2016年全国数学建模竞赛论文
- 格式:pdf
- 大小:1.17 MB
- 文档页数:28
小区开放对道路通行的影响评价模型摘要本文针对小区开放对道路的影响进行了研究,建立了层次分析模型、通行能力评价模型,使用了MATLAB、EXCEL等软件,得出小区开放在不同条件下会对道路交通产生不同的影响。
首先运用层次分析法,分析得出整体一般情况下小区开放有利于周边道路交通的结论。
之后构建了不同类型的小区,并分析得出小区开放的效果与小区结构及周边道路结构、车流量有关,因此小区开放不能盲目采取,要因地制宜。
最后根据分析结果,从交通通行的角度,向城市规划和交通管理部门提出了关于小区开放的合理化建议。
本文的突出特点是使用了层次分析法定量的比较了小区开放前后道路合理性,构建了对于研究该问题具有代表性的三种类型的小区,并建立了影响评估模型,客观的对不同小区结构及周边道路结构、车辆通行的影响进行评价。
针对问题一,首先查阅相关资料选取影响道路通行的指标,并对选取的指标进行筛选,然后运用各项指标进行层次分析,通过小区开放和小区封闭对道路交通和理性的判断来分析小区开放对道路通行的影响最后得出从整体看来,小区开放有利于道路通行。
针对问题二,通过查阅有关道路通行能力的相关资料建立了通行能力评价模型,首先根据模型求出道路基本通行能力的表达式,基本通行能力是理想状态下的通行能力,与实际情况分析对比存在差异。
因此基于差异,通过各实际因素对道路通行能力的影响进行修正,得到实际道路通行能力的数据。
最终计算出小区开放前后实际通行能力的相对系数。
针对问题三,构建了三种类型的小区,不同类型的小区具有不同的结构及不同的周边道路结构、车流量,应用问题二建立的模型分别对三种小区开放和封闭条件下周边道路的实际通行能力进行了计算,通过相对系数评价不同类型的小区开放对道路通行的影响,分析得出小区开放与地理位置、内部结构等因素有关,不能一概而论。
针对问题四,结合前述模型结果分析结果,从交通出行角度对城市规划部门和交通管理部门提出了合理化意见。
小区开放要合理的实施以体现小区开放的意义。
2016年数学建模竞赛A题优秀论文基于力学分析的系泊系统设计摘要关于系泊系统的设计问题,需要对稳态下的各个物体进行受力分析和力矩分析,建立力学分析模型来求解问题。
针对问题1,先对稳态下的各个物体进行受力分析和力矩分析,建立满足受力平衡和力矩平衡的力学模型。
再以浮标的吃水深度为搜索变量,采用二分法,计算海水深度为18m时所对应的吃水深度和各物体的倾角。
利用MATLAB软件求解可得,风速为12m/s时,钢桶与竖直方向的夹角为1.2319°,钢管与竖直方向的夹角依次为1.2064°,1.2064°,1.2148°,1.2233°。
浮标的吃水深度和游动半径分别为0.6715m,14.6552m。
风速为24m/s时,钢桶夹角为4.6763°,钢管夹角依次为4.5360°,4.5836°,4.6141°,4.6450°;浮标的吃水深度和游动半径分别为0.6857m,17.7614m。
针对问题2,可利用问题1中建立的数学模型,利用MATLAB进行求解,可得风速为36m/s时,钢桶夹角9.6592°;钢管夹角依次为9.4814°,9.4814°,9.5399°,9.5992°;浮标的吃水深度和游动半径分别为0.7086m,18.4906m;最后一节锚链与水平面的夹角为20.9997°故以钢桶夹角小于5°和锚链夹角小于16°为约束条件,逐步增加重物球的质量,采用二分法向水深18m进行逼近。
当重物球的质量为2280kg时,浮标的吃水深度为0.9848m;钢桶夹角为4.4737°;锚链夹角为15.9748°;为使通讯设备的工作效果增强,重物球的质量可以在2280kg的基础上进行适当增加。
针对问题3,可在问题1的受力分析时加入水流力的作用,以最大风速36m/s,最大水流速度1.5m/s为设计指标,通过控制单一变量的方式可确定链条的型号为Ⅴ型的电焊锚链。
小区开放对道路通行影响评价模型摘要本文主要研究了封闭式小区开放对其周围路段交通通行影响的问题,针对不同方面产生的影响建立了相应评价指标,使用VISSIM仿真、MATLAB软件计算,得出了不同条件下小区开放对周围道路交通的定量影响。
针对问题一,本文采用主成分分析方法,选取路段情况、路网情况、交通便捷性和网络脆弱性四个评价机制下的12个评价指标作为小区开放对周围道路影响的分析因子。
基于北京10个小区的抽样调查,用MATLAB进行计算分析,通过其贡献率高低的排序筛选出综合评价的标准,即得到完整的评价指标体系。
针对问题二,本文选取整体评价机制中评价交通流量优劣的出行时间总和评价模型,来对比研究小区开放前后对于车辆通行的影响。
本文又选择了长沙一小区的开放前附近交通量数据,并按照其内部改造规划和网络流分配原理用VISSIM仿真出了开放后交通量的数据,使用出行时间总和评价模型比较前后总的车行时间和,得出该小区的开放改建是有利于提高周边道路通行速度的。
针对问题三,本文将小区结构、周边道路结构和车流量分别抽象为小区开放不同数量的出入口、小区位于节点度不同的路网和具备不同复杂程度的内部结构三个参数,并赋予它们相互关联的数值。
利用VISSIM仿真软件在控制变量的基础上进行数据分析,并使用节点度方差指标评价仿真的结果。
将不同小区开放后内外整体网络脆弱性高低的指标作为对道路通行影响的评价机制,得出以下结论:小区结构对周围交通的影响依赖于道路结构;小区周围道路的结构越简单,对小区开放后周围交通运行更有利;车流量越小对小区开放后的周围交通越有利,且一定阈值内交通性能提升与开放程度正相关。
本文所建立的各模型之间联系紧密,且理论性强,涵盖面广,能体现真实情况,也保证了一定的可靠性。
对城市道路的评价及交通出行研究都具有一定的参考价值。
关键词:封闭小区开放主成分分析网络流节点度方差交通仿真1.问题的简述1.1题目所给的信息封闭住宅小区的逐步开放,对交通情况的改善能力如何,成为当今的热点话题之一。
小区开放对道路通行的影响评价模型摘要本文针对小区开放对道路的影响进行了研究,建立了层次分析模型、通行能力评价模型,使用了MATLAB、EXCEL等软件,得出小区开放在不同条件下会对道路交通产生不同的影响。
首先运用层次分析法,分析得出整体一般情况下小区开放有利于周边道路交通的结论。
之后构建了不同类型的小区,并分析得出小区开放的效果与小区结构及周边道路结构、车流量有关,因此小区开放不能盲目采取,要因地制宜。
最后根据分析结果,从交通通行的角度,向城市规划和交通管理部门提出了关于小区开放的合理化建议。
本文的突出特点是使用了层次分析法定量的比较了小区开放前后道路合理性,构建了对于研究该问题具有代表性的三种类型的小区,并建立了影响评估模型,客观的对不同小区结构及周边道路结构、车辆通行的影响进行评价。
针对问题一,首先查阅相关资料选取影响道路通行的指标,并对选取的指标进行筛选,然后运用各项指标进行层次分析,通过小区开放和小区封闭对道路交通和理性的判断来分析小区开放对道路通行的影响最后得出从整体看来,小区开放有利于道路通行。
针对问题二,通过查阅有关道路通行能力的相关资料建立了通行能力评价模型,首先根据模型求出道路基本通行能力的表达式,基本通行能力是理想状态下的通行能力,与实际情况分析对比存在差异。
因此基于差异,通过各实际因素对道路通行能力的影响进行修正,得到实际道路通行能力的数据。
最终计算出小区开放前后实际通行能力的相对系数。
针对问题三,构建了三种类型的小区,不同类型的小区具有不同的结构及不同的周边道路结构、车流量,应用问题二建立的模型分别对三种小区开放和封闭条件下周边道路的实际通行能力进行了计算,通过相对系数评价不同类型的小区开放对道路通行的影响,分析得出小区开放与地理位置、内部结构等因素有关,不能一概而论。
针对问题四,结合前述模型结果分析结果,从交通出行角度对城市规划部门和交通管理部门提出了合理化意见。
小区开放要合理的实施以体现小区开放的意义。
系泊系统的设计摘要本文为系泊系统的设计问题,根据题目要求建立了数学模型,计算出系泊系统在不同条件下的具体参数,并利用模型对系泊系统进行优化分析,使其能运用到更广的领域。
针对问题一,首先分析了锚链的形状,利用微积分原理求出锚链的静态方程,用Matlab 画出锚链形状,得出锚链的形状所符合悬链线方程。
然后把钢管、钢桶看成一个整体,并忽略钢管和钢桶倾斜引起的锚链上端高度的变化,分析出锚链的长度和锚链末端与海平面的夹角对吃水深度的影响,又对钢桶、钢管和浮标进行了受力和力矩分析。
最后建立了数学模型,计算出风速为12m/s 和24m/s 时,钢桶和各节钢管的倾斜角度(见表2),浮标吃水深度分别为0.737m 、0.752m ,浮标的浮动区域(此浮动区域是以锚为圆心的圆)面积分别为、,锚链的形状如图(5-11)、(5-12)所示。
针对问题二,由问题一中建立的系泊系统的模型,计算风速为36m/s 时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。
得到了钢桶和各节钢管的倾斜角度如(表3),浮标吃水深度:0.787m ,以及游动区域面积:1229.39m 。
由于重物球的质量变化影响锚点与海床的夹角,可以通过调节重物球的质量控制锚点与海床的夹角。
分析得出当锚点与海床的夹角处于临界点(即16度)时,重物球的最小质量为1756.8kg ;当浮标刚好没入水中时,重物球的最大质量为5335.8kg 。
针对问题三,以钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域为目标函数,分析动态优化问题。
与问题一、二不同的是:此问题给定了水深、海水速度、风速的取值范围,属于模型动态变化问题。
所以对模型进行了动态分析,求得钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域的取值范围,进而分析水深、海水速度、风速对结果的影响,这有利于系泊系统的调整和应用。
本文所建立的模型对相关问题在理论上作了证明,虽然对部分模型进行了简化,但是实用性很强,而且易于推广,能够扩展到其他系泊系统。