2011数学建模论文
- 格式:doc
- 大小:417.00 KB
- 文档页数:28
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于系统综合评价的城市表层土壤重金属污染分析摘要本文针对城市表层土壤重金属污染问题,首先对各重金属元素进行分析,然后对各种重金属元素的基本数据进行统计分析及无量纲化处理,再对各金属元素进行相关性分析,最后针对各个问题建立模型并求解。
针对问题一,我们首先利用EXCEL 和 SPSS 统计软件对各金属元素的数据进行处理,再利用Matlab 软件绘制出该城区内8种重金属元素的空间分布图最后通过内梅罗污染模型:2/12max22⎪⎪⎭⎫ ⎝⎛+=P P P 平均综,其中平均P 为所有单项污染指数的平均值,m ax P 为土壤环境中针对问题二,我们首先利用EXCELL 软件画出8种元素在各个区内相对含量的柱状图,由图可以明显地看出各个区内各种元素的污染情况,然后再根据重金属元素污染来源及传播特征进行分析,可以得出工业区及生活区重金属的堆积和迁移是造成污染的主要原因,Cu 、Hg 、Zn 主要在工业区和交通区如公路、铁路等交通设施的两侧富集,随时间的推移,工业区、交通区的土壤重金属具有很强的叠加性,受人类活动的影响较大。
摘要:本文对第一个问题做出了合理的假设,建立了阻滞增长模型预测2011后的工资增长,在确定工资的最大值时m x ,采用了经验估计的方法,根据我国经济发展战略目标和目前我国工资的实际水平,利用目前中等发达国家的工资来代替m x 。
在spss 中拟合出了以后每年的工资数据,与我国实际基本吻合。
问题二由于个人工资变化情况比较复杂,在具体计算过程中,为了将问题简化,引入平均工资增长率这一概念。
影响平均工资增长率的因素有两个:社会平均工资增长和企业平均工资增长。
利用题中的假设和附件给出的计算公式进行计算,算出本人指数化月平均缴费工资,进而算出基础养老金。
计算出职工退休前个人账户总额,进而算出个人账户养老金。
得出各种情况的替代率,并用表格进行了总结。
问题三在问题二的基础进行计算,对于职工个人账户余额所产生的利息进行了简化计算,不考虑复利的情况。
得出了个人缴存的养老金总额,利用问题二中算出的职工养老金额建立方程,可以解出收支平衡的月份,进而算出养老金的缺口。
但该方程编写程序比较,在具体计算时,查阅一个简单公式: (1/12)log 1/12r P l P Z r +=-⨯来计算收支平衡的月份。
进而算出各种情况下养老金的缺口。
问题四,在问题二和问题三的基础上,大致分析了影响替代率的因素,和影响收支平衡的因素。
建立了一个收支的不等式,讨论了既要维持收支平衡又要提高替代率所采取的措施:根据缴费月数12*m 来调整计划发养老金月数n ,使二者近似相等达到收支平衡,同时通过提高个人缴费比划C 和个人平均缴费指数R 来提高替代率。
最后对模型的优缺点进行了讨论。
关键词:替代率 SPSS 养老保险金缺口 收支平衡 阻滞模型1 问题重述养老金也称退休金,用于保障职工退休后的基本生活需要。
我国企业职工基本养老保险实行“社会统筹”与“个人账户”相结合的模式,即企业把职工工资总额按一定比例(20%)缴纳到社会统筹基金账户,再把职工个人工资按一定比例(8%)缴纳到个人账户。
城市表层土壤重金属污染分析摘要土壤作为城市环境的重要组成部分,不仅提供人类生存所需的各种营养物质,而且接受来自工业和生活废水、固体废物、农药化肥、及大气降尘等物质的污染.很容易导致金属元素的蓄积,从而造成土壤重金属的污染.本文讨论了某城市表层土壤重金属污染的空间分布分布状况,地区污染程度,以及污染传播特征,污染源等,建立了相应的几何与数学模型或算法,得到了较好的结果,为防治城市表层重金属污染,保护和提高土壤资源和生态环境,提供参考.对于问题一:通过给定数据的相关分析,不考虑地形高低对污染浓度变化的影响,用Matlab 软件编程绘制个重金属元素污染浓度空间分布三维网格图和二维等高线图,综合研究该城市各功能区的空间分布以及污染程度分布.建立了Muller 地积累指数模分析模型:)]/([log 2Bn C Fn ⨯=ℜ,确定污染程度水平分级标准,通过统计计算,分析了各重金属在不同功能区的污染状况及程度.结论是:主干道路区和工业区的重金属元素的污染最严重,其他次之.对于问题二,为说明重金属元素污染的主要原因,采用单因子指数模型和内梅罗综合指数模型进行综合指标评价分析,结合问题一中统计数据进行综合分析,得到个重金属元素在各功能区及城区的综合污染程度指标.污染最严重的功能区是主干道路区,其次按照污染程度从大小的顺序依次为:工业区、生活区、公园绿地区、山区.主干道路区土壤表层重金属元素含量很高,且种类多.根据地区的差异性和元素的特殊性,分析出重金属污染Hg 和Cu 污染是最严重的污染源,且污染最严重的地区在主干道路区和工业区.这些污染主要由于含铅汽油的燃烧、汽车轮胎磨损产生的含锌粉尘、工业污水的排放、生活废水的排放、化肥农药的多度使用、金属矿山的开采.详细情况见正文.对于问题三,为了找出该城区的污染源,在分析出重金属元素的主要传播特征之后,考虑大气空间传播情况,建立了微分方程模型,通过模型求解分析,用其等效的向内(向污染浓度较高的方向搜索)搜索算法,计算确定了重金属元素主要污染源的位置,其中As 较严重的中心污染源坐标分别为:(5291,7349,10)、(12696,3024,27)、(18134、10046、41)、(17814,10707,64)、(27700,11609,165).这五个污染源主要分布在主干道路区.(5291,5739,10),(12696,3024,27),(17814,10707,64)分布在工业区,其它两种污染源分布在生活区.其余元素的中心污染源见正文.对于问题四,需对前面所建立的模型进行分析与评价并进行模型的优化,在详细分析了前三个问题的求解模型及过程之后,评价出所建立模型的优缺点.在问题三中,重金属元素除了在大气中传播以外,还通过水土流动传播.另外,前几个模型都是静态的,但污染物传播的过程与时间有关,是一个动态的过程.最后建立了一个扩算方程模型进行优化,能够为更好的研究城市地理环境的演变模式做贡献.关键词:重金属污染 地积累指数模型 单因子指数模型 内梅罗综合污染指数 微分方程模型一、问题重述1.1 问题背景随着工业发展和城市化进程的加剧,通过交通运输、工业排放、市政建设和大气沉降等造成城市重金属污染越来越严重.对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究城市不同功能区表层土壤重金属污染特征和污染空间分布性,以便更好的研究人类活动影响下城市地质环境的演变模式.本文就如何应用查证获得的海量数据资料展开城市环境质量评价,研究地质环境的演变模式建立数学模型.附录1列出了采样点的位置、海拔高度及其所属功能区等信息,附录2列出了8种列出了8种主要重金属元素在采样点处的浓度,附录3列出了8种主要重金属元素的背景值.1.2 需要解决的问题有(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度.(2) 通过数据分析,说明重金属污染的主要原因.(3) 分析重金属污染物的传播特征,由此建立数学模型,确定污染源的位置.(4) 分析所建立模型的优缺点,为更好的研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?二、问题分析该题目一方面通过GPS记录了该城市大量样本点的位置以及所属功能区,再应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据,通过这两个表的数据就大致可以提取出一些对于解决问题的重要信息,另一方面,题目给出了自然区各样本点的重金属元素的背景值,作为重金属污染情况的指标.对于分析研究各个样本点的污染程度至关重要.利用Matlab软件进行三维网格图和等高线图的制作并结合相关的数据统计分析,可以分析该城区不同区域重金属的污染程度.后面利用地积累指数法和内梅尔综合评价指数对数据进行处理,分析污染严重的功能区和重金属.结合图形的分析以及模型的建立综合分析重金属污染物的传播特征.接着对模型进行一定的优化处理,使得处理的结果更准确.三、模型假设1、假设题目所给的数据合理正确.2、该区域的划分是稳定的,不会出现大的变动.3、不考虑观测误差、随机误差和其他外在因素所产生的误差.4、重金属在大气中无穷空间扩散,不受风的影响,其扩散服从热传导定律.5、重金属污染程度连续变化,大气中重金属元素浓度连续变化.6、界限不明显区域有扩大、缩小、消失的过程,穿过大气进入仪器的重金属含量只有浓度大小之分,浓度大小由仪器灵敏度确定.四、变量与符号说明eo lg地积累指数n ()8,7,6,5,4,3,2,1=n 分别表示As,Cd,Cr,Cu,Hg,Ni,Pb,Zn 元素Fn 污染物重金属元素n 的浓度 Bn第n 种重金属元素的背景值上限P 综综合污染指数 n C重金属n 的实测值(ug/g ) max (/)n n C S 重金属污染物中污染指数最大值 (/)n n wg C S重金属污染物中污染指数平均值 n χ 重金属污染物n 的环境质量指数;n α 重金属污染物n 的实测值 n β 重金属污染物的评价标准. Ω 重金属元素通过的平面t 时间 h 海拔高度 V体积五、模型建立与求解针对问题一,首先想到的是用Matlab 软件编程,进行三维网格图、三维曲面图、等高线图和散点图的制作.5.1 问题(1)的分析、模型建立与求解: 5.1.1 问题(1)的分析对于问题一,首先来分析一下, 要给出8种主要重金属在该城区的空间分布, 就必须确定每个重金属元素与他们所对应的地区之间的联系.刚好题目给出了每个样本点的各元素浓度,那么 是不是可以将每种重金属元素含量浓度含量与该目标点所在的功能区建立联系?由此 想到利用Matlab 软件画出每种元素在该城区的三维曲面和空间曲面图.同时 在分析不同区域重金属的污染程度时,考虑到这个污染程度是否可以量化.并且是否能够建立一种模型将这种指标量化.这道问题还要求考虑每个功能区的污染程度, 知道每个功能区的每种重金属污染程度又是不一样的.那 通过什么指标来判断每个功能区的污染程度大小,这也是 为什么用权重作为评价每个功能区的污染程度的指标.5.1.2 问题(1)的模型建立该城区受这八种重金属元素As 、Cd 、Cr 、Cu 、Hg 、Ni 、Pb 、Zn 污染程度不一样.题目提供了每种重金属元素的背景值,那么 怎么样利用这些背景值和每种元素相关的浓度确定不同区域重金属的污染程度?所以 需要找出一种方法来准确的分析该城区内不同区域重金属的污染程度,并且最好能够量化.建立8种主要重金属元素在该城区的空间分布模型如下:引入了一种用于研究沉积物及其他物质中重金属污染程度的该区内不同地域重金属的污染程度的定量指标——地积累指数又称Muller 指数法,Muller 指数法表达式为:)]/([log 2Bn C Fn ⨯=ℜ式中Fn 表示污染物重金属元素n 的浓度;Bn 表示第n 种重金属元素的背景值上限,C 为考虑各地岩石差异可能会引起背景值的变动而取得一系列系数(一般取值为1.5),用来表征沉积特征、岩石地质及其他影响.Muller 地积累指数评价和分级标准分级标准具体详见表1表1:地积累指数分级标准地积累指数ℜ 分级污染程度105≤ℜ<6及严重污染 54≤ℜ< 5强-及严重污染 43≤ℜ< 4强污染 32≤ℜ< 3中等-强污染 21≤ℜ< 2中等污染 10≤ℜ< 1轻度-中等污染 0≤ℜ 0无污染 该方法指标主要是通过每种重金属元素测得的实际浓度以及他们的相关背景值,计算出每种元素的地积累指数.然后根据上面这张表 就可以判断出每种元素的污染级别,这样就可以对每种元素的污染情况进行分析.然后 再利用Matlab 软件对题目所给数据进行处理,画出相应的网格曲面图和等高线曲线图.这里需要对Matlab 进行编程,首先利用每个样本点的横坐标、纵坐标、海拔高度建立等高线图,程序语句见附录一.通过该图,可以直观的看到该城区各功能区的空间分布.但是这张图不能反映出8种主要元素在城区的污染情况, 需要借助于各种主要元素的浓度.所以 需要再建立一张等高曲线图以及相应的网格曲面图,将主要元素的浓度作为第三坐标,命令语句见附录一.5.1.3 问题(1)的求解过程首先通过Matlab 软件,调用每个样本点的位置相关数据.就是以海拔为第三坐标,并且对每个功能区进行颜色区分,画出该城区每个功能区的二维等高线图.最后把每个样本点显示在图上.得到如下这张图:图一:重金属As空间二维等高线分布图这张图只反映出了该城区各功能区的空间分布,还不能看出每种重金属污染的情况.将每种重金属元素的浓度在图上反应出来,做出该城区重金属污染的二维等高线图.具体程序语句见附录二,得到如下这张图:图二:重金属As分布平面图同时为了对应这张As含量分布平面图,也画出了三维网格曲面图(图三).图三:重金属As含量分布的空间三维图从空间三维图三中可以看到,有一处的波峰很高说明该处污染情况很严重,有二处处于波峰说明污染情况比较严重的主要有二处,还有一处面积比较广且所处高度稍微低一点这表明该处所受污染情况相对严重且污染的范围较广;同样分析二维等高线图二,图中有一处等高线之间的间距越来越密集且颜色很深表明该处受污染情况很严重,有二处等高线比较密集颜色相对较深表明这二处的污染情况相对严重,还有一处等高线间的距离较密集但是所包围的面积较广说明该处的污染也较严重且污染的面积很广.再结合前面的数据他们中心污染源的坐标分别为:(5291,5739),(12696,3024),(17814,10707).都是分布在工业区,还有一处污染级别不是特别严重,但是在该处存在着污染源,此处刚好是山林密集区.通过观察图三,会发现刚好有三个点处于波峰,还有个点波峰稍微偏低,但还是能很直观的看出来.再来看一下,Cd这种重金属的城区各功能区的二维等高线图,分布平面图,空间分布图(图四、图五):图四:重金属Cd空间二维等高线分布图图五:重金属Cd含量空间分布平面图以及相应的三维网格曲面图(图六):图六:重金属Cd含量空间分布图从空间分布图六中可以看到,污染情况比较严重且面积比较广的主要有一处,还有五处污染也相对严重.以及几处小的污染;同样从二维分布图五可以看出等高曲线所谓面积有一处颜色很深,说明该区域污染情况很严重,同时也观察到又五处等高曲线所围的面积颜色比较深,这说明了这五处区域污染情况相对严重,很明显的是有一处等高曲线所围成的面积比较广且颜色较深,表明了该区域有一处污染情况较严重且污染面积比较广,由此可见不管是从二维还是三维图形进行分析的结果是相吻合的.再结合前面的数据它金属Cd中心污染源的坐标为:(22304,10527).分布在主干道路区,还有一处污染级别不是特别严重.再观察图三,会发现刚好有三个点处于波峰.如此,通过同样的方法,都能够得到对其它六种种重金属在该城区的空间分布以及污染情况的了解(参见附录三)通过观察每种元素的三维曲面图以及等高曲线图.很容易观察到,每种重金属对该城区都存在或大或小的污染.其中有些地区是存在多种重金属污染,并且污染很严重,通过观察这8张图会发现这六种元素Cd,Cr,Cu,Hg,Ni,Pb 在横坐标在[3000,4000],纵坐标在[3000,6000]这个区域内含量都非常高,大致可以判定这段区域属于重度污染区.下面将题目中所给的数据用excel进行分类处理,得到样本点的地积累指数.然后运用数学统计法得到各种元素污染程度数据分布表,通过这些表就可以确定该城区内不同区域重金属的污染程度.统计该表时,是通过统计每个功能区的总样本点个数,然后通过地积累指数法分别计算出每种样本点的地积累指数,并判断他们的所在的污染级别.然后统计每种污染级别下,各功能区的污染点数占总点数的百分比也就是说的权重,通过该权重就能够分析出每种重金属元素的污染程度大小,以及污染所波及的范围.从而得到每种重金属元素污染最严重的地区.通过Excel对数据运算,得到重金属元素As 污染情况分布表:表二:As污染程度分布数据表下面通过同样的数据处理,得到Cd污染程度数据分布表:表三:Cd污染程度数据分布表其它六种元素的污染程度数据分布表见附录三.表中数值0的意义是在该污染级别下不存在观测的样本点.这是个大样本事件,可以认为该级别污染很轻微,甚至不存在这种级别的污染.而百分比越大,就说明在该污染级别下涉及的样本点比较多,污染波及范围较广.5.1.4问题(1)的结果分析5.1.4.1 As这种重金属污染情况分析由该表可以看出各个区域受As的污染程度,其中一类区即是生活区31.82%无污染,63.64%轻度—中度污染,4.55%为中等污染,无强污染和及严重污染的情况;二类区即是工业区38.89%不受重金属污染,52.78%受轻度—中度污染,5.56%受中等污染,2.78%受中等—强污染;三类区即是山区大多数不受污染,只有15.15%受轻度—中度污染,1.51%受中等污染;四类区即是主干路区47.83%不受污染,50.00%受轻度—中度污染,0.72%受中等污染,1.45%受中等—强污染;五类区即是公园绿地区大多数受轻度—中度污染,25.71%不受污染,2.86%受中等污染.再结合相应的几何图形,会发现在四区存在三个很明显的污染源,在污染源附近会看到,有很多二区的样本点.有个别一区的点,说明这种元素对一区的影响相对来说轻点.所以由分析可知工业区受污染最严重,污染面积达到了61.11%,其次是生活区、主干道路区,生活区污染面积都达到了50%以上,也就是说这三个区有至少一半的土壤受到该元素的不同程度的污染.其余功能区受污染程度就次之.5.1.4.2 Cd这种重金属污染情况分析由该表可以看出各个区域受Cd的污染程度,其中一类区即是生活区29.55%无污染,54.55%轻度—中度污染,13.64%为中等污染,无强污染和及严重污染的情况;二类区即是工业区16.77%不受重金属污染,44.44%受轻度—中度污染,30.56%受中等污染,8.33%受中等—强污染;三类区即是山区大多数不受污染,只有75.76%受轻度—中度污染,21.21%受中等污染;四类区即是主干路区23.91%不受污染,44.2%受轻度—中度污染,26.09%受中等污染,5.07%受中等—强污染;五类区即是公园绿地区大多数受轻度—中度污染,48.57%不受污染,31.43%受轻度-重度污染,11.43%受中等污染,8.57%受中等-强污染.再结合相应的几何图形,会发现在四区存在三个很明显的污染源,在污染源附近会看到,有很多二区的样本点.有个别一区的点,说明这种元素对一区的影响相对来说轻点.所以由分析可知工业区受污染最严重,污染面积达到了61.11%,其次是生活区、主干道路区,生活区污染面积都达到了50%以上,也就是说这三个区有至少一半的土壤受到该元素的不同程度的污染.其余功能区受污染程度就次之.5.1 这六种重金属Cr、Cu、Hg、Ni、Pb、Zn污染情况分析由于重金属含量越多,说明该地区的重金属污染程度越严重.Cr污染最严重的有一处,该中心污染源的坐标为:(3299,6018),所在地区为主干道路区,一定程度上波及到了生活区.一区和四区存在强-及严重污染,一区波及面积达到了52.27%,四区波及面积达到了41.3%,该元素污染最严重的就是生活区.Cu污染最严重的有一处,该中心污染源的坐标为:(2427,3971),所在地区为生活区,一定程度上波及到了工业区和主干道路区.一区和四区存在及严重污染,一区污染波及范围达到了84.09%,四区污染波及范围达到了84.06%,该元素污染最严重的就是生活区和主干道路区.Hg污染最严重的有一处,中心污染源的坐标为:(3299,6018),所在地区为主干道路区,一定程度上波及到了生活区.一区和四区存在及严重污染,一区污染波及范围达到了54.55%,四区污染波及范围达到了50.74%,该元素污染最严重的就是主干道路区.Ni污染最严重的有一处,中心污染源的坐标为:(3299,6018),所在地区为主干道路区,一定程度上波及到了生活区.一区、二区和四区存在及严重污染,一区污染波及范围达到了90.91%,二区污染波及范围达到了94.44%,四区污染波及范围达到了93.48%,该元素污染最严重的就是主干道路区和生活区.Pb污染最严重的有二处,中心污染源的坐标为:(2383,3692)、(5062,4339),所在地区为生活区和主干道路区,一定程度上波及到了工业区.一区和四区存在及严重污染,一区污染波及范围达到了52.73%,四区污染波及范围达到了80.87%,该元素污染最严重的就是主干道路区.Zn污染最严重的有一处,中心污染源的坐标为:(14065,10987),所在地区为主干道路区,一定程度上波及到了工业区.四区存在及严重污染,四区污染波及范围达到了67.39%,该元素污染最严重的就是主干道路区.所以,该城区不同区域重金属污染最严重的区域是主干道路区和工业区,其次是生活区、公园绿地区、山区.5.2 问题(2)的求解:5.2.1问题(2)的分析通过问题一的分析,可粗劣的判断哪几种元素污染比较大,哪个功能区污染比较严重,但是怎么样才能具体到哪个功能区污染最严重,被污染的功能区的土壤哪种重金属污染最严重?所以,针对问题二给出的数据分析,不能简单的进行数据处理.为了使得所寻找出来的原因更有说服力,用两种方法分别进行说明和验证,还要进行综合指标评价.最后确定了最严重的污染地区以及污染最严重的相关元素,根据地区的差异性和元素的特殊性,才能说明重金属污染的主要原因.5.2.2数据的统计分析首先通过数据的处理,建立每个功能区各重金属元素的污染程度样本所占的百分比表.一功能区的相关百分比数据如下:表四:一功能区各重金属污染程度所占百分比在此功能区从总体来看,重金属污染程度处于中等-强污染,其中主要污染来自重金属元素Ni,另外在该区域有少数地方Cu污染及严重.表五: 二功能区各重金属污染程度所占百分比在该功能区重金属Hg 和重金属Ni 的污染极为严重,尤其是在该区域的某些地方.由此可见,在此功能区照成重金属污染的罪魁祸首为重金属元素Hg 和重金属元素Ni . 通过这两张表, 会发现有些地区之所以污染严重,主要是因为个别元素污染所导致的.所以 要分析重金属污染的原因,就得分析该重金属在该功能区为什么会产生污染.其它三个功能区各重金属污染程度百分比见附录三.通过该附录表 可以看到在该功能区里,重金属污染程度较轻,污染等级集中在轻度污染及以下. 再观察功能区四,重金属污染十分严重,大多数重金属污染元素都集中在在各个功能区,但是在这个功能区,Pb 污染级别比较轻,没有中度甚至以上级别的污染. 再看功能区五,从总体上分析,该地区重金属污染中等、强污染几乎没有,正因如此造成重金属污染的少数种类重金属元素就凸显出来了——Ni 元素和Hg 元素.纵观整体,分析所有的功能区, 很容易发现造成重金属污染的主要重金属元素,他们就是Ni 元素和Hg 元素.知道前面的数据分析理由不充分,只是一个粗劣的判断.为了综合前面处理的数据,准确找出各个功能区污染的主要元素. 需要利用单因子指数法和内梅罗综合污染指数法进行综合评价.5.2.3 单因子指数法和内梅罗综合污染指数法的建立与求解单因子指数法是目前国内土壤重金属的单项污染指数评价方法之一,其计算公式为:n n n βαχ=,式中n χ为重金属污染物n 的环境质量指数;n α为重金属污染物i 的实测值;n β为重金属污染物的评价标准.n χ﹥1表示污染;n χ=1或n χ﹤1表示无污染;且n χ值越大,则污染物越严重.为了更全面的反应各重金属对土壤的不同作用.突出高浓度重金属对环境质量的影响, 采用内梅罗综合污染指数法.其计算公式为:2)/(/22max n wgn n n S C S C P +=)(综,式中max )(n n βα表示重金属污染物种污染指数nn βα的最大值;(/)n n wg C S 表示重金属污染物中污染指数的平均值.土壤污染水平分级标准采用国家土壤环境二级标准.土壤污染综合污染指数分级标准为综合污染指数>3为重污染,2~3为中污染,1~2为轻污染,0.7~1为警戒级,≤ 0.7为安全级.下面为了找到每种元素在该城区的综合污染指数,借助于Matlab 循环计算.编写如下系列命令见附录七.运行程序结果为As 综合污染指数:p=4.0093,分别运行另外几种程序,得到每种重金属元素的综合评价指标,简单结果如下表:。
城市交通巡警平台的设置与调度摘要由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。
本文要解决的就是某市设置交巡警服务平台设置方案,以及如何处理在确保突发事件问题。
对于第一问,根据附件中的各点的坐标和图中所给的各标志点之间的相邻关系,我们求得任意两个相邻标志点的直线距离,根据附件中的全市交通路口的路线做出了邻接矩阵,再用Floyd算法求得任意两点间的最短距离。
在此基础上,为了确定需要增加平台的具体个数和位置,采用主成分分析法。
应用迪杰斯特拉(Dijkstra)算法进行搜索得到了该区交巡警服务平台警力合理的调度方案。
对于第二问,给出了设置交巡警服务平台的可量化的原则和任务,对现有方案进行评价然后进行优化;案发地点在A区,题目没有给出逃犯的车速,这里要处理好,怎样叫实现了围堵也是需要考虑的问题。
关键字:邻接矩阵、距离矩阵、整数线性规划、主成分分析、surfer作图一.问题的重述警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。
为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。
每个交巡警服务平台的职能和警力配备基本相同。
根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源。
就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:(1)为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。
对于重大突发事件,需要调度全区20个交巡警服务平台的警力资源,对进出该区的13条交通要道实现快速全封锁。
实际中一个平台的警力最多封锁一个路口,请给出该区交巡警服务平台警力合理的调度方案。
根据现有交巡警服务平台的工作量不均衡和有些地方出警时间过长的实际情况,拟在该区内再增加2至5个平台,请确定需要增加平台的具体个数和位置。
交巡警服务平台的设置与调度的数学模型摘要针对交巡警服务平台的设置与调度问题,本文主要考虑出警速度和各服务平台的工作量来建立合理方案。
对于A区的20个交巡警服务平台分配管辖范围的问题,我们采用Dijkstra算法,分别求得在3分钟内从服务台可以到达的路口。
根据就近原则,每个路口归它最近的服务台管辖。
对进出A区的13个交通要道进行快速全封锁,我们采用目标规划进行建模,运用MATLAB软件编程,先找出13个交通要道到20个服务台的所有路径。
然后在保证全封锁时间最短的前提下,再考虑局部区域的封锁效率,即总封锁时间最短,封锁过程中总路程最小,从而得到一个较优的封锁方案。
为解决前面问题中3分钟内交巡警不能到达的路口问题,并减少工作量大的地区的负担,这里工作量以第一小问中20个服务台覆盖的路口发案率之和以及区域内的距离的和来衡量。
对此我们计划增加四个交巡警服务台。
避免有些地方出警时间过长和服务台工作量不均衡的情况。
对全市六个区交警平台设计是否合理,主要以单位服务台所管节点数,单位服务台所覆盖面积,以及单位服务台处理案件频率这些因素进行研究分析。
以A 区的指标作为参考,来检验交警服务平台设置是否合理。
对于发生在P点的刑事案件,采用改进的深度搜索和树的生成相结合的方法,对逃亡的犯罪嫌疑人进行可能的逃逸路径搜索。
由于警方是在案发后3分钟才接到报警,因此需知道疑犯在这3分钟内可能的路线。
要想围堵嫌疑犯,服务台必须要在嫌疑犯到达某节点之前到达。
用MATLAB编程,搜索出嫌疑犯可能逃跑的路线,然后调度附近的服务台对满足条件的节点进行封锁,从而实现对疑犯的围堵。
关键词:Dijkstra算法;目标规划;搜索;一、问题重述近十年来,我国科技带动生产力不断发展,我国的经济实力不断增强,而另一方面安全生产形式却相当严峻。
每年因各类生产事故造成大量的人员伤亡、经济损失。
尤其是一些大目标点,作为人类经济、政治、文化、科技信息的中心,由于其“人口集中、建筑集中、生产集中、财富集中”的特点,一旦发生重大事故,将会引起惨重的损失。
城市表层土壤重金属污染分析摘要本文根据数值分析中的线性插值方法、内梅罗综合污染指数法、加权平均值法、主成分分析原理、因子分析原理,时间序列原理、灰色系统原理,应用Matlab、SPSS、Word、Excel等软件,对题目中的下列问题进行了研究。
在问题一中,建立两个模型,模型一利用Matlab软件运用线性插值的方法绘制出8种重金属元素在该区域的空间分布,并能分析出该城区不同金属的污染程度(见模型一求解);模型二利用内梅罗综合污染指数法求综合污染指数,并判断出各区域的污染级别(见模型二的求解)。
在问题二中,建立两个模型,模型三利用加权平均值法分别对五个区八种重金属浓度通过Excel进行处理,并且得出了重金属污染的主要原因(见模型三的求解);模型四利用SPSS里主成分分析法,计算出主要的污染成分,从另一个方面得出重金属污染的主要原因(见模型四的求解)。
在问题三中,通过分析重金属污染源的传播特征,模型五利用因子分析法,对比方法中的六个主因子进行研究分析,确定污染源的位置(见模型五的求解)。
针对问题四,分析所建模型的优缺点,为更好的研究城市地质环境的演变模式,收集同一地点不同时间的重金属污染的浓度,并利用时间序列模型(模型六)和灰色系统模型(模型七)对该城区的重金属污染情况加以预测,能有效的防治重金属的污染。
在结果的分析中,本文提出了一些积极的建议,提高了模型的适用性。
关键字:综合污染指数法;因子分析原理;主成分分析原理;灰色系统理论;时间序列理论一问题重述随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。
对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。
城市表层土壤重金属污染分析的数学模型摘要为研究城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式。
本文通过处理和分析已给数据,给出金属的空间分布说明污染程度和主要原因;建立数学模型确定污染源位置;最后收集其他信息讨论城市地质环境的演变模式。
问题一,利用matlab软件作出位置坐标x、y与八种总金属元素浓度的空间分布图;分析采集的重金属元素浓度所在区域的大致情形。
对采集的重金属元素浓度的数据进行分析,并计算单因子和多因子污染指数,根据土壤污染分级标准判断出不同重金属元素在各功能区的污染程度和各功能区的综合污染程度,其中工业区中铜是所有元素在不同功能区中污染程度最严重的,而工业区和交通区的综合污染程度是最严重的。
问题二,首先利用SAS软件对八种重金属元素在五个城区的含量进行主成分分析,得到八种重金属对各功能区的贡献率,可初步推断出工业生产、交通设施和生活垃圾造成重金属污染。
再利用SAS软件对各城区的重金属进行因子分析,进一步判断八种不同重金属污染的原因,如汞污染的原因为工业生产中三废的排放、交通运输业中汽油的燃烧和汽车轮胎磨损产生的粉尘等。
问题三,根据所给数据,分析重金属污染传播特征,即分别是介质的迁移运动、污染物的分散运动、污染物的累积与转化、污染物被环境介质吸收或吸附、污染物的沉淀,然后利用Matlab软件,采用多元纯二次二项式回归分析方法,分别得到每种重金属元素浓度与坐标的回归方程,并根据该方程利用多元函数求极值的方法确定出污染源的可能位置分别为:As(1878.2634,6003.7263,4.5846),Cd(970.5835,3946.7518,6.5891),Cr(1235.1956,2658.3427,8.5402),Cu(138.4682,6223.4521,3.2461),Hg (1231.5782,2561.5483,5.2478),Ni(12234.2587,5865.1656,23.2461),Pb (2310.68914145.2674,3.2651),Zn(3015.43418642.2365 5.0543);问题四,基于前三问,分析所建模型的优缺点。
关于企业退休职工养老金收支平衡的研究孙善朋朱敬男潘小强一、摘要中国养老保险制度经历了20多年的发展历程,已经初步取得成效,随着社会的不断改革和发展,养老保险制度出现了一些值得深入研究的问题。
通过理论和实证研究这些问题,寻求其根源和解决方法,对改革和完善养老保险制度具有重要意义。
本文问题一以附件1“2009山东省职工历年平均工资数据”为依据,采用增长阻滞模型,用非线性最小二乘法进行拟合,预测出了从2011年至2035年山东省职工的年平均工资(单位:元):40060,45510,51640,58520,66230,74830,84390,95000,106710,119570,133640,148940,165470,183230,202170,222230,243310,265270,287960,311210,334800,358530,382180,405530,428380。
问题二根据附件2“2009年山东省某企业各年龄段工资分布表”,结合问题一中所预测的结果,用Matlab、Excel等软件计算了2009年该企业各年龄段职工工资与该企业平均工资之比分别为:0.669244,0.804936,0.982526,1.066681,1.172819,1.266639,1.208533,1.155055。
多种情况下的养老金替代率分别为:30.77%,33.81%,35.25%,19.34%,26.08%,32.97%。
问题三以该企业某职工为例,以问题一中得出的山东省职工历年平均工资平均增长率为依据,采用非线性拟合,计算和预测了该职工自30岁至65岁的历年工资情况,并给出了多种情况下的养老保险基金的缺口情况,求出了当养老保险基金与其领取的养老金之间达到收支平衡时该职工的年龄。
求得养老保险基金的缺口情况如下:30岁交纳养老保险,55岁退休时,缺口为国亏685790元;30岁交纳养老保险,60岁退休时,缺口为国亏831840元;30岁交纳养老保险,65岁退休时,缺口为国亏511950元。
针对全市(主城六区A,B,C,D,E,F)的具体情况,按照设置交巡警服务平台的原则和任务。
如图所示:结合全区的地图与所给的数据,我们对A,B,C,D,E,F的具体情况分析,我们分析了发案率与六城区人口的关系,我们得到如下的关系图:同时,我们对路口节点标号与发案率分析,得到如下:分析,案发率及面积人口表,六个区域服务平台情况,六个区域服务平台情况区域服务平台个数区域面积人口数A 20 22 60B 8 103 21C 17 221 49D 9 383 73E 15 432 76F 11 274 53综合以上的数据,我们对数据进行比较,分析,我们得到标准模图,如下于是我的到现有交巡警平台设置方案不合理。
对于追捕逃犯问题,我们对案发后罪犯人去向不明,我们采用圈套式方法,利用动态进行分析,找出罪犯,交巡警及时间达到一个平衡点。
由第一题,我们可以计算出来,A区13个交通要道出口的每个封锁时间为t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12,t13,及用时最长的路口时间为T1和用时最短的路口的时间为T2。
同时,找到从P出A区最短的线路(见图P)事实上,经过计算得出,犯罪嫌疑人只有可能在两个区->节点30,大约需要1.8分钟,也就是说犯罪嫌疑人在3分钟之后已经离开A区,进入C区,所以此时我们应该考虑C区巡警台的围捕问题。
经计算可以.疑人还在A区,可供他选择也就是两个方向,第一小方面是往左边逃跑(如情况二图一),也就只有三种可能出项的情况,通过计算可以得出,巡警台15封锁28号路口,10平台封锁26路口,14平台封锁14路口即可。
另一方面是往右边逃跑(如情况二图二),通过计算得出,2,3,4号巡警台往最近的路口处进。
(图P)。
城市表层土壤重金属污染分析摘要重金属污染是破坏土壤环境的重要因素,并直接或间接的危害了人体健康。
本文主要针对城市表层土壤重金属污染问题建立了相关模型并进行了分析。
根据城市不同功能区表层土壤中金属As、Cd、Cr、Cu、Hg、Ni、Pb、Zn含量及其分布特征,基于这8种元素的背景值,采用了地统计法与潜在危害指数(RI)评价法描述了各元素的分布特征以及分析了不同区域的污染程度。
针对问题一中8种主要重金属元素在该城区的空间分布建立了地统计中等值线图模型,运用Excel,Matlab作出了各金属元素的空间分布图。
并运用了潜在危害指数(RI)评价法分析了该城区内不同区域重金属的污染程度,分别得到1类区、2类区、……、5类区共五个功能区的8种金属的潜在生态危害系数,分别为235.8677,923.8238,115.5047,657.8304,246.0529。
然后参照由于923.8238>657.8304>600,则工业区、主干道路区属于很强生态危害,并且工业区生态危害大于主干道路区;又因为150235.8677<246.0529300≤<,则第一类、第三类区即生活区、工业绿地区属于中等生态危害;又115.5047<150,则第三类区即山区属于轻微生态危害。
针对问题二中分析重金属污染的主要原因问题建立了主成分分析模型,然后对五个不同功能区分别作了主成分分析,最后得知城市的土壤重金属污染主要来自工业释放和交通排放;同时也应该看到对于城市公园绿地区和生活区,城市垃圾,市政工程等也是目前坏境污染的一个重要原因。
关键词:污染地统计法潜在危害指数(RI)评价法主成分分析一、问题重述随着工业发展和城市化进程的加剧,通过交通运输、工业排放,市政建设和大气沉降等造成城市土壤重金属的污染越来越严重,这直接或间接地威胁和危害人体健康,故研究土壤重金属污染具有十分重要的意义。
为了对某城市的表层土壤重金属污染问题进行分析,现在对该城市的城区土壤地质环境进行调查。
按照功能将该城区分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。
为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。
应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。
另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
调查的采样点的位置、海拔高度及其所属功能区,8种主要重金属元素在采样点处的浓度及其背景值等信息,具体调查结果有相应的数据(见附录9.1)。
通过数学建模我们需要解决如下四个问题:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2) 通过数据分析,说明重金属污染的主要原因。
(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?二、模型假设1、所有数据真实可靠;2、表中所有数据都具有一定的时效性;3、三、符号说明R I:潜在生态潜在危害指数iE:重金属潜在生态危害系数riT:为某种重金属的毒性影响系数riC:为单项污染系数fX i:表示的第i个指标的样本观测值矩阵P:表示特征向量X i:表示的第i个指标的样本观测值的平均值Yi: 表示第i个指标的样本观测值矩阵的标准化矩阵R i:表示的第i个指标的样本相关矩阵V i:表示的第i 个指标的特征向量矩阵 D i :表示的第i 个指标的特征值矩阵i λ:表示的第i 个指标的特征值四、问题分析问题一: 为了得到8种主要重金属元素在该城区的空间分布,先对表中数据进分析,根据附表一采样点的位置利用Matlab 作出采样点的地形图,由数据分析可知附表一和附表二中所有数据都是相对应的,则可再利用附表二中的8重金属分别进行插值。
利用也可以潜在生态潜在危害指数(RI )评价方法为瑞典科学家Hakanson 于1980年建立的一套应用沉积学原理评价重金属的方法。
为分析该城区内不同区域重金属的污染程度,则需要定量划分出潜在危害程度。
我们可以采用潜在生态潜在危害指数(RI )评价方法,利用公式:11nni i i rrfi i RI ETC====⨯∑∑以Hakanson 制定的标准化重金属系数为依据,8种重金属毒性系数分别为Hg=40>Cd=30>As=10>Pb=Cu=Ni=5>Cr=2>Zn=1.且有/i i i f n s C C C =反映特定区域的差异性,本文以附件三中8中主要金属元素的背景值中的平均值为参比值。
再根据i r E R I 和大小,参照沉积物中重金属潜在生态危害系数、生态危害指数和污染程度的关系,将土壤重金属污染的潜在生态危害程度进行分级。
根据危害程度大小就可以确定该城区内不同区域重金属的污染程度。
问题二:分析重金属污染的主要原因,首先确定了运用了主成分分析法,然后对五个不同功能区分别作了分析.。
对第一类区处理数据,输入样本观测值X1, 利用公式:111,1,2,...,10,1,2,...,51ij jij jX X Y i j S -===计算1X 的标准标准化数据阵Y1,再利用MATLAB 中R1=corrcoef (Y1)命令计算样本相关阵R1,最终用[V1,D1]=eig(R1)得到特征向量V1和特征值D1,最终根据1/jt p λ∑求出R1的八个特征值相应的累计方差贡献率,按累计方差贡献率大于90%的准则,确定j 的值。
从而确定了有几个主成分,再对主成分进行分析,最后根据重金属污染物的来源以及区域功能即可分析重金属污染的主要原因。
按照对第一类区分析的方法再分别对其余四个功能区进行分析。
问题三:分析重金属污染物的传播特征,由于重金属污染源较多,首先确立了用因子分析法求解。
根据数据分析,共设有八个样本,八个指标构成样本空间,()ij X x =⨯i=1,2,…,n;j=1,2,…,m.(1)将以上X 矩阵标准化,五、模型的建立与求解5.1问题一的求解5.1.1利用Matlab 作出采样点的地形图,可再利用附表二中的8重金属分别进行插值,最终的各金属的二维空间分布图。
(如下)-10-5055555555555101010555555555151510105555510102010510105105155515552015555205105251015105101510As 的空间分布0.511.522.5x 104020004000600080001000012000140001600018000-1001020图一:As 的空间分布图-1000-50-5005005005005005005005001000100050050050050050005001000500500500500-150050010005005001000500500Cd 的空间分布图0.51 1.522.5x 104020004000600080001000012000140001600018000-100001000图二:Cd 的空间分布图-800-800-600-600-400-400-200-200200400600200200800000.511.522.5x 104020004000600080001000012000140001600018000-1000-5000500图三:Cr 的空间分布图-1000-500-500-5050050010001500Cu 的空间分布图0.51 1.522.5x 104020004000600080001000012000140001600018000-100010002000图四:Cu 的空间分布图-200002000200020004000-2000060020004000800060004000010000001200060008000-4000140008000Hg 的空间分布图0.511.52 2.5x 104020004000600080001000012000140001600018000-500050001000015000图五:Hg 的空间分布图-10-50-50-500050501050浓度0.511.522.5x 104020004000600080001000012000140001600018000-1000100图六:Ni 的空间分布图100100100100200200100100303001001001001002003002001001040010010010030010010010100100400100500Pb 的空间分布图0.511.522.5x 1040200040006000800010000120001400016000180000200400图七:Pb 的空间分布图-15-1000-1000-500-500-5000050050050050050010000100001000500100005001500150005001000150020005002000100050050000Zn 的空间分布图0.511.522.5x 104020004000600080001000012000140001600018000-1000100020003000图七:Zn 的空间分布图5.1.2对问题一中第二问的求解首先确定采用潜在生态潜在危害指数(RI )评价方法,利用公式:nni i i rrfi i RI ETC====⨯∑∑其中/i i ifn s C CC =代入数据经计算分别得到1类区、2类区、……、5类区共五个功能区的8种金属的潜在生态危害系数,分别为235.8677,923.8238,115.5047, 657.8304,246.0529。
再根据i r E R I 和大小,参照沉积物中重金属潜在生态危害系数、生态危害指数和污染程度的关系(见表一),将土壤重金属污染的潜在生态危害程度进行分级。
表一:潜在危害生态系数(i r E )、潜在危害生态指数(R I )与污染程度的关系 指数类型所处范围 污染程度指数类型 所处范围污染程度潜在危害生态系数 40ir E <轻微生态危害潜在生态危害指数 150RI < 轻微生态危害(i r E ) ir E ≤<中等生态危害(R I )150300R I ≤< 中等生态危害80160ir E ≤<强生态危害300600R I ≤< 强生态危害160320ir E ≤<很强生态危害600R I ≥ 很强生态危害320ir E ≥极强生态危害由于923.8238>657.8304>600,则第二类、第四类区即工业区、主干道路区属于很强生态危害,并且工业区生态危害大于主干道路区;又因为150235.8677<246.0529300≤<,则第一类、第三类区即生活区、工业绿地区属于中等生态危害;又115.5047<150,则第三类区即山区属于轻微生态危害。