x -3sin x +x -2cos x .(2)y =(x 2+3x +2)(x +3)=x 3+6x 2+11x +6,∴y ′=3x 2+12x +11. (3)∵y =11-x +11+x =21-x ,∴y ′=⎝⎛⎭⎫21-x ′=-2(1-x )′(1-x )2=2(1-x )2. (4)y =cos 2xsin x +cos x=cos x -sinx ,∴y ′=-sin x -cos x .例2、 求下列复合函数的导数:(1)y =(2x -3)5;(2)y =3-x ;(3)y =sin 2⎝⎛⎭⎫2x +π3;(4)y =ln(2x +5). [解答] (1)设u =2x -3,则y =(2x -3)5由y =u 5与u =2x -3复合而成, ∴y ′=f ′(u )·u ′(x )=(u 5)′(2x -3)′=5u 4·2=10u 4=10(2x -3)4. (2)设u =3-x ,则y =3-x 由y =u 12与u =3-x 复合而成.∴y ′=f ′(u )·u ′(x )=(u 12)′(3-x )′=12u -12(-1)=-12u 12-=-123-x=3-x 2x -6.(3)设y =u 2,u =sin v ,v =2x +π3,则y ′x =y ′u ·u ′v ·v ′x =2u ·cos v ·2=4sin ⎝⎛⎭⎫2x +π3·cos ⎝⎛⎭⎫2x +π3=2sin ⎝⎛⎭⎫4x +2π3. (4)设y =ln u ,u =2x +5,则y ′x =y ′u ·u ′x ,∴y ′=12x +5·(2x +5)′=22x +5.变式练习2.求下列复合函数的导数: (1)y =(1+sin x )2;(2)y =lnx 2+1;(3)y =1(1-3x )4;(4)y =x1+x 2.解:(1)y ′=2(1+sin x )·(1+sin x )′=2(1+sin x )·cos x . (2)y ′=(lnx 2+1)′=1x 2+1·(x 2+1)′=1x 2+1·12(x 2+1)12-·(x 2+1)′=xx 2+1.(3)设u =1-3x ,y =u -4.则y x ′=y u ′·u x ′=-4u -5·(-3)=12(1-3x )5.(4)y ′=(x1+x 2)′=x ′·1+x 2+x ()1+x 2′=1+x 2+x 21+x 2=1+2x 21+x 2. 三、归纳总结 方法在握归纳1、求导之前,应先对函数进行化简,然后求导,这样可以减少运算量;归纳2、复合函数求导必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其复合关系.四、拓展延伸 能力升华例1、 (1)(2012·辽宁高考)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.(2)已知曲线y =13x 3+43. ①求曲线在点P (2,4)处的切线方程;②求斜率为4的曲线的切线方程.[解答] (1)y =x 22,y ′=x ,∴y ′|x =4=4,y ′|x =-2=-2.点P 的坐标为(4,8),点Q 的坐标为(-2,2),∴在点P 处的切线方程为y -8=4(x -4),即y =4x -8.在点Q 处的切线方程为y -2=-2(x +2),即y =-2x -2.解⎩⎪⎨⎪⎧y =4x -8,y =-2x -2,得A (1,-4),则A 点的纵坐标为-4.(2)①∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2,∴在点P (2,4)处的切线的斜率k =y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.②设切点为(x 0,y 0),则切线的斜率k =x 20=4,x 0=±2.切点为(2,4)或⎝⎛⎭⎫-2,-43, ∴切线方程为y -4=4(x -2)或y +43=4(x +2),即4x -y -4=0或12x -3y +20=0.若将本例(2)①中“在点P (2,4)”改为“过点P (2,4)”如何求解?解:设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43,则切线的斜率k =y ′|x =x 0=x 20. ∴切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43. ∵点P (2,4)在切线上, ∴4=2x 20-23x 30+\f(4,3),即x 30-3x 20+4=0.∴x 30+x 20-4x 20+4=0. ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0. ∴(x 0+1)(x 0-2)2=0.解得x 0=-1或x 0=2. 故所求的切线方程为4x -y -4=0或x -y +2=0.变式练习3.已知函数f (x )=2x +1(x >-1),曲线y =f (x )在点P (x 0,f (x 0))处的切线l 分别交x轴和y 轴于A ,B 两点,O 为坐标原点.(1)求x 0=1时,切线l 的方程;(2)若P 点为⎝⎛⎭⎫-23,233,求△AOB 的面积.解:(1)f ′(x )=1x +1,则f ′(x 0)=1x 0+1,则曲线y =f (x )在点P (x 0,f (x 0))的切线方程为 y -f (x 0)=1x 0+1(x -x 0),即y =xx 0+1+x 0+2x 0+1 .所以当x 0=1时,切线l 的方程为x -2y +3=0. (2)当x =0时,y =x 0+2x 0+1;当y =0时,x =-x 0-2. S △AOB =12⎪⎪⎪⎪⎪⎪x 0+2x 0+1·(x 0+2)=(x 0+2)22 x 0+1,∴S △AOB =⎝⎛⎭⎫-23+222-23+1=839.例2、已知a 为常数,若曲线y =ax 2+3x -ln x 存在与直线x +y -1=0垂直的切线,则实数a的取值范围是( )A.⎣⎡⎭⎫-12,+∞B.⎝⎛⎦⎤-∞,-12 C.[)-1,+∞ D.(]-∞,-1 [解答] 由题意知曲线上存在某点的导数为1,所以y ′=2ax +3-1x=1有正根,即2ax 2+2x -1=0有正根.当a ≥0时,显然满足题意;当a <0时,需满足Δ≥0,解得-12≤a <0. 综上,a ≥-12.[答案] A归纳:导数几何意义应用的三个方面导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面:(1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0);(2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k ;(3)已知过某点M (x 1,f (x 1))(不是切点)的切线斜率为k 时,常需设出切点A (x 0,f (x 0)),利用k =f (x 1)-f (x 0)x 1-x 0求解.变式练习4.若函数f (x )=sin ⎝⎛⎭⎫3x +π6+θ(0<θ<π),且f (x )+f ′(x )是奇函数,则θ=________. 解析:∵f (x )=sin ⎝⎛⎭⎫3x +π6+θ,∴f ′(x )=3cos ⎝⎛⎭⎫3x +π6+θ.于是y =f ′(x )+f (x )=sin ⎝⎛⎭⎫3x +π6+θ+3cos ⎝⎛⎭⎫3x +π6+θ=2sin ⎝⎛⎭⎫3x +π6+θ+π3=2sin ⎝⎛⎭⎫3x +θ+π2=2cos(3x +θ), 由于y =f (x )+f ′(x )=2cos(3x +θ)是奇函数,∴θ=k π+π2(k ∈Z ).又0<θ<π,∴θ=π2. 答案:π2练习1.曲线y =sin x sin x +cos x -12在点M ⎝⎛⎭⎫π4,0处的切线的斜率为( ) A .-12 B.12 C .-22 D.22解析:y ′=cos x (sin x +cos x )-(cos x -sin x )sin x (sin x +cos x )2=1(sin x +cos x )2,故y ′⎪⎪⎪4x π==12.∴曲线在点M ⎝⎛⎭⎫π4,0处的切线的斜率为12. 选B 2.已知函数f (x )=x 3+f ′⎝⎛⎭⎫23x 2-x ,则函数f (x )的图象在点⎝⎛⎭⎫23,f ⎝⎛⎭⎫23处的切线方程是________. 解析:由f (x )=x 3+f ′⎝⎛⎭⎫23x 2-x ,可得f ′(x )=3x 2+2f ′⎝⎛⎭⎫23x -1,∴f ′⎝⎛⎭⎫23=3×⎝⎛⎭⎫232+2f ′⎝⎛⎭⎫23×23-1, 解得f ′⎝⎛⎭⎫23=-1,即f (x )=x 3-x 2-x .则f ⎝⎛⎭⎫23=⎝⎛⎭⎫233-⎝⎛⎭⎫232-23=-2227,故函数f (x )的图象在⎝⎛⎭⎫23,f ⎝⎛⎭⎫23处的切线方程是y +2227=-⎝⎛⎭⎫x -23,即27x +27y +4=0. 答案:27x +27y +4=0 五、课后作业 巩固提高1.曲线y =sin xx在点M (π,0)处的切线方程是________.答案:x +πy -π=02.如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=________.解析:由题意知f ′(5)=-1,f (5)=-5+8=3,∴f (5)+f ′(5)=3-1=2. 答案:2 3.(2013·永康模拟)函数y =f (x )的图象如图所示,则y =f ′(x )的图象可能是( )解析:选D 据函数的图象易知,x <0时恒有f ′(x )>0,当x >0时,恒有f ′(x )<0. 4.若函数f (x )=cos x +2xf ′⎝⎛⎭⎫π6,则f ⎝⎛⎭⎫-π3与f ⎝⎛⎭⎫π3的大小关系是( ) A .f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3 B .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π3 C .f ⎝⎛⎭⎫-π3<f ⎝⎛⎭⎫π3 D .不确定 解析:选C 依题意得f ′(x )=-sin x +2f ′⎝⎛⎭⎫π6,∴f ′⎝⎛⎭⎫π6=-sin π6+2f ′⎝⎛⎭⎫π6, f ′⎝⎛⎭⎫π6=12,f ′(x )=-sin x +1,∵当x ∈⎝⎛⎭⎫-π2,π2时,f ′(x )>0, ∴f (x )=cos x +x 是⎝⎛⎭⎫-π2,π2上的增函数,注意到-π3<π3,于是有f ⎝⎛⎭⎫-π3<f ⎝⎛⎭⎫π3. 5.已知t 为实数,f (x )=(x 2-4)(x -t )且f ′(-1)=0,则t 等于( )A .0B .-1 C.12 D .2解析:选C f ′(x )=3x 2-2tx -4,f ′(-1)=3+2t -4=0,t =12.6.曲线y =x e x +2x -1在点(0,-1)处的切线方程为( )A .y =3x -1B .y =-3x -1C .y =3x +1D .y =-2x -1解析:选A 依题意得y ′=(x +1)e x +2,则曲线y =x e x +2x -1在点(0,-1)处的切线的斜率为y ′|x =0,故曲线y =x e x +2x -1在点(0,-1)处的切线方程为y +1=3x ,即y =3x -1.7.设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2.下面的不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x解析:选A 由已知,令x =0得2f (0)>0,排除B 、D 两项;令f (x )=x 2+14,则2x 2+12+x ⎝⎛⎭⎫x 2+14′=4x 2+12>x 2,但x 2+14>x 对x =12不成立,排除C 项.8.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.解析:f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2.∴f ′(x )=2x -4.∴f ′(0)=-4. 答案:-49.已知函数y =f (x )及其导函数y =f ′(x )的图象如图所示,则曲线y =f (x )在点P 处的切线方程是________.解析:根据导数的几何意义及图象可知,曲线y =f (x )在点P 处的切线的斜率k =f ′(2)=1,又过点P (2,0),所以切线方程为x -y -2=0.答案:x -y -2=010.若曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析:曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,即f ′(x )=0有正实数解.又∵f ′(x )=5ax 4+1x ,∴方程5ax 4+1x =0有正实数解.∴5ax 5=-1有正实数解.∴a <0.故实数a 的取值范围是(-∞,0).答案:(-∞,0)11.已知函数f (x )=ax -6x 2+b的图象在点(-1,f (-1))处的切线方程为x +2y +5=0,求y =f (x )的解析式.解:由已知得,-1+2f (-1)+5=0,∴f (-1)=-2,即切点为(-1,-2). 又f ′(x )=(ax -6)′(x 2+b )-(ax -6)(x 2+b )′(x 2+b )2=-ax 2+12x +ab(x 2+b )2,∴⎩⎪⎨⎪⎧-a -61+b =-2,-a -12+ab (1+b )2=-12,解得⎩⎪⎨⎪⎧a =2,b =3.∴f (x )=2x -6x 2+3.12.如右图所示,已知A (-1,2)为抛物线C :y =2x 2上的点,直线l 1过点A ,且与抛物线C 相切,直线l 2:x =a (a <-1)交抛物线C 于点B ,交直线l 1于点D .(1)求直线l 1的方程; (2)求△ABD 的面积S 1.解:(1)由条件知点A (-1,2)为直线l 1与抛物线C 的切点. ∵y ′=4x ,∴直线l 1的斜率k =-4.所以直线l 1的方程为y -2=-4(x +1),即4x +y +2=0. (2)点A 的坐标为(-1,2),由条件可求得点B 的坐标为(a,2a 2),点D 的坐标为(a ,-4a -2),∴△ABD 的面积为S 1=12×|2a 2-(-4a -2)|×|-1-a|=|(a+1)3|=-(a+1)3.13.如图,从点P1(0,0)作x轴的垂线交曲线y=e x于点Q1(0,1),曲线在Q1点处的切线与x轴交于点P2.再从P2作x轴的垂线交曲线于点Q2,依次重复上述过程得到一系列点:P1,Q1;P2,Q2;…;P n,Q n,记P k点的坐标为(x k,0)(k=1,2,…,n).(1)试求x k与x k-1的关系(k=2,…,n);(2)求|P1Q1|+|P2Q2|+|P3Q3|+…+|P n Q n|.解:(1)设点P k-1的坐标是(x k-1,0),∵y=e x,∴y′=e x,∴Q k-1(x k-1,e x k-1),在点Q k-1(x k-1,e x k-1)处的切线方程是y-e x k-1=e x k-1(x-x k-1),令y=0,则x k=x k-1-1(k=2,…,n).(2)∵x1=0,x k-x k-1=-1,∴x k=-(k-1),∴|P k Q k|=e x k=e-(k-1),于是有|P1Q1|+|P2Q2|+|P3Q3|+…+|P n Q n|=1+e-1+e-2+…+e-(n-1)=1-e-n1-e-1=e-e1-ne-1,即|P1Q1|+|P2Q2|+|P3Q3|+…+|P n Q n|=e-e1-ne-1.。
高二数学必修一导数的定义知识点导数是微积分中的重要基础概念。
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f’(x0)或df(x0)/dx。
导数是函数的局部性质。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。
例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。
若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。
然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x f’(x)也是一个函数,称作f(x)的导函数。
寻找已知的函数在某点的导数或其导函数的过程称为求导。
实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。
反之,已知导函数也可以倒过来求原来的函数,即不定积分。
微积分基本定理说明了求原函数与积分是等价的。
求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy 与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数记为f’(x0),也记作y’│x=x0或dy/dx│x=x0,即。
高二数学《导数与微分》知识点概述导数与微分是高二数学学科中的重要内容,对于学生来说,掌握这些知识点不仅能够帮助他们理解数学的基本概念,还能够为后续学习奠定坚实的基础。
第一部分:导数的概念及性质导数作为微积分的重要概念之一,其本质是函数在某点处的变化率。
导数的定义是通过极限的方法得到的,即函数在一点处的导数等于函数在该点附近变化最快的直线的斜率。
导数的性质主要有如下几个方面:1. 导数的存在性和唯一性:对于任意一个函数,只要它在某一点上可导,那么它在该点上的导数就是唯一确定的。
2. 导数的几何意义:导数可以理解为函数曲线在某一点处的切线斜率,因此导数的大小与斜率的大小成正比。
3. 导数与函数的关系:如果一个函数在某点处可导,则该函数在该点的导数可以作为函数的局部性质的判断标准,如函数的增减性、极值点等。
第二部分:导数的计算方法为了更好地应用导数的概念解决实际问题,在计算导数时,我们可以根据导数的定义以及一些基本的导数性质来进行计算。
下面是一些常见的导数计算方法:1. 常数函数的导数:常数函数的导数为0,即导数与自变量无关。
2. 幂函数的导数:对于幂函数$x^n$,它的导数为$nx^{n-1}$。
3. 反比例函数的导数:反比例函数$y=\frac{1}{x}$的导数为$y'=-\frac{1}{x^2}$。
4. 指数函数的导数:自然对数函数$y=e^x$的导数为$y'=e^x$。
5. 对数函数的导数:自然对数函数的逆函数$y=\ln x$的导数为$y'=\frac{1}{x}$。
第三部分:微分的概念及应用微分是导数的一个重要应用,它包含了更多的几何和物理背景。
微分的概念是函数在某点局部的线性近似,同时也可以理解为函数值的微小变化量。
微分的性质和计算方法与导数类似。
微分的应用广泛,尤其在物理学和工程学中有着重要的地位。
比如在速度和加速度的分析中,微分可以帮助我们计算物体在某一瞬间的速度和加速度。
高二数学第一次月考知识点一、导数与函数的连续性在高二数学的第一次月考中,导数与函数的连续性是非常重要的知识点之一。
导数概念是微积分的基础,它描述了函数在某一点的变化率。
导数的定义是通过求极限得到的,可以用来求函数的切线斜率或函数的增减性等问题。
函数的连续性则是指函数在某一点或某一区间内没有断点,可以用连续函数的极限性质进行判断和证明。
二、函数的极值与最值另一个重要的考点是函数的极值与最值。
极值是指函数在某一区间内取得最大值或最小值的点,通过导数的求解可以确定函数的极值点。
最值则是函数在整个定义域内取得的最大值或最小值,通过数学推理和求解可以确定函数的最值。
三、函数与方程的图像在月考中,可能会涉及到函数与方程的图像。
掌握函数与方程的图像特征,包括图像的对称性、增减性、零点、极值、拐点等,对于分析和解题是非常有帮助的。
四、平面向量与坐标系平面向量是高二数学中的一个重要的知识点。
平面向量的概念、加法、数量积等基本操作都需要掌握。
与平面向量相关的坐标系也是月考的考察内容之一,包括直角坐标系和极坐标系。
五、数列与数列的极限数列是高二数学中非常常见的一类问题,月考也会考察数列的性质与求解。
数列的概念、通项公式、通项求和等内容都需要熟练掌握。
数列的极限是数列的重要性质,也需要了解与运用。
六、概率与统计概率与统计是高二数学中的一大板块内容。
概率的基本概念、事件的概率、条件概率等都是需要掌握的知识点。
统计是指通过对样本进行观察与分析,对总体的某些特征进行推断与描述。
以上便是高二数学第一次月考的主要知识点,希望同学们在备考中能够重点关注和复习这些内容,取得好成绩!。
高二数学导数知识点导数是数学中非常重要的概念,被广泛应用于各个领域。
在高二数学学习中,导数是一个重要的知识点。
本文将介绍一些高二数学导数的知识点,帮助大家更好地理解和掌握这一内容。
一、导数的定义导数可以理解为函数在某一点上的变化率。
设函数y=f(x),在点x处的导数记为f'(x),其计算公式为:f'(x) = lim(h->0) [f(x+h) - f(x)] / h二、导数的几何意义导数的几何意义是函数图像上某一点处的切线斜率。
可以通过计算导数来确定函数曲线上某点的切线方程。
三、导数的运算法则1. 常数法则:常数的导数为0。
2. 基本初等函数导数法则:a. 幂函数:(x^n)' = n*x^(n-1)b. 指数函数:(a^x)' = ln(a) * a^xc. 对数函数:(log_a(x))' = 1 / (x * ln(a))d. 三角函数:(sin(x))' = cos(x),(cos(x))' = -sin(x),(tan(x))' = sec^2(x)3. 乘积法则:(f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x)4. 商积法则:[f(x) / g(x)]' = [f'(x) * g(x) - f(x) * g'(x)] / [g(x)]^25. 复合函数求导法则:(f(g(x)))' = f'(g(x)) * g'(x)四、导数的应用导数广泛应用于微积分、物理学、经济学等领域。
以下是几个常见的应用:1. 极值问题:对于一个函数,极大值和极小值出现在导数为0或不存在的点。
2. 斜率问题:导数可以计算函数图像上某一点处的斜率,用于解决相关的问题。
3. 函数图像的变化:通过分析导数的正负变化来判断函数的递增和递减区间,从而得到函数图像的特征。
高二新高考数学导数知识点在高中数学课程中,导数是一个非常重要且必不可少的知识点。
导数的概念最早出现在十七世纪,由数学家伽利略和弗洛林提出,并在后来得到了众多数学家的深入研究和发展。
导数不仅在数学理论研究中有重要作用,更在实际应用中发挥着重要的作用。
导数的定义是函数在某一点上的变化率。
在几何意义上,导数可以理解为函数图像在某点处的切线斜率。
具体说来,如果函数f(x)在点x=a处的导数存在,那么我们可以通过求出极限lim(x→a) [f(x)-f(a)]/(x-a)来计算导数。
导数具有许多重要的性质和运算法则。
其中,最基本的导数法则包括常数规则、幂函数规则、和、差、积、商等规则。
在具体计算导数时,我们可以根据这些法则来简化计算过程。
导数在函数的图像研究中能够提供很多重要的信息。
首先,导数可以帮助我们确定函数的增减性。
具体来说,如果函数f(x)的导数f'(x)在某一区间内大于0,那么函数在该区间内是单调递增的;如果导数在某一区间上小于0,则函数在该区间上是单调递减的。
此外,导数还能帮助我们确定函数的极值点和拐点。
如果函数的导数在某点发生变号,那么该点就有可能是函数的极值点或拐点。
在实际应用中,导数也起到了重要的作用。
以物理学为例,导数可以帮助我们描述物体的速度和加速度。
对于给定的物体运动规律方程,我们可以通过对其位置函数求导,得到物体的速度函数和加速度函数。
同样,导数在经济学、生物学等领域也有广泛的应用。
除此之外,导数还与积分有重要的关系。
根据导数的定义和一些基本性质,我们可以得到导数与原函数之间的关系。
具体来说,如果一个函数f(x)在某一区间上连续,并且在该区间上的导数存在,则我们可以通过求导操作得到函数f(x)的一个原函数F(x)。
这个过程被称为积分。
在高二新高考数学中,导数是一个非常重要且难度较高的知识点。
要想在这个知识点上取得好成绩,学生需要掌握导数的定义和性质,熟练运用导数的运算法则,理解导数的几何意义,并能够将导数运用到实际问题的求解中。
高中数学导数知识点总结高中数学导数知识点总结导数是高中数学中的重要内容,教学难度相对较大,以下是小编跟大家分享高中数学导数知识点总结,希望对大家能有所帮助!(一)导数第一定义设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量△x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量△y = f(x0 + △x) - f(x0) ;如果△y 与△x 之比当△x→0 时极限存在,则称函数y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第一定义(二)导数第二定义设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化△x ( x - x0 也在该邻域内 ) 时,相应地函数变化△y = f(x) - f(x0) ;如果△y 与△x 之比当△x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为f'(x0) ,即导数第二定义(三)导函数与导数如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。
这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的.导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y', f'(x), dy/dx, df(x)/dx。
导函数简称导数。
(四)单调性及其应用1.利用导数研究多项式函数单调性的一般步骤(1)求f(x)(2)确定f(x)在(a,b)内符号 (3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数2.用导数求多项式函数单调区间的一般步骤(1)求f(x)(2)f(x)>0的解集与定义域的交集的对应区间为增区间; f(x)<0的解集与定义域的交集的对应区间为减区间学习了导数基础知识点,接下来可以学习高二数学中涉及到的导数应用的部分。
导数的概念及运算[必备知识]考点1 函数y =f (x )在x =x 0处的导数 1.定义称函数y =f (x )在x =x 0处的瞬时变化率lim Δ x →f (x 0+Δx )-f (x 0)Δx =lim Δ x →0 ΔyΔx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δ x →0ΔyΔx =lim Δ x →0 f (x 0+Δx )-f (x 0)Δx. 2.几何意义函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 考点2 基本初等函数的导数公式若y =f (x ),y =g (x )的导数存在,则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 考点4 复合函数的导数设函数u =φ(x )在点x 处有导数u ′=φ′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′=f ′(u ),则复合函数y =f [φ(x )]在点x 处也有导数y ′x =f ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. [必会结论]1.f ′(x 0)与x 0的值有关,不同的x 0,其导数值一般也不同. 2.f ′(x 0)不一定为0,但[f (x 0)]′一定为0.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. 4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”. 一、疑难辨析判断下列结论的正误.(正确的打“√”,错误的打“×”) 1.f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.( ) 2.曲线的切线不一定与曲线只有一个公共点.( ) 3.与曲线只有一个公共点的直线一定是曲线的切线.( )4.对于函数f (x )=-x 2+3x ,由于f (1)=2,所以f ′(1)=2′=0.( )5.物体的运动方程是s =-4t 2+16t ,则该物体在t =0时刻的瞬时速度是0.( ) 6.若f (x )=f ′(a )x 2+ln x (a >0),则f ′(x )=2xf ′(a )+1x .( )答案 1.√ 2.√ 3.× 4.× 5.× 6.√ 二、例题练习1.已知函数()y f x =,那么下列说法错误的是( ) A.()()00y f x x f x +∆=∆-叫做函数值的增量 B.()()00f x x f x y x x+∆-∆=∆∆叫做函数在0x 到0x x +∆之间的平均变化率 C.()f x 在0x 处的导数记为y ' D.()f x 在0x 处的导数记为()0f x '【答案】C【解析】由导数的定义可知C 错误.故选C.2. 已知函数y =2+1x ,当x 由1变到2时,函数的增量Δy =________.【答案】 -12【解析】 Δy =⎝⎛⎭⎫2+12-(2+1)=-12. 3.设函数()f x 在1x =处可导,则()()11lim 2x f x f x∆→+∆--∆等于()A .()1f 'B .()112f '- C .()21f '-D .()1f '- 【答案】B【解析】函数()f x 在1x =处()()()0111limx f x f f x ∆→+∆-'=∆()()0112lim 2x f x f x∆→+∆-=--∆,所以()()()0111lim122x f x f f x ∆→+∆-'=--∆.4.若函数()y f x =在区间(),a b 内可导,且()0,x a b ∈,若0()f x '=4,则()()0002limh f x f x h h→--的值为( )A .2B .4C .8D .12 【答案】C【解析】由函数()y f x =在某一点处的导数的定义可知()()()()()000000022lim2lim 282h h f x f x h f x f x h f x h h→→----'===5.若()()0003lim1x f x x f x x∆→+∆-=∆,则()0f x '=__________.【答案】13【解析】由于()()()()()000000033lim 3lim 313x x f x x f x f x x f x f x x x∆→∆→+∆-+∆-'===∆∆,所以()013f x '=. 6.[课本改编]曲线y =x 2在(1,1)处的切线方程是( ) A .2x +y +3=0 B .2x -y -3=0 C .2x +y +1=0 D .2x -y -1=0答案 D 解析 ∵y ′=2x ,∴k =y ′| x =1=2;故所求切线方程为:y -1=2(x -1)即2x -y-1=0,故选D.7.函数y =f (x )的图象在点P (5,f (5))处的切线方程是y =-x +8,则f (5)+f ′(5)=( ) A .1 B .2 C .3 D .4 答案 B解析 由条件知f ′(5)=-1,又在点P 处切线方程为y -f (5)=-(x -5),∴y =-x +5+f (5),即y =-x +8,∴5+f (5)=8,∴f (5)=3,∴f (5)+f ′(5)=2. 8.函数y =x ·e x 在点(1,e)处的切线方程为( ) A .y =2e x B .y =x -1+eC .y =-2e x +3eD .y =2e x -e答案 D解析 函数y =x ·e x 的导函数是f ′(x )=e x +x e x ,在点(1,e)处,把x =1代入f ′(x )=e x +x e x ,得k =f ′(1)=2e ,点斜式得y -e =2e(x -1),整理得y =2e x -e.9.已知函数2()cos 3g x x x =+,则2()πg'=_______________.【答案】13. 【解析】因为2()sin 1g x x '=-+,所以2()πg'=2π21sin 113233-+=-=.故填13.10=')1(f _______________.【答案】e【解析】0x =得(0)1f =,∴(1)e f '=.11.已知函数()f x 的导函数为()f x ',且满足()(1)2ln xf f x x ='+,则(1)f '= A .e - B .1- C .1D .e【答案】B 【解析】∵函数()f x 的导函数为()f x ',且满足()(1)2ln (0)f x x xf x ='+>,1x =代入()f x '可得(1)2(1)1f f '='+,解得(1)1f '=-.故选B .12.若2()24ln f x x x x =--,则()0f x '>的解集为_______________. 【答案】(2,)+∞【解析】由()224ln f x x x x =--,得()()4220f x x x x'=-->,则由不等式()42200x x x-->>,得()2200x x x -->>,从而可解得2x >.故()0f x '>的解集为(2,)+∞.13.求下列函数的导数:(1)y =e x sin x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3; (3)y =x -sin x 2cos x2;(3)=xx ln ;[解] (1)y ′=(e x )′sin x +e x (sin x )′=e x sin x +e x cos x . (2)因为y =x 3+1x 2+1,所以y ′=3x 2-2x 3.(3)因为y =x -12sin x ,所以y ′=1-12cos x .14.[2015·天津高考]已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________.答案 3解析 因为f (x )=ax ln x ,所以f ′(x )=a ln x +ax ·1x =a (ln x +1).由f ′(1)=3得a (ln1+1)=3,所以a =3.15.若曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 【答案】(-∞,0)【解析】曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,即f ′(x )=0有正实数解.又∵f ′(x )=5ax 4+1x ,∴方程5ax 4+1x=0有正实数解.∴5ax 5=-1有正实数解.∴a <0.16.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)=( ) A .26 B .29 C .212 D .215 【答案】C【解析】因为f ′(x )=x ′·[]x -a 1x -a 2…x -a 8+[]x -a 1x -a 2…x -a 8′·x =(x -a 1)(x -a 2)…(x -a 8)+ []x -a 1x -a 2…x -a 8′·x ,所以f ′(0)=(0-a 1)(0-a 2)…(0-a 8)+0=a 1a 2…a 8.因为数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=212.17.[2016·襄阳调研]曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为( ) A .30° B .45° C .60°D .120°答案 B 解析 由y ′=3x 2-2得y ′| x =1=1,即曲线在点(1,3)处的切线斜率为1,所以切线的倾斜角为45°,故选B.18.[2016·大同质检]一点P 在曲线y =x 3-x +23上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( )A.⎣⎡⎦⎤0,π2B.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π C.⎣⎡⎭⎫3π4,π D.⎝⎛⎦⎤π2,3π4 答案 B 解析 ∵y ′=3x 2-1,∴tan α=3x 2-1≥-1,∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 19.[2016·深圳中学实战考试]函数y =x 33-x 2+1(0<x <2)的图象上任意点处切线的倾斜角记为α,则α的最小值是( ) A.π4B.π6C.5π6D.3π4答案 D 解析 由于y ′=x 2-2x ,当0<x <2时,-1≤y ′<0,据导数的几何意义得-1≤tan α<0,当tan α=-1时,α取得最小值,即αmin =3π4. 20.[2016·山西师大附中质检]已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.解 (1)根据已知得点P (2,4)是切点且y ′=x 2,所以在点P (2,4)处的切线的斜率为y ′| x =2=4.所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43,则切线的斜率为y ′| x =x 0=x 20.所以切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43.因为点P (2,4)在切线上,所以4=2x 20-23x 30+43, 即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0,所以x 20(x 0+1)-4(x 0+1)(x 0-1)=0,所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2, 故所求的切线方程为x -y +2=0或4x -y -4=0.21.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线上的任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0),即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪-6x 0||2x 0=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6. 备用:1.函数f (x )=ln x -2xx 的图象在点(1,-2)处的切线方程为( )A .2x -y -4=0B .2x +y =0C .x -y -3=0D .x +y +1=0答案 C解析 f ′(x )=1-ln xx 2,则f ′(1)=1,故该切线方程为y -(-2)=x -1,即x -y -3=0.2.[2014·江西高考]若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________. 答案 (e ,e)解析 令f (x )=x ln x ,则f ′(x )=ln x +1,设P (x 0,y 0),则f ′(x 0)=ln x 0+1=2,∴x 0=e ,此时y 0=x 0ln x 0=eln e =e ,∴点P 的坐标为(e ,e).[2014·江苏高考]在平面直角坐标系xOy 中,若曲线y =ax 2+b x (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________. 答案 -3解析 由曲线y =ax 2+b x 过点P (2,-5),得4a +b2=-5.①又y ′=2ax -b x 2,所以当x =2时,4a -b 4=-72,②由①②得⎩⎪⎨⎪⎧a =-1,b =-2,所以a +b =-3.3. [2016·沈阳模拟]若存在过点O (0,0)的直线l 与曲线f (x )=x 3-3x 2+2x 和y =x 2+a 都相切,则a 的值是( ) A .1 B.164C .1或164D .1或-164[正解] 易知点O (0,0)在曲线f (x )=x 3-3x 2+2x 上, (1)当O (0,0)是切点时,同上面解法.(2)当O (0,0)不是切点时,设切点为P (x 0,y 0),则y 0=x 30-3x 20+2x 0,且k =f ′(x 0)=3x 20-6x 0+2.①又k =y 0x 0=x 20-3x 0+2,②由①,②联立,得x 0=32(x 0=0舍),所以k =-14,∴所求切线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0.依题意,Δ=116-4a =0,∴a =164.综上,a =1或a =164.[答案] C[2016·沈阳模拟]若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7答案 A解析 ∵y =x 3,∴y ′=3x 2.设过点(1,0)的直线与y =x 3相切于点(x 0,x 30),则在该点处的切线斜率为k =3x 20,所以切线方程为:y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30.又点(1,0)在切线上,则x 0=0或x 0=32.当x 0=0时,由y =0与y =ax 2+154x -9相切可得a =-2564;当x 0=32时,由y =274x -274与y =ax 2+154x -9相切,得a =-1. 综上,a =-1或a =-2564.故选A.。