轴对称教材分析
- 格式:ppt
- 大小:1.37 MB
- 文档页数:62
人教版八年级数学上册13.1.1《轴对称》说课稿一. 教材分析《轴对称》是人教版八年级数学上册第13章第1节的内容。
这部分内容主要介绍了轴对称的概念、性质以及应用。
教材通过丰富的实例,引导学生探索轴对称图形的特征,从而培养学生的观察能力、操作能力和推理能力。
本节课的内容是学生进一步学习几何图形的基础,对学生的数学思维发展具有重要意义。
二. 学情分析八年级的学生已经具备了一定的空间想象能力和逻辑推理能力。
他们对生活中的对称现象有一定的了解,但可能没有系统地学习过轴对称的概念。
因此,在教学过程中,我需要关注学生的认知基础,通过引导他们观察、操作、交流,帮助他们建立轴对称的概念,并深入理解其性质。
三. 说教学目标1.知识与技能目标:使学生理解轴对称的概念,掌握轴对称图形的性质,能运用轴对称解决一些简单问题。
2.过程与方法目标:通过观察、操作、交流,培养学生的空间想象能力和逻辑推理能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 说教学重难点1.教学重点:轴对称的概念及其性质。
2.教学难点:轴对称性质的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和引导发现法,引导学生主动探索、积极思考。
2.教学手段:利用多媒体课件、实物模型、几何画板等,辅助教学,提高学生的学习兴趣和效果。
六. 说教学过程1.导入新课:通过展示一些生活中的对称现象,如剪纸、建筑等,引导学生关注对称现象,激发学生的学习兴趣。
2.探索新知:学生进行观察、操作、交流,引导学生发现轴对称的性质。
3.归纳总结:教师引导学生总结轴对称的概念和性质。
4.巩固练习:设计一些具有针对性的练习题,让学生运用所学知识解决问题。
5.拓展延伸:引导学生思考轴对称在实际生活中的应用,激发学生的创新意识。
七. 说板书设计板书设计如下:•概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴。
轴对称【教学内容】人教版数学四年级(下册)教材第82、83页例1、例2【教学目标】1、在具体情境中进一步认识轴对称图形,能在方格纸上补全一个轴对称图形的另一半,探索轴对称图形的特征和性质。
2、通过各种小组合作活动,培养学生的观察能力、动手操作能力和创新思维能力。
3、在欣赏图形变换所创造出的美的过程,培养审美意识,感受对称在生活中的应用,体会教学的价值。
【教学重难点】探索画轴对称图形的方法,在作图中探索轴对称的本质特征。
【教学准备】多媒体课件,铅笔,尺子,作业纸【教学内容】课前交流玩游戏:猜一猜,老师给你几个点,你来猜他能连成什么图形?上课一、唤起与生成1、复习旧知:出示游戏中我们在脑海中画出的这些图形,说一说有什么发现。
2、说一说什么样的是轴对称图形?让学生明确什么样的是轴对称图形及其对称轴。
像这样,对折以后两边能够完全重合的图形,我们把它叫做轴对称图形。
那这些图形都是轴对称图形吗?师:这只是我们目测的结果,我们来折一折,看。
(课件出示)3、谈话引入课题看来你们对以前学过的知识掌握的很好。
今天这节课就让我们来进一步研究与轴对称有关的知识(板书课题)二、探究与解决1、画对称轴其实刚才的这些轴对称图形,在我们的现实生活中,都能找到它们的影子。
看(出示)见过它们吗?那如果让你们来画出它们的对称轴,会画吗?老师为大家准备了一号作业纸,从中任选两个图形,用铅笔和直尺,画出这些轴对称图形的对称轴。
注意:对称轴要用虚线画。
生独立完成试画对称轴。
完成之后请同学们看大屏幕,对照一下,你画的对吗?(出示)有什么发现吗?2、找生活中的对称图形其实在我们的生活中,轴对称图形还有很多。
说一说,你都见过哪些轴对称图形?3、补全轴对称图形既然轴对称图形在生活中应用这么广泛,我们就应该进一步认识它。
今天老师要加大难度,我们来画一画轴对称图形。
(出示)你能补全这个轴对称图形吗?(1)想象一下补全之后是什么图案?(2)独立思考:如何画出它的右边?有什么好方法?生说方法并验证(3)小组活动:对照作业纸二,讨论补全轴对称图形的方法并试画。
教材分析1.本节主要介绍轴对称图形、图形的轴对称的概念、轴对称的基本概念、线段的垂直平分线的性质等内容.通过本节的教学,要求学生通过丰富的实例认识轴对称,体会轴对称在现实生活中的广泛应用和它的文化价值,能够识别简单的轴对称图形及其对称轴,探索发现轴对称的基本性质,并能够做出轴对称图形或成轴对称的两个图形的对称轴.2.对称现象在现实生活中广泛存在,教科书首先提供建筑倒影、天安门、立交桥、京剧脸谱、分子结构雕塑、斑马、日常用品等例子,让学生认识到对称现象的广泛性,同时也要求学生通过观察这样的图片,通过空间想象,归纳它们的共同特征.要注意,这里举出的是一些广泛意义上的对称的例子,包括静面对称、立体图形的对称等,并不仅仅是平面上的轴对称图形.接下来,教科书设置了一个观察栏目,通过观察剪窗花的过程,结合观察图14.1-1中的图片,让学生归纳出这些图片的共同特征,并引出轴对称图形的概念.教学时应鼓励学生充分观察、操作,运用自己的语言概括出这些图形的特征,有条件的地方可以采用多媒体技术展示它们的轴对称性,帮助学生建立轴对称图形的概念.3.接下来,教科书又通过一个观察栏目,让学生归纳出这三组图形的共同特征,教学时,除了观察以外,还可以结合动手操作,通过把它们沿虚线折叠,观察这两个图形之间的关系,引出两个图形成轴对称的概念.4.教科书在学生了解了轴对称图形和两个图形成轴对称的概念后,都安排了一组练习,要求学生判断所给出的图形是否轴对称,并要求指出其对称轴或对称点.要注意,由于这时学生还没有学习轴对称的基本性质,因此这时只是要求学生进行直观判断,想象出它们的对称轴,并能用折叠等方法进行验证即可.对于一些具有多条对称轴的轴对称图形,学生能指出一些即可,不要做严格的要求.5.为了讨论问题的方便,教科书先介绍了轴对称图形,又介绍了两个图形成轴对称的概念,二者的本质实际上是一致的.轴对称图形和两个图形轴对称是紧密联系的,可以把一个轴对称图形沿对称轴分成成轴对称的两个图形,也可以把成轴对称的两个图形看成是一个轴对称图形.学习了轴对称变换后还可以看到,成轴对称的两个图形的任何一个可以看做由另一个图形经过轴对称变换得到,一个轴对称图形由它的一部分为基础,经过轴对称变换拓展而成.但同时二者也是有区别的,轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合.6.接下来,教科书通过一个观察栏目,直接从轴对称的定义出发,利用两个图形沿某一条直线折叠后能完全重合这一特点,推出了两个图形成轴对称的一条基本性质:“如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线”,这条性质比较直观,学生容易理解.对于其他性质,教科书也有所涉及,如“关于某条直线对称的两个图形是全等的”是在120页思考栏目中体现的,“两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上”的性质在本节习题第10题有所体现.这里主要要求学生掌握“对称轴是对应点所连线段的垂直平分线”的性质.7.关于线段垂直平分线的概念,教科书是结合探究关于某条直线对称的图形的特征给出的,接下来教科书讨论了线段垂直平分线的性质.对于线段垂直平分线的定理和逆定理,教科书都是先安排一个探究栏目,让学生自己通过测量、猜想得到这两个性质.另外,得出这两个性质的图形,就是一个轴对称图形,因此可以结合轴对称的性质,在后面学习了等腰三角形后,就可以更清楚的看到这一点.在学生探究得到这两个性质之后,还可以要求学生利用三角形的全等证明这个结论,体现观察、探究、猜想、证明的过程,感受证明的必要性.8.线段垂直平分线的两个性质是定理及逆定理的关系,由于教科书还没有出现定理以及逆定理的概念,这里不必要向学生强调,能让学生从它们得出的过程和性质本身字面上体会二者之间具有一个互逆(相反)的关系即可.同时,线段的垂直平分线是一条重要的轨迹,线段垂直平分线上的点和线段两个端点的距离相等,和线段两个端点距离相等的点在这条线段的垂直平分线上,这就从纯粹性和完备性两个方面证明了一条轨迹:和线段两个端点距离相等的点是这条线段的垂直平分线.由于学生没有轨迹的概念,理解这些还是有困难,现在不要向学生说明这些问题.在这里,只要求结合图形说明线段垂直平分线是到两个端点距离相等的点的集合,同时说明,这条线上实际包含了满足条件的所有点,这也为学生今后进一步的学习打下了基础.线段的垂直平分线,在今后的学习中经常要用到,要注意让学生理解和掌握.。
《轴对称性质》教材分析轴对称性质教材分析轴对称性质是几何学中的重要概念之一,它在不同教材中都得到了充分讲解和应用。
本文对几本相关教材进行了综合分析,总结了它们在轴对称性质的教学中的亮点和不足之处。
教材一:《几何》该教材全面介绍了轴对称性质的概念和基本特征,通过大量的例题和练题帮助学生掌握轴对称图形的构成和性质。
教材注重理论与实际的结合,引导学生将轴对称性质与实际生活中的图形联系起来,提高学生的应用能力。
然而,该教材在一些难点的讲解上显得有些简略,对于提高学生的深入理解和解题能力还有待加强。
教材二:《数学实践》该教材将轴对称性质融入到数学实践中,通过生动有趣的案例和实例讲解,激发学生对轴对称性质的兴趣。
教材注重培养学生的观察和分析能力,在实际场景中引导学生发现轴对称性质的应用。
然而,该教材在理论讲解上稍显不足,对于轴对称性质的定义和性质解释得较为简略,学生可能需要借助其他教材来加深理解。
教材三:《几何实践》该教材注重轴对称性质与实践的结合,通过丰富多样的实践活动让学生体验轴对称性质的应用和魅力。
教材从生活中的图形出发,引导学生观察和发现轴对称性质的存在,并通过实践活动让学生深入理解和应用。
然而,该教材在理论讲解上偏少,对于轴对称性质的原理和性质的解释较为简略,学生需要在实践中积累经验。
综合分析以上教材,在轴对称性质的教学中,教材一注重理论和实际的结合,但对于难点讲解有待加强;教材二把轴对称性质融入数学实践中,但对于理论的讲解不够充分;教材三通过实践活动培养学生的观察和应用能力,但对于理论讲解偏少。
为了全面提高学生对轴对称性质的理解和应用能力,可以结合以上教材的优点,设计出更完善的教学方案。
《轴对称》的教案实用5篇《轴对称》的教案 1一、说教材【说课内容】:九年义务教育青岛版四年级下册第六单元第一节《轴对称图形》。
【教材分析】《轴对称图形》是在学生已经学*了一些简单的*面几何图形的特征、初步形成了空间观念的基础上教学的;自然界和日常生活中具有轴对称特性的许多事物,也为学生认识轴对称图形提供了必要的感性认识,为此教材在编写时十分注重直观性和可操作性。
本节课主要是帮助学生在原有的感性认知的基础上建立轴对称图形和对称轴这两个概念,为学生今后进一步学*几何图形的有关知识打下良好的基础,并在学生的学*过程中引导学生发现和创造生活中的美。
为了更好的激起学生的学*兴趣,因此我对教材适当调整,以贴米奇的耳朵游戏引入新知充分利用有关素材开展数学活动。
根据大纲的要求和教材的特点结合四年级学生的认知能力,本节课我确定一下的教学目标。
【教学目标】(1)知识与技能目标:通过观察、操作等活动让学生认识并理解轴对称图形的特征,能准确判断哪些图形是轴对称图形,并能找出轴对称图形的对称轴。
(2)过程与方法目标:让学生通过观考、实践、发现,亲历知识形成的过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
(3)情感态度与价值观目标:在探究新知的活动中,培养审美意识,这样的目标设计打破了传统概念教学的规律,从过于注重概念教学的本身转化到了更加专注学生的学*过程和情感体验,立足教学目标多元化,不仅让学生掌握认知目标还要学生的学*过程中发展各方面的能力体会轴对称图形的美学价值。
【教学重、难点】教学重点:掌握轴对称图形的特征,能准确判断哪些图形是轴对称图形,并能找出轴对称图形的对称轴。
教学难点:准确找出轴对称图形的对称轴。
5、教具及学具准备教具准备:课件,尺子,米奇头像,轴对称图形图片和常见几何图形。
学具准备:剪刀,尺子,已学的各种*面图形纸片一份。
二、说教法、学法教法:《新数学课程标准》指出:“教师是学生学*的组织者、引导者、合作者”根据这一理念,我遵循“激——导——探——放”的原则,教学中精心设计游戏,诱导学生思考操作,鼓励学生概括交流并让学生去运用知识大胆创新。
轴对称图形的教材分析学生在三年级下册时已经初步地学习了轴对称图形。
本单元是在此基础上进行教学延伸的,继续学习轴对称图形,采用对折等方法确定轴对称图形的对称轴。
教学时,要充分调动、利用学生已有认知经验。
1、以折和画为学习活动,认识轴对称图形的对称轴。
学生已经知道什么是轴对称图形以及轴对称图形的对称轴,还知道长方形、正方形都是轴对称图形。
第5页例题4以这些作为教学的起点,让学生用一张长方形纸折一折,画出它的对称轴。
通过折和画再次体会什么是对称轴以及它的位置。
学生对折长方形会出现两种折法,理解长方形有两条对称轴不会有困难。
例题呈现了学生画长方形的对称轴。
第一次沿着自己对折的长方形纸的折痕画,只画出1条对称轴。
第二次在长方形上画,要画出2条对称轴。
这样循序渐进地安排,有利于学生认识轴对称图形及对称轴。
教学时要注意两点:一是引导学生体会对称轴的含义,它是对折轴对称图形折痕所在的直线;二是对称轴一般画成点划线,即一条短线、一个圆点,一条短线、一个圆点............................................2.“试一试”继续用折、画等方法认识正方形的对称轴。
由于对折正方形的方法比对折长方形的方法多,所以正方形对称轴的条数比长方形多。
如果长方形有两条对称轴是学生在交流中知道的,那么正方形有四条对称轴应在自己的活动中发现。
3.课本第6页的例5是从“对称轴的认识,不同轴对称图形的对称轴情况区分,利用对称轴画出轴对称图形的另一半”这些方面来开展教学的。
先让学生交流画图的方法和技巧,再小结画图的步骤,这样的安排,可以让学生对轴对称图形特征的进一步认识,也进一步增强学生的空间观念,发展形象思维。
感受对称的美。
4.“练一练”第1题仍然是画对称轴。
教材把3个图形既画在方格纸上,让学生画出轴对称图形的对称轴,这一步能加强对轴对称图形及其对称轴的理解。
又一次辨认图形和确认对称轴的位置。
第2题是对例5的知识进行巩固,再一次加强了学生的动手能力和空间观念。