新课标-最新华东师大版九年级数学上学期第一次月考检测题及答案解析-精编试题
- 格式:docx
- 大小:960.79 KB
- 文档页数:35
2024-2025学年九年级数学上学期第一次月考卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教版九年级上册21.1-22.1。
6.难度系数:0.8。
第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则x2﹣x=()A.﹣2B.6或﹣2C.6D.32.方程中x(x﹣1)=0的根是()A.x1=0,x2=﹣1B.x1=0,x2=1C.x1=x2=0D.x1=x2=13.一次函数y=ax+b与二次函数y=ax2+bx在同一坐标系中的图象大致为()A.B.C.D.4.若关于x的一元二次方程kx2﹣2x+3=0有两个实数根,则k的取值范围是()A.B.C.且k≠0D.5.若方程x 2﹣4x ﹣2=0的两根为x 1,x 2,则+的值为()A .2B .﹣2C .D .6.俗语有云:“一天不练手脚慢,两天不练丢一半,三天不练门外汉,四天不练瞪眼看.”其意思是知识和技艺在学习后,如果不及时复习,那么学习过的东西就会被遗忘.假设每天“遗忘”的百分比是一样的,根据“两天不练丢一半”,则每天“遗忘”的百分比约为(参考数据:)()A .20.3%B .25.2%C .29.3%D .50%7.下列有关函数y =(x ﹣1)2+2的说法不正确的是()A .开口向上B .对称轴是直线x =1C .顶点坐标是(﹣1,2)D .函数图象中,当x <0时,y 随x 增大而减小8.若x =2是方程x 2﹣x +c =0的一个根,则c 的值为()A .1B .﹣1C .2D .﹣29.二次函数y =a (x ﹣t )2+3,当x >1时,y 随x 的增大而减小,则实数a 和t 满足()A .a >0,t ≤1B .a <0,t ≤1C .a >0,t ≥1D .a <0,t ≥110.在解一元二次方程时,小马同学粗心地将x 2项的系数与常数项对换了,使得方程也变了.他正确地解2,另一根等于原方程的一个根.则原方程两根的平方和是()A .B .C .D .第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。
华东师大版九年级数学上册第一次月考试卷【参考答案】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的相反数是( )A .13-B .13C .3-D .32.若实数m 、n 满足 02m -,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .63.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .()3,6--B .()3,0-C .()3,5--D .()3,1--4.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 6.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A .B .C .D .8.如图,A ,B 是反比例函数y=4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .19.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .2B .14C .13D .2 10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A.485B.325C.245D.125二、填空题(本大题共6小题,每小题3分,共18分)1.计算:02(3)π-+-=_____________.2.分解因式:33a b ab-=___________.3.已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k的取值范围是__________.4.如图1是一个由1~28的连续整数排成的“数阵”.如图2,用2×2的方框围住了其中的四个数,如果围住的这四个数中的某三个数的和是27,那么这三个数是a,b,c,d中的__________.5.如图,AB为△ADC的外接圆⊙O的直径,若∠BAD=50°,则∠ACD=_____°.6.如图是一张矩形纸片,点E在AB边上,把BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=_____,BE=__________.三、解答题(本大题共6小题,共72分)1.(1)解方程:31122xx x--=-+(2)解不等式组:()3241213x xxx⎧--<⎪⎨+≥-⎪⎩2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =-.3.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B(1)求证:△ADF ∽△DEC ;(2)若AB=8,AD=63,AF=43,求AE 的长.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G .(1)证明:ADG DCE ∆∆≌;(2)连接BF ,证明:AB FB =.485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、B4、C5、B6、A7、B8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、32、ab (a+b )(a ﹣b ).3、k <44、a ,b ,d 或a ,c ,d5、406、 1三、解答题(本大题共6小题,共72分)1、(1)x =0;(2)1<x ≤42、22m m-+ 1. 3、(1)略(2)64、(1)略;(2)略.5、(1)50、30%.(2)补图见解析;(3)35. 6、(1)A ,B 两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A 种书包有1个,B 种书包有个,样品中A 种书包有2个,B 种书包有2个.。
九年级第一次月考试卷一选择题(每小题3分,共24分)1.如果a 为任意实数, 下列各式中一定有意义的是( )A.2.下列式子中,属于最简二次根式的是( )A 3. 下列方程是关于x 的一元二次方程的是( );A .02=++c bx axB .2112=+x xC .1222-=+x x xD .)1(2)1(32+=+x x4. 下列二次根式中与是同类二次根式的是( )A .5. .若关于x 的一元二次方程为ax 2+bx+5=0(a ≠0)的解是x=1,则2013﹣a ﹣b 的值是( )A . 2018B . 2008C . 2014D . 20126下列四条线段为成比例线段的是( )A 7,4,5,10====d c b aB 2,6,3,1====d c b aC 3,4,5,8====d c b aD 6,3,3,9====d c b a7. 兰州某广场准备修建一个面积为200平方米的矩形草坪,它的长比宽多10米,设草坪的宽为x 米,则可列方程为( )A. x(x-10)=200B. 2x+2(x-10)=200C. 2x+2(x+10)=200D. x(x+10)=2008. 如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x ,那么x 的值( )A .只有1个B .可以有2个C .可以有3个D .有无数个二填空(每小题3分,共18分)9.要使二次根式x 满足的条件是10. 若方程mx 2+3x -4=3x 2是关于x 的一元二次方程,则m 的取值范围是11. 若35=b a ,则__________=-bb a12. 用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程是 13.若=-<==b a ab b a 则且,0,2,32 .14. 如图,边长为1的菱形ABCD 中,∠DAB=60°.连结对角线AC ,以AC 为边作第二个菱形ACEF ,使∠FAC=60°.连结AE ,再以AE 为边作第三个菱形AEGH 使∠HAE=60°…按此规律所作的第n 个菱形的边长是三解答题(本大题共10小题,78分)15. (6分)计算 12327316. (614831224217. (6分)解方程:20152=+-x x18. (6分)解方程2(1)4x x +=19. (7分)已知菱形的周长是12cm ,一条对角线长是2cm ,求另一条对角线的长 20. (7分)在△ABC 中,AD AE DB EC=,AB=8,AE=4,EC=2,求AD 的长。
华师大版九年级上册数学第一次月考试题一、选择题。
(每小题只有一个正确答案)1.0y ≤0,0)a b << 中,是二次根式的有( )A .3个B .4个C .5个D .6个2.下列各式化简后的结果为 的是( )A B C D3.下列计算:==;③-=有( )A .0个B .1个C .2个D .3个 4.一元二次方程2412x x -=的根是( )A .122,6x x ==-B .122,6x x =-=C .122,6x x =-=-D .122,6x x == 5.关于x 的一元二次方程2(1)210m x x ---=有两个实数根,则实数m 的取值范围是( )A .m ≥0B .m >0C .m ≥0且m ≠1D .m >0且m ≠1 6.新能源汽车节能、环保,越来越受消费者喜爱,各种品牌相继投放市场,我国新能源汽车近几年销量全球第一,2016年销量为50.7万辆,销量逐年增加,到2018年销量为125.6万辆.设年平均增长率为x ,可列方程为( )A .50.7(1+x )2=125.6B .125.6(1﹣x )2=50.7C .50.7(1+2x )=125.6D .50.7(1+x 2)=125.67a 的最大整数值为( )A .1B .7C .8D .98.计算 )A .B .5C .5D .9.定义运算:a ★b=a(1-b).若a ,b 是方程21+m=0(m<0)4x x -的两根,则b ★b-a ★a 的值为( )A .0B .1C .2D .与m 有关10.设a b 21b a-的值为( )A 1B 1-C 1D 1二、填空题11.已知关于x 的方程x 2+3x ﹣m=0的一个解为﹣3,则它的另一个解是_____.12.实数a ,b 在数轴上对应点的位置如图所示,化简a _________________13.当1x =时,代数式223x x ++的值为_______________14.已知关于x 的一元二次方程240x x m -+=的实数根x 1,x 2满足121232x x x x -->则m 的取值范围是_______________15.某农户用5 米长的围栏围出一块如图所示的长方形土地(墙面是长方形土地的长),已知该长方形土地的宽为2米,则该长方形土地的周长为________.16.当x =4______.17.x 的取值范围是______.三、解答题18.计算或解方程(1)2(31)+--(2)(3)2370x x -=(4)21240x x --=19.已知:a 、b 、c 是△ABC 的三边长,20.已知,x y ==分别求下列代数式的值: (1)22x y + (2)y x x y+21.关于x 的一元二次方程230x x k -+=有实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程()2130m x x m -++-=与方程230x x k -+=有一个相同的根,求此时m 的值.22.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同. (1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.23.化简:(10== ,= .= .;(2=0= ,= ,= ;(3)根据以上信息,观察a b 、所在位置,完成化简24.在一次展销会期间,某公司展销如图所示的长方形工艺品,该工艺品长60cm ,宽40cm ,中间镶有宽度相同的三条丝绸花边(1)若丝绸花边的面积为650cm 2,求丝绸花边的宽度;(2)已知该工艺品的成本是40元/件,如果以单价100元/件销售,那么每天可售出200件,另每天除工艺品的成本外所需支付的各种费用是2000元,根据销售经验,如果将销售单价降低1元,每天可多售出20件,请问该公司每天所获利润能否达到22500元,如果能,应该把销售单价定为多少元?如果不能,请说明理由25.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一式子的平方,如24(1+=+,然后小明以进行了以下探索:设2(a m +=+(其中a ,b ,m ,n 均为整数),则有2232a m n +=++,所以223a m n =+,2b mn =,这样小明找到了一种类似a + 请仿照小明的方法探索解决下列问题:(1)当a ,b ,m ,n 均为整数时,若2(a m +=+,则a=_____,b=_______;(2)请找一组正整数,填空:(____+______)2;(3)若2(a m +=+,且a ,m ,n 均为正整数,求a 的值.参考答案1.B2.C3.B4.B5.C6.A7.B8.A9.A10.B11.012.2a b -+13.714.24m <≤15.米16.017.x≤1018.(1)(2)4;(3)1270,3x x ==;(4)1266x x =+=-19.3a+b ﹣c .20.(1)6;(2)621.(1)94k≤;(2)m的值为32.22.(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.23.(1)2、2、|a|;(2)3、-3、a;(3)-3a.24.(1)5cm;(2)75元25.(1)225m n+,2mn;(2)(答案不唯一);(3)9或21.。
华东师大版九年级数学上册第一次月考考试及答案【精选】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( )A .﹣2B .﹣4C .2D .4 3.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 4.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根6.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫--+= ⎪⎝⎭____________. 2.分解因式:33a b ab -=___________.3.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式m ²-m+2019的值为__________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D,且OD=4,△ABC的面积是__________.5.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是__________.6.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:33122 xx x-+=--2.先化简,再求值:2443(1)11m mmm m-+÷----,其中22m=-.3.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF (1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.4.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、C5、A6、A7、D8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、ab (a+b )(a ﹣b ).3、20204、425、x=26、2.5×10-6三、解答题(本大题共6小题,共72分)1、4x =2、22m m-+ 1. 3、(1)略;(2)S 平行四边形ABCD =244、(1)DE 与⊙O 相切,理由略;(2)阴影部分的面积为25、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)36、(1)A ,B 两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A 种书包有1个,B 种书包有个,样品中A 种书包有2个,B 种书包有2个.。
华东师大版九年级数学上册第一次月考测试卷【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15 C .﹣5 D .52.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( )A .﹣2B .﹣4C .2D .4 3.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 4.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根6.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,已知某广场菱形花坛ABCD 的周长是24米,∠BAD =60°,则花坛对角线AC 的长等于( )A .63米B .6米C .33米D .3米10.已知0ab <,一次函数y ax b =-与反比例函数a y x =在同一直角坐标系中的图象可能( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算:02(3)π-+-=_____________.2.因式分解:a 3-ab 2=____________.3.已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是__________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.如图抛物线y=x 2+2x ﹣3与x 轴交于A ,B 两点,与y 轴交于点C ,点P 是抛物线对称轴上任意一点,若点D 、E 、F 分别是BC 、BP 、PC 的中点,连接DE ,DF ,则DE+DF 的最小值为__________.三、解答题(本大题共6小题,共72分)1.解方程:12133x x x-+=--2.关于x 的一元二次方程2223()0m x mx m +++=-有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.3.如图,在▱ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,且BE=DF(1)求证:▱ABCD 是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.4.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G=;(1)求证:EF BC(2)若65∠=︒,求FGC∠的度数.∠=︒,28ACBABC5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、C5、A6、A7、D8、D9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、32、a (a+b )(a ﹣b )3、k <44、425、40°6、2三、解答题(本大题共6小题,共72分)1、1x =2、(1)6m <且2m ≠;(2)12x =-,243x =- 3、(1)略;(2)S 平行四边形ABCD =244、(1)略;(2)78°.5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m 的运动员能进入复赛.6、(1)A ,B 两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A 种书包有1个,B 种书包有个,样品中A 种书包有2个,B 种书包有2个.。
华东师大版九年级数学上册第一次月考测试卷【参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是( )A .2B .12C .﹣2D .12- 2.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( )A .﹣2B .﹣4C .2D .43.如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-14.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.下列说法正确的是( )A .负数没有倒数B .﹣1的倒数是﹣1C .任何有理数都有倒数D .正数的倒数比自身小6.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <17.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°8.如图,A ,B 是反比例函数y=4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .19.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .24B .14C .13D .2310.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算618136的结果是_____________. 2.分解因式:244m m ++=___________.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.在Rt ABC ∆中,90C =∠,AD 平分CAB ∠,BE 平分ABC ∠,AD BE 、相交于点F ,且4,2AF EF ==,则AC =__________.5.如图,点A ,B 是反比例函数y=k x(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA ,BC ,已知点C (2,0),BD=2,S △BCD =3,则S △AOC =__________. 6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:21124x x x -=--2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.4.如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.5.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、C5、B6、B7、D8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)12、()22m+3、0或14、55、5.6、 1三、解答题(本大题共6小题,共72分)1、32x=-.2、3 x3、详略.4、(1)2(2)略5、(1)50;(2)72°;(3)补全条形统计图见解析;(4)640;(5)抽取的2名学生恰好来自同一个班级的概率为13.6、(1)A,B两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A种书包有1个,B种书包有个,样品中A种书包有2个,B种书包有2个.。
华东师大版九年级数学上册第一次月考测试卷及答案【精选】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .33.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .()3,6--B .()3,0-C .()3,5--D .()3,1--4.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5.下列说法正确的是( )A .负数没有倒数B .﹣1的倒数是﹣1C .任何有理数都有倒数D .正数的倒数比自身小6.不等式组26,x x x m -+<-⎧⎨>⎩的解集是4x >,那么m 的取值范围( ) A .4m ≤ B .4m ≥ C .4m < D .4m =7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)142.因式分解:a 3-a =_____________.3.函数132y xx=--+中自变量x的取值范围是__________.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是__________.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解方程:113 22xx x-=---2.先化简,再求值:2443(1)11m mmm m-+÷----,其中22m=-.3.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF (1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.4.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣14<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、C5、B6、A7、B8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、a (a -1)(a + 1)3、23x -<≤4、10.5、40°6、49三、解答题(本大题共6小题,共72分)1、无解2、22m m-+ 1. 3、(1)略;(2)S 平行四边形ABCD =244、(1)(m ,2m ﹣5);(2)S △ABC =﹣82a a +;(3)m 的值为72或.5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m 的运动员能进入复赛.6、(1)4元或6元;(2)九折.。
华东师大版九年级数学上册第一次月考考试及答案【新版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<2.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣53.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ).A .0个B .1个C .2个D .1个或2个5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左视图改变D .主视图改变,左视图不变7.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°8.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245 D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算(6-18)×13+26的结果是_____________. 2.分解因式:244m m ++=___________.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =__________度.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:12133x x x-+=--2.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根12,x x .(1)求实数k 的取值范围.(2)若方程两实根12,x x 满足|x 1|+|x 2|=x 1·x 2,求k 的值.3.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.4.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.5.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?6.去年在我县创建“国家文明县城”行动中,某社区计划将面积为23600m的一块空地进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.8倍,如果两队各自独立完成面积为2450m区域的绿化时,甲队比乙队少用4天.甲队每天绿化费用是1.05万元,乙队每天绿化费用为0.5万元.(1)求甲、乙两工程队每天各能完成多少面积(单位:2m)的绿化;(2)由于场地原因,两个工程队不能同时进场绿化施工,现在先由甲工程队绿化若干天,剩下的绿化工程由乙工程队完成,要求总工期不超过48天,问应如何安排甲、乙两个工程队的绿化天数才能使总绿化费用最少,最少费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、D4、D5、B6、D7、D8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)12、()22m +3、24、805、x=26、2.5×10-6 三、解答题(本大题共6小题,共72分)1、1x =2、(1)k ﹥34;(2)k=2. 3、(1)y=x 2-4x+3.(2)当m=52时,四边形AOPE 面积最大,最大值为758.(3)P 点的坐标为 :P 1P 2352,),P 3),P 4(52-.4、(1)略;(2)AC 的长为5. 5、(1)50;(2)72°;(3)补全条形统计图见解析;(4)640;(5)抽取的2名学生恰好来自同一个班级的概率为13.6、(1)甲、乙两工程队每天各完成绿化的面积分别是90m2、50m2;(2)甲队先做30天,乙队再做18天,总绿化费用最少,最少费用是40.5万元.。
最新华东师大版九年级上学期第一次月考数学试卷一、选择题(每小题3分,共36分)1.△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是( ) A.bcosB=c B.csinA=a C.atanA=b D.2.下列说法正确的是( )A.所有的矩形都是相似形B.有一个角等于100°的两个等腰三角形相似C.对应角相等的两个多边形相似D.对应边成比例的两个多边形相似3.如图,在△ABC中,D是边AC上一点,连接BD,给出下列条件:①∠ABD=∠ACB;②AB2=AD•AC;③∠A=∠ABD;④AB•BC=AC•BD.其中单独能够判定△ABD∽△ACB的个数是( )A.1个B.2个C.3个D.4个4.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于( )A.1:3 B.2:3 C.:2 D.:35.如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为( )A.B. C. D.6.等腰三角形底边与底边上的高的比是2:,则顶角为( )A.60°B.90°C.120°D.150°7.数学活动课上,小敏、小颖分别画了△ABC和△DEF,尺寸如图.如果两个三角形的面积分别记作S△ABC、S△DEF,那么它们的大小关系是( )A.S△ABC >S△DEFB.S△ABC<S△DEFC.S△ABC=S△DEFD.不能确定8.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB于点E,则tan∠BDE的值等于( )A.B.C.D.9.湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线.某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB底部50米的C处,测得桥塔顶部A的仰角为41.5°(如图).已知测量仪器CD的高度为1米,则桥塔AB的高度约为( )(参考数据:sin41.5°≈0.663,cos41.5°≈0.749,tan41.5°≈0.885)A.34米 B.38米 C.45米 D.50米10.如图:AB⊥CD,CD为⊙O直径,且AB=20,CE=4,那么⊙O的半径是( )A.B.14 C.D.1511.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6.现在Rt△ABC内叠放边长为1的小正方形纸片,第一层小纸片的一条边都在AB上,首尾两个正方形各有一个顶点D,E分别在AC,BC上,依次这样叠放上去,则最多能叠放多少?( )A.16个 B.13个 C.14个 D.15个12.平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,正方形A2013B2013C2013C2012的面积为( )A.B.C.D.二、填空题(每小题3分,共15分)13.如图,已知A (4,2),B(2,﹣2),以点O为位似中心,按位似比1:2把△ABO缩小,则点A的对应点A′的坐标为__________.14.在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=__________.15.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE=__________.16.如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30°,则坝底AD=__________.17.如图,在△ABC中,∠BAC=60°,∠ABC=90°,直线l1∥l2∥l3,l1与l2之间距离是1,l2与l3之间距离是2,且l1,l2,l3分别经过点A,B,C,则边AC的长为__________.三、解答题(18题5分,23,24题12分,其余题10分,共69分)18.计算:|﹣5|+2cos30°+()﹣1+(9﹣)0+.19.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点坐标;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标;(3)如果点D(a,b)在线段AB上,请直接写出经过(2)的变化后点D的对应点D2的坐标.20.如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=,AD=4.(1)求BC的长;(2)求tan∠DAE的值.21.如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=4.求DE的长.22.如图,我校九年级某班数学课外活动小组利用周末开展课外实践活动,他们要在佳山公路上测量“佳山”高AB.于是他们采用了下面的方法:在佳山公路上选择了两个观察点C、D(C、D、B在一条直线上),从C处测得山顶A的仰角为30°,在D处测得山顶A的仰角为45°,已知测角仪的高CE与DF的高为1.5m,量得CD=450m.请你帮助他们计算出佳山高AB.(精确到1m,,)23.已知:如图,⊙O的弦AB长为8,延长AB至C,使BC=AB,tanC=.求:(1)⊙O的半径;(2)点C到直线AO的距离.24.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC 不动,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动(E不与B、C重合),且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由.月考数学试卷一、选择题(每小题3分,共36分)1.△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是( ) A.bcosB=c B.csinA=a C.atanA=b D.【考点】锐角三角函数的定义;勾股定理的逆定理.【分析】由于a2+b2=c2,根据勾股定理的逆定理得到△ABC是直角三角形,且∠C=90°,再根据锐角三角函数的定义即可得到正确选项.【解答】解:∵a2+b2=c2,∴△ABC是直角三角形,且∠C=90°,∴sinA=,即csinA=a,∴B选项正确.故选B.【点评】本题考查了锐角三角函数的定义和勾股定理的逆定理.2.下列说法正确的是( )A.所有的矩形都是相似形B.有一个角等于100°的两个等腰三角形相似C.对应角相等的两个多边形相似D.对应边成比例的两个多边形相似【考点】相似图形.【分析】利用相似图形的判定方法分别判断得出即可.【解答】解:A、所有的矩形都是相似形,对应边的比值不一定相等,故此选项错误;B、有一个角等于100°的两个等腰三角形相似,此角度一定是顶角,即可得出两三角形相似,故此选项正确;C、对应角相等的两个多边形相似,对应边的比值不一定相等,故此选项错误;D、对应边成比例的两个多边形相似,对应角不一定相等,故此选项错误;故选:B.【点评】此题主要考查了相似图形的判定,熟练应用判定方法是解题关键.3.如图,在△ABC中,D是边AC上一点,连接BD,给出下列条件:①∠ABD=∠ACB;②AB2=AD•AC;③∠A=∠ABD;④AB•BC=AC•BD.其中单独能够判定△ABD∽△ACB的个数是( )A.1个B.2个C.3个D.4个【考点】相似三角形的判定.【分析】由图可知△ABD与△ACB中∠A为公共角,所以只要再找一组角相等,或夹∠A的两边对应成比例即可解答.【解答】解:①∵∠ABD=∠ACB,∠A=∠A,∴△ABD∽△ACB;②∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB;③∠A=∠ABD,不能判定△ABD∽△ACB;④∵AB•BC=AC•BD,∴=,∠A=∠A,△ABC与△ADB不相似;故选:B.【点评】本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.4.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于( )A.1:3 B.2:3 C.:2 D.:3【考点】相似三角形的判定与性质;等边三角形的判定与性质.【分析】首先根据题意求得:∠DFE=∠FED=∠EDF=60°,即可证得△DEF是正三角形,又由直角三角形中,30°所对的直角边是斜边的一半,得到边的关系,即可求得DF:AB=1:,又由相似三角形的面积比等于相似比的平方,即可求得结果.【解答】解:∵△ABC是正三角形,∴∠B=∠C=∠A=60°,∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠AFE=∠CED=∠BDF=90°,∴∠BFD=∠CDE=∠AEF=30°,∴∠DFE=∠FED=∠EDF=60°,=,∴△DEF是正三角形,∴BD:DF=1:①,BD:AB=1:3②,△DEF∽△ABC,①÷②,=,∴DF:AB=1:,∴△DEF的面积与△ABC的面积之比等于1:3.故选:A.【点评】此题考查了相似三角形的判定与性质,以及直角三角形的性质.此题难度不是很大,解题时要注意仔细识图.5.如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为( )A.B. C. D.【考点】锐角三角函数的定义;三角形的面积;勾股定理.【分析】利用图形构造直角三角形,进而利用sinA=求出即可.【解答】解:如图所示:延长AC交网格于点E,连接BE,∵AE=2,BE=,AB=5,∴AE2+BE2=AB2,∴△ABE是直角三角形,∴sinA==,故选:A.【点评】此题主要考查了锐角三角函数关系以及勾股定理逆定理等知识,得出sinA=是解题关键.6.等腰三角形底边与底边上的高的比是2:,则顶角为( )A.60°B.90°C.120°D.150°【考点】解直角三角形.【分析】由题意在等腰三角形中,底边上的高与底边上的中线重合,还与顶角的平分线重合,根据已知可以推出底边上的高与底边的一半之比为,且等于顶角一半的余切,所以顶角的一半为30°,由此即可得到顶角为60°.【解答】解:如图,在△ABC中,AB=AC,AD⊥CB于D,依题意得CD:AD=1:=:3,而tan∠DAC=CD:AD,∴tan∠DAC=:3,∴∠DAC=30°,∴顶角∠BAC=60°.【点评】本题利用了等腰三角形的性质和锐角三角函数的概念解决问题.7.数学活动课上,小敏、小颖分别画了△ABC和△DEF,尺寸如图.如果两个三角形的面积分别记作S△ABC、S△DEF,那么它们的大小关系是( )A.S△ABC >S△DEFB.S△ABC<S△DEFC.S△ABC=S△DEFD.不能确定【考点】解直角三角形.【分析】在两个图形中分别作BC、EF边上的高,欲比较面积,由于底边相等,所以只需比较两条高即可.【解答】解:如图,过点A、D分别作AG⊥BC,DH⊥EF,垂足分别为G、H,在Rt△ABG中,AG=ABsinB=5×sin 50°=5sin 50°,在Rt△DHE中,∠DEH=180°﹣130°=50°,DH=DEsin∠DEH=5sin 50°,∵BC=4,EF=4,∴S△ABC =S△DEF.故选C.【点评】本题考查了解直角三角形中的正弦函数的应用以及等底等高两三角形面积相等,求得三角形的高相等是解题的关键.8.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB于点E,则tan∠BDE的值等于( )A.B.C.D.【考点】解直角三角形;等腰三角形的性质;勾股定理.【分析】连接AD,由△ABC中,AB=AC=13,BC=10,D为BC中点,利用等腰三角形三线合一的性质,可证得AD⊥BC,再利用勾股定理,求得AD的长,那么在直角△ABD中根据三角函数的定义求出tan∠BAD,然后根据同角的余角相等得出∠BDE=∠BAD,于是tan∠BDE=tan∠BAD.【解答】解:连接AD,∵△ABC中,AB=AC=13,BC=10,D为BC中点,∴AD⊥BC,BD=BC=5,∴AD==12,∴tan∠BAD==.∵AD⊥BC,DE⊥AB,∴∠BDE+∠ADE=90°,∠BAD+∠ADE=90°,∴∠BDE=∠BAD,∴tan∠BDE=tan∠BAD=.故选C.【点评】此题考查了解直角三角形、等腰三角形的性质、勾股定理、锐角三角函数的定义以及余角的性质.此题难度适中,解题的关键是准确作出辅助线,注意数形结合思想的应用.9.湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线.某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB底部50米的C处,测得桥塔顶部A的仰角为41.5°(如图).已知测量仪器CD的高度为1米,则桥塔AB的高度约为( )(参考数据:sin41.5°≈0.663,cos41.5°≈0.749,tan41.5°≈0.885)A.34米 B.38米 C.45米 D.50米【考点】解直角三角形的应用-仰角俯角问题.【分析】Rt△ADE中利用三角函数即可求得AE的长,则AB的长度即可求解.【解答】解:过D作DE⊥AB于E,∴DE=BC=50米,在Rt△ADE中,AE=DE•tan41,5°≈50×0.88=44(米),∵CD=1米,∴BE=1米,∴AB=AE+BE=44+1=45(米),∴桥塔AB的高度为45米.【点评】本题考查仰角的定义,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.10.如图:AB⊥CD,CD为⊙O直径,且AB=20,CE=4,那么⊙O的半径是( )A.B.14 C.D.15【考点】垂径定理;勾股定理.【分析】连接OA,设⊙O的半径为R,根据垂径定理求出AE,根据勾股定理得出关于R的方程,求出方程的解即可.【解答】解:连接OA,设⊙O的半径为R,∵AB⊥CD,CD为⊙O直径,AB=20,∴AE=BE=10,在Rt△OEA中,OA=R,OE=R﹣4,AE=10,由勾股定理得:R2=102+(R﹣4)2,解得:R=,故选C.【点评】本题考查了垂径定理,勾股定理的应用,解此题的关键是能构造直角三角形并得出关于R 的方程,注意:垂直于弦的直径平分这条弦,难度适中.11.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6.现在Rt△ABC内叠放边长为1的小正方形纸片,第一层小纸片的一条边都在AB上,首尾两个正方形各有一个顶点D,E分别在AC,BC上,依次这样叠放上去,则最多能叠放多少?( )A.16个 B.13个 C.14个 D.15个【考点】相似三角形的判定与性质;正方形的性质.【专题】压轴题;规律型.【分析】首先求得斜边上的高线的长度,即可确定小正方形的排数,然后确定每排的个数即可.【解答】解:作CF⊥AB于点F.在Rt△ABC中,∠C=90°,AC=8,BC=6,则由勾股定理,得AB==10.=AB•CD=AC•BC∵S△ABC∴CF=4.8.则小正方形可以排4排.最下边的一排小正方形的上边的边所在的直线与△ABC的边交于D、E.∵DE∥AB,∴=,则=,解得:DE=整数部分是7.则最下边一排是7个正方形.第二排正方形的上边的边所在的直线与△ABC的边交于G、H.则=,解得GH=,整数部分是5,则第二排是5个正方形;同理:第三排是:3个;第四排是:1个.则正方形的个数是:7+5+3+1=16.故选A.【点评】本题考查了相似三角形的性质:相似三角形的对应边上的比等于相似比.12.平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,正方形A2013B2013C2013C2012的面积为( )A.B.C.D.【考点】相似三角形的判定与性质;坐标与图形性质;正方形的性质.【分析】先根据两对对应角相等的三角形相似,证明△AOD和△A1BA相似,根据相似三角形对应边成比例可以得到AB=2A1B,所以正方形A1B1C1C的边长等于正方形ABCD边长的,以此类推,后一个正方形的边长是前一个正方形的边长的,然后即可求出第2014个正方形的边长与第1个正方形的边长的关系,从而求出第2014个正方形的面积.【解答】解:如图,∵四边形ABCD是正方形,∴∠ABC=∠BAD=90°,AB=BC,=90°,∠DAO+∠BAA1=90°,∴∠ABA1又∵在坐标平面内,∠DAO+∠ADO=90°,,∴∠ADO=∠BAA1在△AOD和△A1BA中,,BA,∴△AOD∽△A1B=2,∴OD:AO=AB:A1B,∴BC=2A1C=BC,∴A1以此类推A2C1=A1C,A3C2=A2C1,…,即后一个正方形的边长是前一个正方形的边长的倍,∴第2014个正方形的边长为()2013BC,∵A的坐标为(1,0),D点坐标为(0,2),∴BC=AD==,B2013C2013C2012,即第2014个正方形的面积为[()2013BC]2=5×()4026=5×()2013.∴A2013故选D.【点评】本题主要考查了相似三角形的性质与正方形的性质,根据规律推出第2014个正方形的边长与第1个正方形的边长的关系是解题的关键,也是难点,本题综合性较强.二、填空题(每小题3分,共15分)13.如图,已知A (4,2),B(2,﹣2),以点O为位似中心,按位似比1:2把△ABO缩小,则点A的对应点A′的坐标为(2,1)或(﹣2,﹣1).【考点】位似变换;坐标与图形性质.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k计算即可.【解答】解:∵A (4,2),以点O为位似中心,按位似比1:2把△ABO缩小,∴点A的对应点A′的坐标为:(2,1)或(﹣2,﹣1).故答案为:(2,1)或(﹣2,﹣1).【点评】本题考查的是位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.14.在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=75°.【考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】先根据△ABC中,tanA=1,cosB=,求出∠A及∠B的度数,进而可得出结论.【解答】解:∵△ABC中,|tanA﹣1|+(cosB﹣)2=0∴tanA=1,cosB=∴∠A=45°,∠B=60°,∴∠C=75°.故答案为:75°.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.15.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE=.【考点】解直角三角形;线段垂直平分线的性质;勾股定理.【分析】在Rt△ABC中,先求出AB,AC继而得出AD,再由△ADE∽△ACB,利用对应边成比例可求出DE.【解答】解:∵BC=6,sinA=,∴AB=10,∴AC==8,∵D是AB的中点,∴AD=AB=5,∵△ADE∽△ACB,∴=,即=,解得:DE=.故答案为:.【点评】本题考查了解直角三角形的知识,解答本题的关键是熟练掌握三角函数的定义及勾股定理的表达式.16.如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30°,则坝底AD=56+20.【考点】解直角三角形的应用-坡度坡角问题.【分析】过梯形上底的两个顶点向下底引垂线,得到两个直角三角形和一个矩形,利用相应的性质求解即可.【解答】解:作BE⊥AD,CF⊥AD,垂足分别为点E,F,则四边形BCFE是矩形,由题意得,BC=EF=6米,BE=CF=20米,斜坡AB的坡度i为1:2.5,在Rt△ABE中,∵=,∴AE=50米,在Rt△CFD中,∵∠D=30°,∴DF=CFcot∠D=20米,∴AD=AE+EF+FD=50+6+20=(56+20)米.故答案为:56+20.【点评】本题考查了坡度及坡角的知识,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.17.如图,在△ABC中,∠BAC=60°,∠ABC=90°,直线l1∥l2∥l3,l1与l2之间距离是1,l2与l3之间距离是2,且l1,l2,l3分别经过点A,B,C,则边AC的长为.【考点】相似三角形的判定与性质;平行线之间的距离;勾股定理.【专题】压轴题.【分析】过点B作EF⊥l2,交l1于E,交l3于F,在Rt△ABC中运用三角函数可得=,易证△AEB∽△BFC,运用相似三角形的性质可求出FC,然后在Rt△BFC中运用勾股定理可求出BC,再在Rt△ABC中运用三角函数就可求出AC的值.【解答】解:如图,过点B作EF⊥l2,交l1于E,交l3于F,如图.∵∠BAC=60°,∠ABC=90°,∴tan∠BAC==.∵直线l1∥l2∥l3,∴EF⊥l1,EF⊥l3,∴∠AEB=∠BFC=90°.∵∠ABC=90°,∴∠EAB=90°﹣∠ABE=∠FBC,∴△BFC∽△AEB,∴==.∵EB=1,∴FC=.在Rt△BFC中,BC===.在Rt△ABC中,sin∠BAC==,AC===.故答案为.【点评】本题主要考查了相似三角形的判定与性质、三角函数、特殊角的三角函数值、勾股定理、平行线的判定与性质、同角的余角相等等知识,构造K型相似是解决本题的关键.三、解答题(18题5分,23,24题12分,其余题10分,共69分)18.计算:|﹣5|+2cos30°+()﹣1+(9﹣)0+.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式==11.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.19.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点坐标;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标;(3)如果点D(a,b)在线段AB上,请直接写出经过(2)的变化后点D的对应点D2的坐标.【考点】作图-位似变换;作图-轴对称变换.【专题】作图题.【分析】(1)利用关于y轴对称点的性质得出各对应点位置,进而得出答案;(2)利用位似变换的性质得出对应点位置,进而得出答案;(3)利用位似图形的性质得出D点坐标变化规律即可.【解答】解:(1)如图所示:△A1B1C1,即为所求,C1点坐标为:(3,2);(2)如图所示:△A2B2C2,即为所求,C2点坐标为:(﹣6,4);(3)如果点D(a,b)在线段AB上,经过(2)的变化后D的对应点D2的坐标为:(2a,2b).【点评】此题主要考查了轴对称变换以及位似变换以及位似图形的性质,利用位似图形的性质得出对应点变化规律是解题关键.20.如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=,AD=4.(1)求BC的长;(2)求tan∠DAE的值.【考点】解直角三角形.【专题】计算题.【分析】(1)在Rt△ABD中,根据正弦的定义得到sinB==,可计算出AB=6,则根据勾股定理计算出BC=2,然后在Rt△ADC中,利用∠C=45°得到CD=4,于是BC=BD+CD=2+4;(2)先根据三角形中线定义得到CE=BC=+2,则ED=CE﹣CD=﹣2,然后根据正切的定义求解.【解答】解:(1)∵AD是BC边上的高,∴∠ADB=90°,在Rt△ABD中,sinB==,而AD=4,∴AB=6,∴BD==2,在Rt△ADC中,∠C=45°,∴CD=AD=4,∴BC=BD+CD=2+4;(2)∵AE是BC边上的中线,∴CE=BC=+2,∴ED=CE﹣CD=﹣2,在Rt△AED中,tan∠DAE==.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.21.如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=4.求DE的长.【考点】相似三角形的判定与性质.【分析】(1)利用已知条件易证AB∥DE,进而证明△DCE∽△BCA;(2)首先证明AE=DE,设DE=x,所以CE=AC﹣AE=AC﹣DE=4﹣x,利用(1)中相似三角形的对应边成比例即可求出x的值,即DE的长.【解答】(1)证明:∵AD平分∠BAC,∴∠BAD=∠DA,∵∠EAD=∠ADE,∴∠BAD=∠ADE,∴AB∥DE,∴△DCE∽△BCA;(2)解:∵∠EAD=∠ADE,∴AE=DE,设DE=x,∴CE=AC﹣AE=AC﹣DE=4﹣x,∵△DCE∽△BCA,∴DE:AB=CE:AC,即x:3=(4﹣x):4,解得:x=,∴DE的长是.【点评】本题考查了相似三角形的判定和性质、平行线的判定和性质、等腰三角形的判定和性质,题目的综合性较强,难度不大.22.如图,我校九年级某班数学课外活动小组利用周末开展课外实践活动,他们要在佳山公路上测量“佳山”高AB.于是他们采用了下面的方法:在佳山公路上选择了两个观察点C、D(C、D、B在一条直线上),从C处测得山顶A的仰角为30°,在D处测得山顶A的仰角为45°,已知测角仪的高CE与DF的高为1.5m,量得CD=450m.请你帮助他们计算出佳山高AB.(精确到1m,,)【考点】解直角三角形的应用-仰角俯角问题.【专题】应用题;压轴题.【分析】连接EF并延长交AB于H,则可得到△AEH、△AFH均为直角三角形,在Rt△AFH中,根据∠AFH=45°得到AH=FH,最后设AH=FH=x (m),则EH=450+x 利用在Rt△AEH中,利用30°的正切值列出有关x的方程即可求解.【解答】解:连接EF并延长交AB于H,则△AEH、△AFH均为直角三角形,在Rt△AFH中,∵∠AFH=45°,∴∠FAH=45°,∴AH=FH,设AH=FH=x (m),则EH=450+x (m),在Rt△AEH中,∵tan30°=,∴,解得x=225+225∴AB=225+225+1.5≈225×1.73+226.5≈616(m).答:佳山高约为616(m).【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.23.已知:如图,⊙O的弦AB长为8,延长AB至C,使BC=AB,tanC=.求:(1)⊙O的半径;(2)点C到直线AO的距离.【考点】垂径定理;解直角三角形.【分析】(1)作OD⊥AB,垂足为点,求出AD、CD,根据勾股定理求出AO即可;(2)解直角三角形即可求出答案.【解答】解:(1)作OD⊥AB,垂足为点D,由垂径定理,得AD=BD,∵BC=AB=8,∴AD=4,CD=12,∵,∴OD=3,∴AO=5,由勾股定理得:AO==5,即⊙O的半径等于5;(2)作CE⊥AO,垂足为点E,∵,∴,解得,∴点C到直线AO的距离是.【点评】本题考查了垂径定理,解直角三角形,勾股定理的应用,主要考查学生运用定理进行推理和计算的能力,题目比较典型,难度适中.24.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC 不动,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动(E不与B、C重合),且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由.【考点】相似形综合题.【分析】(1)由AB=AC,根据等边对等角,可得∠B=∠C,又由△ABC≌△DEF与三角形外角的性质,易证出∠CEM=∠BAE,从而可证得△ABE∽△ECM;(2)首先由∠AEF=∠B=∠C,且∠AME>∠C,可得AE≠AM,然后分别从AE=EM与AM=EM去分析,注意利用全等三角形与相似三角形的性质求解即可求得答案.【解答】(1)证明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.解:∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC﹣EC=6﹣5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴=,∴CE=,∴BE=6﹣=;∴BE=1或.【点评】此题考查了相似形综合,用到的知识点是相似三角形的判定与性质、全等三角形的判定与性质以及二次函数的最值问题,此题难度较大,注意数形结合思想、分类讨论思想与函数思想的应用是解此题的关键.。