低压油气藏储层保护技术概述
- 格式:docx
- 大小:18.78 KB
- 文档页数:4
浅析低渗透油田储层保护技术【摘要】随着勘探的不断深入,低渗油藏在整个油气资源中的占得的比重越来越大,低渗油藏是未来油气田开发的主战场。
但由于低渗油藏一般具有储层物性差、孔隙度低、渗透率低、非均质性严重的特点,开发难度大,在整个开发过程中要特别注意储层的保护,避免储层损害对于提高开发效益具有重要的意义。
本文论述了在低渗油藏钻井、完井、试油、储层改造中相应的保护技术,以期为低渗透油田的开发提高指导。
【关键词】低渗储层保护钻井完井试油随着勘探工作的深入,近年来国内外发现了一大批低渗透油气资源,并且在每年新探明储量中所占的份额越来越大,同时低渗透油田的产量在原油总产量的比例也在逐年递增,从2006年的34.8%,到2008年增长为37.6%。
总体来看:低渗透油田具有分布分散、储量丰富的特点。
虽然开发难度很大,但从资源储量来分析,低渗透油田是未来中国乃至世界的油气资源开发的重点。
从目前的低渗透油田的生产实践来看,低渗透油田具有不同于中高渗油藏开发的特点,低渗透油田的自然产能低,单井产量有的不及中高渗油藏的三分之一,一般需要进行压裂增产,此外还存在产量递减快,注水压力高,有的注水压力甚至高于底层破裂压力,以至于“注不进”,开发难度大。
低渗油田本身的渗透率就很低,若不开展储层保护,钻井、完井、试油、储层改造等作业将给后续开发带来更大的困难,因此研究低渗透油田的储层保护技术具有重要的意义。
1 低渗油藏特点(1)存在启动压力梯度。
低渗透油藏储层致密,孔喉微细,油水渗流阻力大,油水界面性质明显,渗流规律复杂。
当喉道半径很小时,流体通过喉道的压力梯度与渗流速度的关系曲线可分为两部分:非线性部分和线性部分。
原油通过很小的喉道流动时,将出现压力梯度。
经过大量的实验表明:在低渗油藏中,流体产生流动时的临界启动压力梯度和储层的渗透率、流体性质有关。
储层的渗透率越低,流体的粘度越高,则相应的临界启动压力梯度也越大。
(2)应力敏感性。
低渗油田注水过程中储层保护技术摘要:当前我国低渗油田储量十分丰富,且开发数量呈现出逐年上升的趋势。
但一些低渗油田的储层仍然会存在一定的问题,包括经常堵塞、储层孔喉小等等。
而注水压力高时会加大施工难度。
再加上油田注水是一个长期的工程,注水要能够深入到油藏中的各个部位,也说明对于油气层的保护至关重要,还要合理选择保护的方式,兼顾经济效益和社会效益。
关键词:低渗油田;注水过程;储层保护;技术一、低渗油田简介低渗油田,指的就是油层渗透率较低的油藏,它的埋藏地点和周围环境、地质条件等因素都具有一定的特殊性,与目前我国大量开采的普通油田不同,它丰度低、产量低,且在油田服役一段时间后,更容易出现原油质量大幅下降、综合含水上升的问题。
在我国油田的储量中,占据最大比重的并非容易开采且产量高的普通油田,而是低渗透油田,其占据了我国总油田数量的六成以上,储藏着我国半数以上的石油资源,若能够寻找到更加合理的开采方法、提高开采效率,就能够有效缓解我国资源紧缺的问题,为国家工业发展带来福音。
在过去,我国在开采低渗油田时将其他油田的开采经验照抄照搬,使用不成熟的技术,导致低渗油田普遍存在诸多问题,例如照搬普通油田的开采经验,所建设的油田地面工程问题频出,消耗大量维护成本,且会产生较大污染,使设备过快遭受腐蚀和发生老化、甚至报废,严重缩短了使用寿命,这些都大大提升了我国低渗油田的开采成本,造成了严重的资源浪费,为国家带来诸多经济损失,并且无法达到安全和稳固的要求,提高了事故发生的概率。
因此,必须在现有基础上针对低渗油田的特点进行研究,使用专门的技术来进行开采工作,并对工艺流程进行优化,增添污染处理环节,尽可能地从源头上减少污染、提高开采的效率,改善原油质量,从而促进我国工业的发展,为其他行业提供必要的能源。
目前我国常用的开采方法都需要进行注水提高渗透率。
二、注水开发现状(1)注水井分散分布。
注水操作对于油田能够提高地层储层的压力,从而促进石油的开采和利用。
低渗油气田储层保护技术研究【摘要】储层的低渗透性是我国油气开发面临的主要问题,这种储层一般会出现单井产能低,经济效益差,生产压差大,储层易受污染等状况。
其中,前三个因素人力无法避免,而对于储层的伤害是人为可以防止的。
“预防”是油气层保护的全部内容,一旦储层受到污染,要想改善或恢复需付出极大代价,有时甚至是无法实现的。
因此,“预防”油气层损害是关键。
本文阐述了储层保护的重要性,结合储层损害的来源,提出储层保护的措施。
【关键词】储层保护岩心分析配伍性敏感性1 储层保护的重要性低渗透储层的孔喉小或连通性差,胶结物含量高,这样它容易受到粘土水化膨胀、乳化堵塞、分散运移、水锁和贾敏效应的损害,而受工作液(钻井液、完井液、射孔液等)固相颗粒侵入影响较小。
保护油气层技术是油气开发过程中一项非常具有现实意义的技术,油气层保护做得好,则投资的收益就大,反之会导致油气层不能发挥应有的生产能力,大大降低投资的回报率[1]。
根据油田开展油气层保护的经验,开展油气层保护比不进行油气层保护产能普遍提高1~2倍,可见油气层保护之重要性。
保护油气层技术也是一项系统工程,所涉及的专业知识面广,科技含量高,需多方协同努力方可实现。
2 油气层保护的主要内容2.1 岩芯分析岩芯分析实验是油气开发工作的最基础部分,一般包括孔隙度、渗透率、流体饱和度实验,X射线衍射实验,储层敏感性矿物分析等,国外在这方面还应用了CT扫描、核磁共振等技术更深层次地研究油气层损害机理。
2.2 储层敏感性评价包括水敏、速敏、盐敏、酸敏和碱敏性实验。
对于低渗储层,重点是做好水敏性评价。
国内外在这方面现已产生了一系列敏感性评价软件,这些软件不需要室内实验,仅通过岩芯分析结果即可迅速确定储层敏感性,解释结果可靠性较高,例如石油大学自行研制的一套软件,其解释结果与实际实验的符合率可达到80%左右。
2.3 油气层损害机理研究油气层损害机理是指油气层损害产生的原因和伴随损害发生的物理、化学变化过程,其实质就是有效渗透率下降。
第十三章保护油气层技术简介§13—1 保护油气层技术概论一.油气层损害的基本概念在钻井、完钻、井下作业及油气田开采全过程中,由外因诱发内因而造成油气层渗透率下降的现象称为油气层损害。
它贯穿了勘探开发的全过程。
钻开油层时地层损害示意图井眼周围泄(采)油示意图二.油气层损害机理油气层损害机理概念:即为储集层损害的原因和伴随损害发生的物理、化学变化过程。
三.保护油气层技术油气层保护是指防止或避免近井壁带油气层在各个作业环节中受到不应有的损害。
保护油气层技术就是防止油气层损害的各项技术。
岩芯分析技术:是指利用能揭示岩石本质的各种仪器设备来观测和分析油气层一切特性的技术总储层敏感性评价:是指借助于各种仪器设备测定油气层岩石与外来工作液作用前后渗透率的变化,来认识和评价油气层损害的一种手段。
包括速敏、水敏、盐敏、碱敏、酸敏、应力敏感、温度敏感等七敏实验,目的是弄清油气层潜在的损害因素和损害程度,准确评价工作液对油气层的损害。
为各类工作液的设计、油气层损害机理分析和制定系统的保护油气层技术方案提供科学依据。
保护油气层技术实质上就是防止油气层损害的技术,采取预防为主,解除为辅的原则。
保护油气层技术是石油工程最近二三十年发展起来的一个新的技术领域,涉及多学科、多专业、多部门,并贯穿了从钻井、完井、开发、油层改造、提高采收率等全过程的系统工程。
我们要转变观念,提高认识,以同一油藏为对象,打破专业界限,使各专业相互交叉、渗透,最大限度的提高油气层采收率。
§13—2 修井作业中的保护油气层技术修井作业过程中任何一个环节设计或施工处理不当,都将导致油气层的损害。
修井作业过程中保护油气层技术工作主要的研究内容包括:(1)油气层损害因素分析;(2)油气层损害评价;(3)储层敏感性分析,物性分析;(4)储层损害的预防措施研究;(5)优化作业设计;(6)按质量标准和施工设计施工。
一、修井作业中油气层损害因素分析(一)修井入井液中固体微粒侵入损害(二)修井入井液与油气层及地层流体不配伍造成的损害(三)微生物损害(四)修井作业过程的其他损害:修井作业施工不当对地层的损害主要表现在:①打捞、切割、套管刮削等作业时间长,造成修井液对储层浸泡长;②在钻、磨、洗等修井作业中修井液或洗井液不压井不放喷井口控制装置上返速率低或体系粘度低,造成大量碎屑堵塞井眼或炮眼;③选择修井作业施工参数不当,如作业压差过大,排量过大,造成大量滤液侵入油气层,或无控制地放喷,引起地层产生速敏损害,尤其是低渗或裂缝性储层应力敏感损害;④解除储层堵塞的修井作业过程中措施不当、施工工艺不当或作业液体系配方不当也会造成地层损害;④频繁地修井作业,会造成损害叠加效应,严重损害地层;⑤修井作业过程中因作业工具或井筒不清洁造成的地层损害。
1.保护油气层的重要性;1)勘探过程中,保护油气层工作的好坏直接关系到能否及时发现新的油气层、油气田和对储量的正确评价。
2)保护油气层有利于油气井产量及油气田开发经济效益的提高。
3)油田开发生产各项作业中搞好保护油气层有利于油气井的稳产和增产。
2.保护油气层的特点:1)保护油气层技术是一项涉及多学科多专业多部门并贯穿整个油气生产过程中的系统工程2)具有很强的针对性3)保护油气层技术在研究方法上采用三个结合。
3.岩心分析的目的:1)全面认识油气层的岩石物理性质及岩石中敏感矿物的类型产状含量及分布特点。
2)确定油气层潜在的损害类型,程度及原因。
3)为各项作业中保护油气层工程方案设计提供依据和建议。
4.工作液对油气层的损害评价;1)工作液的静态损害评价2)工作液的动态损害评价。
5.保护油气层对钻井液的要求;1)钻井液密度可调满足不同压力油气层静平衡压力的需要。
2)钻井液中固相颗粒与油气层渗流流通道匹配。
3)钻井液必须与油气层岩石相同相配伍。
4)钻井液滤液组分必须与油气层中流体相配伍。
5)钻井液的组分与性能都能满足保护油气层的需要。
6.形成渗透率接近于零的薄屏蔽暂堵带的技术要点。
1)测定油气层孔喉分布曲线及孔喉的平均直径。
2)按1/2~1/3孔喉直径选择架桥粒子的颗粒尺寸,使其在钻井液中含量大于30%。
3)按颗粒直径小于选用架桥粒子选用充填粒子其加量大于1.5%。
7.射孔液的基本要求:1)保证与油气层岩石和流体相配伍防止射孔作业过程中和射孔后的后继作业的要求即应具有一定的密度具备压井的条件。
2)应具备有适当流变性得满足循环清洗炮眼的需要。
8.优质压井液必须具备的性能:1)与油气层岩石及流体的配伍。
2)密度可调节以便能平衡油气层压力。
3)在井下压力和温度下性能稳定。
4)滤失量小5)有一定的携带固相颗粒的能力9.采油过程中的保护油气层技术措施;1)生产压差及采油速率的确定2)保持油气层压力开采3)对不同的油气层采用不同的预防损害措施。
从钻井过程中油气层的损害与保护,浅谈储层保护的目的和意义,以及从中得到的体会和认识在打开油气层后,如果钻井方式、钻井参数、泥浆性能等因素处理不当,可能会对生产层造成多种损害,研究这些损害机理,对保护和开发生产层具有重要意义。
同时,使用同地层相配伍的钻井液,采用保护生产层的钻井方式将直接关系到油气井的产量及油气田的开发经济效益。
随着勘探开发的不断深入,有越来越多的钻井施工人员已不再片面地强调进尺、追求钻速了,而把目光投向了如何合理开发和保护油气生产层。
所以研究这一方面内容尤为重要。
钻开油气层后,将破坏地层原有的平衡,若在正压差作用下,钻井液中的固相就会进入油气层而造成孔喉堵塞;而进入油气层中的钻井液,如与油气层岩石不配伍,就会诱发油气层产生水敏、盐敏、碱敏、润湿反转、表面吸附等潜在损害因素;如滤液与油气层流体性质不配伍,就会造成无机盐和处理剂沉淀,发生水锁反应,形成乳化堵塞、细菌堵塞和油气层油水分布的改变等,这些因素最终均可造成油气层渗透率下降。
钻井液对油气层损害的严重程度随钻井液液柱压力与油气层孔隙压力之间的正压差增大,钻井液浸泡油气层时间增长,钻井液滤失量增加而加剧,此外,钻井过程中如发生井喷或井漏均会使上述各种损害加剧。
1 钻井过程中油气层的损害方式1.1 钻井液中固相颗粒对油层的损害钻井液中不可避免的存在各类固相粒子,有的是工作液的必要组成,有的是有害固相而未除去。
它们侵入油气层后必然会在油气层的喉道处发生沉积和架桥,从而造成堵塞。
这种堵塞的过程和规律(其物理模型和数学模型)是其机理研究的主要内容,这种堵塞可造成损害的10~100%。
1.2 钻井液中液相(水溶液相)与岩石相互作用所造成的损害进入油气层的液相必然与岩石孔穴喉道中的敏感性物质尤其是粘土矿物发生种种作用从而带来各类损害,这类损害实际上就是储层敏感性的表现。
1.2.1 水敏损害当进入地层水溶液的矿化度低于地层临界化度,如淡水钻井液钻遇蒙脱石、伊蒙混层水化云母、伊利石、绿泥石、高岭石时,会发生诸如粘土水化、晶格膨胀、分散、运移、脱落等损害。
低压油气藏储层保护技术
1 前言
低压油气藏是指作用于沉积盆地地层孔隙空间的流体压力低于静水压力或压力系数小于1的油气藏, 例如加拿大的阿尔伯达盆地西部气藏、美国Hgoton负压大气田、松辽盆地北部地区的扶杨油层、鄂尔多斯盆地中部奥陶系顶风化壳负压气藏、吐哈盆地台北凹陷浅层负压流体封存箱、渤海湾盆地东营凹陷边缘的浅层低压气藏等。
(金博, 刘震, 张荣新, 等. 沉积盆地异常低压( 负压)与油气分布[ J]. 地球学报2004, 25( 3): 351- 356.)
按国外分类标准
统计, 美国德克萨斯100多个油气田中, 低压油气田占18. 5% ; 世界160 个油气田中, 低压油气田占11. 7%。
可见低压油气藏在世界油气藏中占有一定比例, 研究适应低压油气藏开发的相关技术具有重要意义。
低压油气藏地层压力低, 开发上存在一定的困难, 国内外学者针对其特点总结出了一些切实可行的开发技术, 主要包括钻井、完井过程中的地层保护, 开发井网, 注水(气)增压, 增产措施(酸化压裂、清防砂等)等。
低压油气藏的地层压力低于正常地层压力, 在钻井、完井过程中由于钻井液、完井液等侵入地层,会产生水锁现象, 造成油气藏污染(何勇明, 王允诚, 董长银, 等. 稠油油藏储层伤害产能预测新模型及表皮因子研究[ J]. 油气地质与采收率,2006, 13( 1): 79- 81.和刘静, 康毅力, 陈锐. 碳酸盐岩储层损害机理及保护技术研究现状与发展趋势[ J]. 油气地质与采收率, 2006,
13( 1): 99- 101.
( 1) 低压油气藏开发前期, 必须在钻、完井过程中进行有效的地层保护;
( 2) 提前注水或注气可以有效提高地层能量,改善开发效果;
( 3) 通过压裂提高地层导流能力可以有效提高采收率;
( 4) 改进采油工艺可提高低压油气藏的采收率
2 低压油气藏分类及成因
将低压成因归纳为4个方面:
2.1岩石孔隙空间增大;
Peterson[ 29] 和Matheton 等[ 30 ] 发现了加拿大阿尔伯达盆地的地层剥蚀反弹现象后, 由于这一原因形成的低压现象引起了国内外学者的高度关注[ 31~ 35 ] 。
Locker[ 36] 在实验室利用未风化岩石进行了工程力学性质实验, 指出了岩石反弹与应力的快速减小有关; Fatt [ 37] 和M cLatch ie等[ 38] 测定了砂岩储层孔隙的弹性收缩率为48. 28 @ 10- 3 /Pa, 水的收缩率约为20. 69 @ 10- 3 /Pa, 并认为当上覆地层被剥蚀时, 砂岩储层孔隙的扩容率与收缩率相当, 泥页岩的扩容率高于砂岩; To th等[ 39] 及Parks等[ 40] 应用数值模拟方法进一步为剥蚀反弹形成低压提供了证据; 解习农等[ 41] 建立了剥蚀速率与剩余压力之间的关系模型, 为低压成因的定量化研究奠定了基础。
姜振学等[ 42, 43] 通过物理实验模拟表明: 在岩石弹性范围内, 卸载会造成下伏砂体回弹, 且回弹量是可观的, 可超过1% , 并建立了砂体在地层抬升过程中不同地质条件下砂体回弹量模板; 田丰华等[ 44] 从地层抬升剥蚀角度, 对油气成藏机理进行了探讨, 认为地层抬升过程中的流体温度降低及孔隙扩容可造成地层低压, 不仅为油气聚集提供动力, 而且还可为油气聚集提供更多的空间。
另外, 李延钧等[ 45] 和戴立昌等[ 46] 分别论述了沉积物埋深过程中的过压实作用及上覆负荷差异支撑机理也会导致低压的形成。
2.2 孔隙流体体积减小;
构造抬升会导致地温的降低, 孔隙流体收缩, 是低压形成的重要影响因素[ 47, 48] 。
同时, 构造运动会引起油气藏内轻烃由于上覆地层遭受剥蚀发生扩散[ 49] 或者地层压力沿着断裂和不整合面释放从而形成低压; Law 等[ 50] 认为, 轻烃逸散是北美地区一些抬升盆地产生低压的一种原因; 李荣西等[ 51] 通过对流体包裹体的分析发现了鄂尔多斯盆地米脂气田
天然气逸散的证据; 楼章华等[ 52] 、朱蓉等[ 53] 和程军蕊等[ 54] 认为流体动力场演化过程中, 受压实作用的影响, 溶解于地层水中的天然气随着地层水的流动发生漏失, 也会形成低压。
K arsten等[ 55] 认为, 流体通过低传导性区域时, 能量损失大于通过高传导性区域
时的能量损失将出现一个相对于潜水面的低势区, 会导致低压的形成。
Be litz等[ 6] 和Senger等[ 7]分别通过准三维和二维数学模拟证实了北美D enver盆地和Pa lo Duro盆地中的异常低压是由于盆地内地下水供排不均衡造成的。
盆地流体由于浓度差异所引起的渗透作用也会形成低压[ 56 ] ; 前人计算表明: 页岩与砂岩盐度相差50 000 @ 10- 6时, 可产生4. 25MPa的渗透压差。
袁际华等[ 57] 研究表明鄂尔多斯盆地上古生界气藏压力的降低主要与盆地抬升降温、天然气散失和气水密度差等因素有关。
此外,成岩过程中的/ 耗水作用0[ 58, 59 ] 以及地层中油气水的开采都会使得岩石孔隙中流体体积减小, 从而形成低压
2.3流体承压高度降低;
通常人们用地层压力与静水压力的比值, 即压力系数来标定地层压力的异常情况, 因此, 当地层流体承压面低于地表时就会形成低压[ 60, 61] ; 研究表明Panhand le-Hugoton地区的低压以及开滦煤田煤储层的低压都是由该原因造成。
此外, 在一些特殊的地区也会产生区域性低压, 如在东西伯利亚地区由于地表存在永久冻土层导致该地区形成异常低压非常发育, 其主要原因是永冻层导致区域地层水的静水承压面降低。
2.4原始压力的保存。
厚层泥岩中所夹的砂岩油气藏, 原来埋藏较浅, 原始地层压力较小。
后期在构造运动作用下油气藏所在断块下降, 埋深增大, 但原始地层压力仍然保持下来,形成低压异常, 这种现
象在中国东部裂谷盆地中常见,美国Keyes气田的低压也属于这种成因。
(Pow ley D. Norm al and abnorm al pressu re[ R ]. Lectu re presented to AAPG Advanced Exp lorat ion Schools, 1980: 1 980-1 987.)
同时指出, 低压形成的根本原因就是孔隙流体的供排不平衡。
针对低压油气藏形成各种控制因素的定量模拟和评价以及低压油气藏的压力演化等方面的研究将是今后的主要方向。
在正常情况下, 也就是孔隙流体压力等于静水压力, 即压力系数等于1的情况下, 孔隙内流体的量会随着岩石孔隙的相对变化而变化, 也就是当孔隙相对减小或者相对变大时, 孔隙内流体可以自由的流入或者流出, 从而保持孔隙内流体压力稳定, 而由于某种作用使得流
体不能随着孔隙的相对变化而任意的流入或者流出时, 就会导致孔隙内由于流体的相对增多或者相对减少而形成压力异常, 从而产生异常高压或者异常低压。
当孔隙相对减少而流体不能及时排出时, 孔隙压力就会增大从而产生异常高压; 当孔隙相对增大而流体不能及时流入补给时,孔隙压力就会减小从而产生异常低压。
因此, 低压形成的根本原因就是孔隙流体的供排不平衡。
4保护低压油气藏的钻井液技术研究
依据储层敏感性评价结果, 确定了保护低压油气藏的钻井完井液技术对策及配方, 即无固相甲酸盐钻井完井液、无( 微) 粘土相强抑制性聚合物钻井完井液和微泡沫钻井完井液。
5低压油气藏修井作业的问题
6低压油气藏储层保护修井液体系研究。