第5章 钻井过程中的保护油气层技术
- 格式:ppt
- 大小:3.47 MB
- 文档页数:29
钻井完井过程中的油气层保护技术姓名:班级:序号:学号:摘要:钻井完井过程中降低油气层损害是保护油气层系统工程的第一个工程环节,其目的是交给试油或采油部门一口无损害或低损害、固井质量优良的油气井。
本文对钻井完井过程中油气层损害原因以及相应的油气层保护技术进行了简单的总结。
关键词:渗透率、近平衡、固井、保护油气层一、钻井完井过程中油气层损害原因当在油气层中钻进时,在正压差和毛管力的作用下,钻井完井液的固相进入油气层孔喉堵塞,其液相进入油气层与油气层岩石和流体作用,破坏油气层原有的平衡,从而诱发油气层潜在损害,造成渗透率下降。
钻井过程中油气层损害原因可以归纳为四个方面:1、钻井完井液中分散相颗粒堵塞油气层1)固相颗粒堵塞油气层钻井完井液中存在多种固相颗粒,如膨润土、加重剂、堵漏剂、钻屑和处理剂的不容物及高聚物鱼眼等。
钻井完井液中小于油气层孔喉直径或裂缝宽度的固相颗粒,在钻井完井液有效液柱压力与地层孔隙压力之间形成的压差作用下,进入油气层孔喉和裂缝中形成堵塞,造成油气层损害。
2)乳化液滴堵塞油气层2、钻井完井液滤液与油气层岩石不配伍引起的损害水敏损害、盐敏损害、碱敏损害、润湿反转、表面吸附3、相渗透率变化引起的损害钻井完井液滤液进入油气层,改变了井壁附近地带的油气层分布,导致油相渗透率下降,增加了油流阻力。
对于气层,液相侵入(油或水)能在储层渗流通道的表面吸附而减少气体渗流截面积,甚至使气体的渗流完全丧失,即导致“液相圈闭”。
4、负压差急剧变化造成的油气层损害中途测试或负压差钻进时,如选用的负压差过大,可诱发油气层速敏,引起油气层出砂。
对于裂缝性储层,过大的负压差还可能引起井壁附近的裂缝闭合,产生应力敏感损害。
此外,还会诱发有机垢、无机垢沉积。
二、保护油气层钻井完井液钻井完井液是石油工程中最先与油气层接触的工作液,其类型和性能好坏直接关系到对油气层的损害程度,因而保护油气层钻井完井液是搞好保护油气层工作的首要技术环节。
第五章钻井过程中的保护油气层技术重要性第一个工程环节油气层的损害具有叠加性主要内容钻井过程中造成油气层损害的原因保护油气层的钻井液技术保护油气层的钻井工艺技术保护油气层的固井技术1.钻井过程中造成油气层损害的原因钻开产层对近井壁地层的影响近井壁岩石应力变化、井壁岩石失稳,应力重新分布井眼形状、岩石物性、强度变化井筒液柱压力的影响钻井液:①平衡孔隙压力、循环钻屑;②抵消岩石侧向变形的作用;③作用于井底及周围岩石。
静液柱压力不能完全消除岩石的变形,使储层岩石力学性质产生变化,降低某些岩石的强度;密度过大,岩石被压裂,造成井漏。
孔隙压力大于液柱总压力,地层流体会涌入井筒,产生井涌,井喷事故液柱压力大于孔隙压力,流体和固相进入岩石孔隙,对产层造成污染。
岩石被压破,液体漏失。
1.钻井过程中造成油气层损害的原因钻井液与地层流体相互作用钻井液与地层流体接触,固/液相原始平衡破坏:化学组分不平衡:钻井液无法与原地层中流体化学性质配伍而产生化学变化,Ca++、M計+、Fe++、Fe+++等离子产生沉淀。
酸、碱物质对胶结物造成侵蚀,粘土脱落,堵塞孔道,产层出砂。
浓度不平衡:化学物质相互间的渗透,产生渗透压力,对岩石造成污染或伤害。
储层岩石性质的变化固、液两相物质进入产层:孔隙变形、孔隙度、渗透率、强度、产能下降两种液体间的化学反应结垢钻井液液相浸泡使胶结物破坏,强度降低,引起出砂。
(1)钻井过程中油气层损害的原因1)钻井液中分散相颗粒堵塞油气层①固相颗粒堵塞油气层(大小、含量、压差)②乳化液滴堵塞油气层(压差、润湿性)2)钻井液滤液与岩石不配伍水敏、盐敏、碱敏、润湿反转、表面吸附3)钻井液滤液与油气层流体不配伍无机盐沉淀、形成处理剂不溶物、水锁、乳化堵塞、细菌堵塞4)相渗透率变化(液相圈闭)5)负压差急剧变化(速敏、裂缝闭合、有机垢)(2)钻井过程中影响油气层损害的工程因素l)压差在一定压差下,钻井液中的滤液和固相会渗入地层内,造成固相堵塞和粘土水化和水膜厚度增加等许多问题。
油田修井作业中油气层的保护技术摘要:油田修井作业中常常存在诸多不确定因素导致油气层受到损坏,因此在修井之前了解浅藏气特征,研究油气层破坏机理,对于全井经济效益具有很好的促进作用的。
本文根据多年的工作经验,首先分析了气层的伤害机理和伤害因素,然后重点探讨了修井作业中的地层损害原因与防治措施,将对修井过程中的油气层保护研究提供一定的借鉴意义。
关键词:修井作业;油气层;伤害因素;防治措施引言:保护油气层技术是石油工业20世纪70年代以后发展起来的一项新兴系列的技术,它对及时发现油气藏、提高油气产量、降低原油生产成本具有十分重大的意义和不可代替的作用。
保护油气层技术是一项涉及多科学、多专业、多部门并贯穿整个油气生产过程的系统工程。
此项技术涉及地质、钻机、测井、试油、开发、采油、井下作业等多个部门。
本文以修井作业中油气层保护为主要内容,就修井过程油气层保护技术进行比较系统的论述。
1 气层的伤害机理和伤害因素气层在地下未钻采之前处于物理、化学、和热动力等各种因素的平衡作用中,在被钻开后,矿井的连续注入外来的固液成分,导致地层的空隙压力发生了变化,气层的原有平衡在一定程度上遭到了破坏,致使固液之间、固体与固体之间、液体与液体之间发生物理、化学、热动力学作用的变化,致使毛管水锁、粘土水化、固相运移和岩石结构变化等各种形式不同的堵塞,进一步导致气层损伤,回采率下降,给整个矿井的产能带来极大的冲击。
保护油气层的首要问题是要搞清楚相关气层的地质综合条件,气层所在深度及其地质特征(包括空隙结构、透气性、矿物构成成分、严实硬度等)是影响气层伤害机理的主要方面,因此采集气层所在深度的岩石样芯,在采集层孔隙结构的基础上进行水敏性、酸敏性、速敏性、盐敏性试验,得出油气层的敏感性。
2 修井作业中对油气层的损害原因油气层的损害是指在一系列的井下作业过程造成油气层流动阻力增大、渗透率下降的现象。
油气损害将对矿井产量造成巨大冲击,同时还会增加试油、酸化、压裂、修井等工作量,不仅造成一定的经济损失,还影响了资源的回收率。
图5-1 钻井液中固相对地层 渗透率的影响受损害渗透率 钻井过程中的保护油气层技术钻井过程中防止油气层损害是保护油气层系统工程的第一个工程环节。
其目的是交给试油或采油部门一口无损害或低损害、固井质量优良的油气井。
油气层损害具有累加性,钻井中对油气层的损害不仅影响油气层的发现和油气井的初期产量,还会对今后各项作业损害油层的程度以及作业效果带来影响。
因此搞好钻井过程中的保护油气层工作,对提高勘探、开发经济效益至关重要,必须把好这一关。
第一节 钻井过程中造成油气层损害原因分析一.钻井过程中油气层损害原因钻开油气层时,在正压差、毛管力的作用下,钻井液的固相进入油气层造成孔喉堵塞,其液相进入油气层与油气层岩石和流体作用,破坏油气层原有的平衡,从而诱发油气层潜在损害因素,造成渗透率下降。
钻井过程中油气层损害原因可以归纳为以下五个方面。
1.钻井液中分散相颗粒堵塞油气层1)固相颗粒堵塞油气层钻井液中存在多种固相颗粒,如膨润土、加重剂、堵漏剂、暂堵剂、钻屑和处理剂的不溶物及高聚物鱼眼等。
钻井液中小于油气层孔喉直径或裂缝宽度的固相颗粒,在钻井液有效液柱压力与地层孔隙压力之间形成的压差作用下,进入油气层孔喉和裂缝中形成堵塞,造成油气层损害。
损害的严重程度随钻井液中固相含量的增加而加剧(图5-1),特别是分散得十分细的膨润土的含量影响最大。
其损害程度与固相颗粒尺寸大小、级配及固相类型有关。
固相颗粒侵入油气层的深度随压差增大而加深。
2)乳化液滴堵塞油气层对于水包油或油包水钻井液,不互溶的油水二相在有效液柱压力与地层孔隙压力之间形成的压差作用下,可进入油气层的孔隙空间形成油-水段塞;连续相中的各种表面活性剂还会导致储层岩心表面的润湿反转,造成油气层损害。
2.钻井液滤液与油气层岩石不配伍引起的损害钻井液滤液与油气层岩石不配伍诱发以下五方面的油气层在损害因素。
1)水敏低抑制性钻井液滤液进入水敏油气层,引起粘土矿物水化、膨胀、分散、是产生微粒运移的损害源之一。
第五章钻井过程中的保护油气层技术第一节钻井过程中造成油气层损害原因分析一、钻井过程中油气层损害原因钻井的目的是交给试油或采油部门一口无损害或低损害的油气井。
钻井中对油气层的损害不仅影响油气层的发现和油气井的产量。
钻开油气层时,在正压差、毛管力作用下,钻井液固相进入油气层造成孔喉堵塞,液相进入油气层与油气层岩石和流体作用,破坏油气层原有的平衡,从而诱发油气层潜在损害因素,造成渗透率下降。
钻井液中固相对地层渗透率的影响二、钻井过程中影响油气层损害程度的工程因素影响油气层损害程度的工程因素:压差、浸泡时间、环空返速、钻井液性能(与固相、滤液和泥饼质量密切相关)第二节保护油气层的钻井液技术一、钻井液在钻井中的主要作用钻井液的作用:冲洗井底和携带岩屑;破岩作用;平衡地层压力;冷却与润滑钻头;稳定井壁;保护油气层;获取地层信息;传递功率二、保护油气层对钻井液的要求1.钻井液密度可调,满足不同压力油气层近平衡压力钻井的需要2.钻井液中固相颗粒与油气层渗流通道匹配3.钻井液必须与油气层岩石相配伍4.钻井液滤液组分必须与油气层中流体相配伍5.钻井液的组分与性能都能满足保护油气层的需要三、钻开油气层的钻井液类型目前保护油气层钻井液技术已从初级阶段(仅控制钻井液密度、滤失量和浸泡时间)进入到比较高级的阶段。
针对不同类型油气藏形成了系列的保护油气层钻井液技术。
1.水基钻井液由于水基钻井液具有成本低、配置处理维护较简单、处理剂来源广、可供选择的类型多、性能容易控制等优点,并具有较好的保护油气层效果,是国内外钻开油气层常用的钻井液体系。
按钻井液组分与使用范围分:1)无固相清洁盐水钻井液2)水包油钻井液3)无膨润土暂堵型聚合物钻井液4)低膨润土聚合物钻井液5)改性钻井液表5-1 各类盐水溶液所能达到的最大密度6)正电胶钻井液7)甲酸盐钻井液8)聚合醇(多聚醇)钻井液9)屏蔽暂堵钻井液①无固相清洁盐水钻井液密度可在1.0~2.30g/cm3范围内调整。