《因式分解》单元测试(1)
- 格式:doc
- 大小:102.50 KB
- 文档页数:2
八年级数学《因式分解》单元测试题(有答案)一、选择题1.下列分解因式正确的是()A. -x2+4x=-x(x+4)B. x2+xy+x=x(x+y)C. x(x-y)+y(y-x)=(x-y)2D. x2-4x+4=(x+2)(x-2)【分析】根据因式分解的步骤:先提取公因式,再用公式法分解即可求得答案,注意分解要彻底。
解:A.-x2+4x=-x(x-4),此项错误;B.x2+xy+x=x(x+y+1),此项错误;C.x(x-y)+y(y-x)=(x-y)2正确;D.x2-4x+4=(x-2)2,此项错误。
【答案】C【点评】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.2. 下列各式由左边到右边的变形,属于因式分解的是()A.(x+1)(x-1)=x2-1 B.x2+2x+1=x(x+2)+1C.a2-4b2=(a+2b)(a-2b) D.a(x-y)=ax-ay【答案】C3.多项式15a3b3+5a2b-20a2b3中各项的公因式是()A.a3b3B.a2b C.5a2b D.5a3b3【答案】C4.已知x2+px+q=(x+5)(x-1),则p,q的值为()A.4,5 B.4,-5 C.-4,5 D.-4,-5【答案】B5.若a为实数,则整数a2(a2-1)-a2+1的值()A.不是负数B.恒为正数C.恒为负数D.不等于0【答案】A6.下列多项式中不能用公式法分解的是()A.-a2-b2+2ab B.a2+a+1 4C.-a2+25b2D.-4-b2【答案】D7.把代数式3x3-12x2+12x分解因式,结果正确的是()A.3x(x2-4x+4) B.3x(x-4)2C.3x(x+2)(x-2) D.3x(x-2)2【答案】D8.已知多项式x+81b4可分解为(4a2+9b2)(2a+3b)(3b-2a),则x的值是()A.16a4B.-16a4C.4a2D.-4a2【答案】B二、填空题9.分解因式:16﹣x2=__________.【解析】16和x2都可写成平方形式,且它们符号相反,符合平方差公式特点,利用平方差公式进行因式分解即可.解:16-x2=(4+x)(4-x).【答案】(4+x)(4﹣x)【点评】本题考查利用平方差公式分解因式,熟记公式结构是解题的关键.10.分解因式:2x3﹣6x2+4x=__________.【解析】首先提取公因式2x,再利用十字相乘法分解因式得出答案.解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).【答案】2x(x﹣1)(x﹣2).【点评】此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.11.分解因式:a2-5a =________.【分析】利用提公因式法,将各项的公因式a提出,将各项剩下的因式写在一起,作为因式。
单元测试(一)一、选择题1.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12x C.x2﹣2x D.(x﹣3)2+2(x﹣3)+12.下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+an B.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x3.把多项式a2﹣4a分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2 )2﹣4 4.下列等式从左到右的变形属于因式分解的是()A.x2﹣2x+1=(x﹣1)2B.ax﹣ay+a=a(x﹣y)+aC.x3﹣x=x(x+1)(x﹣1)+1 D.x2﹣4+3x=(x+2)(x﹣2)+3x5.当a,b互为相反数时,代数式a2+ab﹣4的值为()A.4 B.0 C.﹣3 D.﹣46.多项式x2﹣4分解因式的结果是()A.(x+2)(x﹣2)B.(x﹣2)2C.(x+4)(x﹣4)D.x(x﹣4)7.把多项式m2﹣9m分解因式,结果正确的是()A.m(m﹣9) B.(m+3)(m﹣3)C.m(m+3)(m﹣3)D.(m﹣3)2 8.多项式m2﹣m与多项式2m2﹣4m+2的公因式是()A.m﹣1 B.m+1 C.m2﹣1 D.(m﹣1)29.把多项式分解因式,正确的结果是()A.4a2+4a+1=(2a+1)2B.a2﹣4b2=(a﹣4b)(a+b)C.a2﹣2a﹣1=(a﹣1)2D.(a﹣b)(a+b)=a2﹣b210.下列因式分解正确的是()A.m2+n2=(m+n)(m﹣n)B.x2+2x﹣1=(x﹣1)2C.a2﹣a=a(a﹣1)D.a2+2a+1=a(a+2)+111.当a,b互为相反数时,代数式a2+ab﹣2的值为()A.2 B.0 C.﹣2 D.﹣112.下列各式从左到右的变形中,为因式分解的是()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.y2﹣1=(y+1)(y﹣1)D.ax+by+c=x(a+b)+c二、填空题13.分解因式:m2+2m=.14.分解因式:a2+a=.15.因式分解:m2﹣m= .16.因式分解:x2﹣2x+(x﹣2)=.17.分解因式:ab﹣b2=.三、解答题18.因式分解:﹣3a3b+6a2b2﹣3ab3.19.发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.20.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.21.(1)计算:(﹣+)÷(﹣)(2)分解因式:x3﹣4x.22.将下列各式因式分解:(1)x2﹣9(2)﹣3ma2+12ma﹣9m(3)4x2﹣3y(4x﹣3y)(4)(a+2b)2+2(a+2b﹣1)+3.23.数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300﹣4)2=3002﹣2×300×(﹣4)+42=90000+2400+16=92416老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.答案与解析1.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12x C.x2﹣2x D.(x﹣3)2+2(x﹣3)+1【考点】51:因式分解的意义.【专题】选择题【分析】对各多项式进行因式分解即可求出答案.【解答】解:(A)原式=(x+2)(x﹣2),结果中含有因式(x﹣2);(B)原式=x(x2﹣4x﹣12)=x(x+2)(x﹣6),结果中不含有因式(x﹣2);(C)原式=x(x﹣2),结果中含有因式(x﹣2);(D)原式=[(x﹣3)+1]2=(x﹣2)2,结果中含有因式(x﹣2);故选B【点评】本题考查因式分解,解题的关键是熟练运用因式分解的方法,本题属于基础题型.2.下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+an B.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x【考点】51:因式分解的意义.【专题】选择题【分析】根据因式分解的意义即可判断.【解答】解:(A)该变形为去括号,故A不是因式分解;(B)该等式右边没有化为几个整式的乘积形式,故B不是因式分解;(D)该等式右边没有化为几个整式的乘积形式,故D不是因式分解;故选C【点评】本题考查因式分解的意义,解题的关键是正确理解因式分解的意义,本题属于基础题型.3.把多项式a2﹣4a分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2 )2﹣4【考点】53:因式分解﹣提公因式法.【专题】选择题【分析】多项式提取公因式即可得到结果.【解答】解:a2﹣4a=a(a﹣4).故选A【点评】此题考查了因式分解﹣提公因式法,找出多项式的公因式是解本题的关键.4.下列等式从左到右的变形属于因式分解的是()A.x2﹣2x+1=(x﹣1)2B.ax﹣ay+a=a(x﹣y)+aC.x3﹣x=x(x+1)(x﹣1)+1 D.x2﹣4+3x=(x+2)(x﹣2)+3x【考点】51:因式分解的意义.【专题】选择题【分析】根据因式分解的意义,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、没把一个多项式转化成几个整式积的形式,故D不符合题意;故选:A.【点评】本题考查了因式分解的意义,利用因式分解得意义是解题关键.5.当a,b互为相反数时,代数式a2+ab﹣4的值为()A.4 B.0 C.﹣3 D.﹣4【考点】53:因式分解﹣提公因式法.【专题】选择题【分析】首先利用相反数的定义得出a+b=0,再利用提取公因式法将原式变形求出答案.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2+ab﹣4=a(a+b)﹣4=0﹣4=﹣4,故选:D.【点评】此题主要考查了提取公因式的应用以及相反数的定义,正确将原式变形是解题关键.6.多项式x2﹣4分解因式的结果是()A.(x+2)(x﹣2)B.(x﹣2)2C.(x+4)(x﹣4)D.x(x﹣4)【考点】54:因式分解﹣运用公式法.【专题】选择题【分析】直接利用平方差公式进行分解即可.【解答】解:x2﹣4=(x+2)(x﹣2),故选:A.【点评】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).7.把多项式m2﹣9m分解因式,结果正确的是()A.m(m﹣9) B.(m+3)(m﹣3)C.m(m+3)(m﹣3)D.(m﹣3)2【考点】53:因式分解﹣提公因式法.【专题】选择题【分析】直接找出公因式m,提取分解因式即可.【解答】解:m2﹣9m=m(m﹣9).故选:A.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.8.多项式m2﹣m与多项式2m2﹣4m+2的公因式是()A.m﹣1 B.m+1 C.m2﹣1 D.(m﹣1)2【考点】52:公因式.【专题】选择题【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【解答】解:m2﹣m=m(m﹣1),2m2﹣4m+2=2(m﹣1)(m﹣1),m2﹣m与多项式2m2﹣4m+2的公因式是(m﹣1),故选:A.【点评】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.9.把多项式分解因式,正确的结果是()A.4a2+4a+1=(2a+1)2 B.a2﹣4b2=(a﹣4b)(a+b)C.a2﹣2a﹣1=(a﹣1)2D.(a﹣b)(a+b)=a2﹣b2【考点】54:因式分解﹣运用公式法.【专题】选择题【分析】直接利用乘法公式分解因式,进而判断得出答案.【解答】解:A、4a2+4a+1=(2a+1)2,正确;B、a2﹣4b2=(a﹣2b)(a+2b),故此选项错误;C、a2﹣2a﹣1无法运用公式分解因式,故此选项错误;D、(a﹣b)(a+b)=a2﹣b2,是多项式乘法,故此选项错误;故选:A.【点评】此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.10.下列因式分解正确的是()A.m2+n2=(m+n)(m﹣n)B.x2+2x﹣1=(x﹣1)2C.a2﹣a=a(a﹣1)D.a2+2a+1=a(a+2)+1【考点】54:因式分解﹣运用公式法;53:因式分解﹣提公因式法.【专题】选择题【分析】分别利用公式法以及提取公因式法分解因式得出答案.【解答】解:A、m2+n2无法分解因式,故此选项错误;B、x2+2x﹣1无法分解因式,故此选项错误;C、a2﹣a=a(a﹣1),正确;D、a2+2a+1=(a+1)2,故此选项错误;故选:C.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.11.当a,b互为相反数时,代数式a2+ab﹣2的值为()A.2 B.0 C.﹣2 D.﹣1【考点】53:因式分解﹣提公因式法.【专题】选择题【分析】由互为相反数两数之和为0得到a+b=0,原式变形后代入计算即可求出值.【解答】解:由题意得到a+b=0,则原式=a(a+b)﹣2=0﹣2=﹣2,故选C【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.下列各式从左到右的变形中,为因式分解的是()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.y2﹣1=(y+1)(y﹣1)D.ax+by+c=x(a+b)+c【考点】51:因式分解的意义.【专题】选择题【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【解答】解:A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式积,故B错误;C、把一个多项式转化成几个整式积,故C正确;D、没把一个多项式转化成几个整式积,故D错误;故选:C.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积是解题关键.13.分解因式:m2+2m=.【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】根据提取公因式法即可求出答案.【解答】解:原式=m(m+2)故答案为:m(m+2)【点评】本题考查因式分解,解题的关键是熟练运用提取公因式法,本题属于基础题型.14.分解因式:a2+a=.【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】直接提取公因式分解因式得出即可.【解答】解:a2+a=a(a+1).故答案为:a(a+1).【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.15.因式分解:m2﹣m= .【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】式子的两项含有公因式m,提取公因式即可分解.【解答】解:m2﹣m=m(m﹣1)故答案是:m(m﹣1).【点评】本题主要考查了提取公因式分解因式,正确确定公因式是解题的关键.16.因式分解:x2﹣2x+(x﹣2)=.【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】通过两次提取公因式来进行因式分解.【解答】解:原式=x(x﹣2)+(x﹣2)=(x+1)(x﹣2).故答案是:(x+1)(x﹣2).【点评】本题考查了因式分解﹣提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.17.分解因式:ab﹣b2=.【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】根据提公因式法,可得答案.【解答】解:原式=b(a﹣b),故答案为:b(a﹣b).【点评】本题考查了因式分解,利用提公因式法是解题关键.18.因式分解:﹣3a3b+6a2b2﹣3ab3.【考点】55:提公因式法与公式法的综合运用.【专题】解答题【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣3ab(a2﹣2ab+b2)=﹣3ab(a﹣b)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.【考点】59:因式分解的应用.【专题】解答题【分析】验证(1)计算(﹣1)2+02+12+22+32的结果,再将结果除以5即可;(2)用含n的代数式分别表示出其余的4个整数,再将它们的平方相加,化简得出它们的平方和,再证明是5的倍数;延伸:设三个连续整数的中间一个为n,用含n的代数式分别表示出其余的2个整数,再将它们相加,化简得出三个连续整数的平方和,再除以3得到余数.【解答】解:发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32=1+0+1+4+9=15,15÷5=3,即(﹣1)2+02+12+22+32的结果是5的3倍;(2)设五个连续整数的中间一个为n,则其余的4个整数分别是n﹣2,n﹣1,n+1,n+2,它们的平方和为:(n﹣2)2+(n﹣1)2+n2+(n+1)2+(n+2)2=n2﹣4n+4+n2﹣2n+1+n2+n2+2n+1+n2+4n+4=5n2+10,∵5n2+10=5(n2+2),又n是整数,∴n2+2是整数,∴五个连续整数的平方和是5的倍数;延伸设三个连续整数的中间一个为n,则其余的2个整数是n﹣1,n+1,它们的平方和为:(n﹣1)2+n2+(n+1)2=n2﹣2n+1+n2+n2+2n+1=3n2+2,∵n是整数,∴n2是整数,∴任意三个连续整数的平方和被3除的余数是2.【点评】本题考查了因式分解的应用,完全平方公式,整式的加减运算,解题的关键是掌握合并同类项的法则并且能够正确运算.20.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【考点】59:因式分解的应用.【专题】解答题【分析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.【解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.【点评】此题考查了因式分解的应用,弄清题中“吉祥数”的定义是解本题的关键.21.(1)计算:(﹣+)÷(﹣)(2)分解因式:x3﹣4x.【考点】55:提公因式法与公式法的综合运用;1G:有理数的混合运算.【专题】解答题【分析】(1)原式利用除法法则变形,再利用乘法分配律计算即可得到结果;(2)原式提取x,再利用平方差公式分解即可.【解答】解:(1)原式=(﹣+)×(﹣72)=﹣56+27﹣10=﹣39;(2)原式=x(x2﹣4)=x(x+2)(x﹣2).【点评】此题考查了提公因式法与公式法的综合运用,以及有理数的混合运算,熟练掌握因式分解的方法及运算法则是解本题的关键.22.将下列各式因式分解:(1)x2﹣9(2)﹣3ma2+12ma﹣9m(3)4x2﹣3y(4x﹣3y)(4)(a+2b)2+2(a+2b﹣1)+3.【考点】55:提公因式法与公式法的综合运用.【专题】解答题【分析】(1)直接利用平方差公式分解因式得出答案;(2)首先提取公因式﹣3m,进而利用十字相乘法分解因式得出答案;(3)首先去括号,进而利用完全平方公式分解因式得出答案;(4)首先去括号,进而利用完全平方公式分解因式得出答案.【解答】解:(1)x2﹣9=(x+3)(x﹣3);(2)﹣3ma2+12ma﹣9m=﹣3m(a2﹣4a+3)=﹣3m(a﹣1)(a﹣3);(3)4x2﹣3y(4x﹣3y)=4x2﹣12xy+9y2,=(2x﹣3y)2;(4)(a+2b)2+2(a+2b﹣1)+3=(a+2b)2+2(a+2b)+1,=(a+2b+1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.23.数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300﹣4)2=3002﹣2×300×(﹣4)+42=90000+2400+16=92416老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.【考点】59:因式分解的应用.【专题】解答题【分析】运用完全平方公式进行正确的计算后即可得到正确的结果.【解答】解:答案:错在“﹣2×300×(﹣4)”,应为“﹣2×300×4”,公式用错.∴2962=(300﹣4)2=3002﹣2×300×4+42=90000﹣2400+16=87616.【点评】本题考查了因式分解的应用,解题的关键是了解完全平方公式的形式并正确的应用.。
《第十四章 整式的乘除与因式分解》单元测试卷(一)(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1. 计算a 10÷a 2(a≠0)的结果是( )A.a 5B.a -5C.a 8D.a -82. 下列计算中,正确的是( )A .(a 3)4= a 12B .a 3· a 5= a 15C .a 2+a 2= a 4D .a 6÷ a 2= a 33. 运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +94. 将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .2a a +C .22a a +-D .2(2)2(2)1a a +-++5. 下列运算正确的是( )A .(12)﹣1=﹣12 B .6×107=6000000C .(2a )2=2a 2D .a 3•a 2=a 56. 把x n+3+x n+1分解因式得( )A .x n+1(x 2+1)B .n 3x x +x ()C .x (n+2x +n x )D .x n+1(x 2+x ) 7. 若4x 2+axy+25y 2是一个完全平方式,则a=( )A .20B .﹣20C .±20D .±108. 将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是( )9. 20042-2003×2005的计算结果是( )A .1B .-1C .0D .2×20042-110. 将代数式2x +4x-1化成()2x+p +q 的形式为( )A .(x-2)2+3B .(x+2)2-4C .(x+2)2 -5D .(x+2)2+4二、填空题(共6小题,每小题3分,共18分)11. 因式分解:a 3-a=12. 计算:(-5a 4)•(-8ab 2)= . 13. 已知a m =3,a n =4,则a 3m-2n =__________14. 若3x =,则代数式269x x -+的值为__________.15. 若x +y =10,xy =1 ,则x 3y +xy 3= .16. 若整式22x ky +(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是 _______________(写出一个即可).三、解答题(共8题,共72分)17. (本题8分)计算:(a+b )2﹣b (2a+b )18. (本题8分)分解因式:2m (m ﹣n )2﹣8m 2(n ﹣m )19. (本题8分)如图(1),是一个长为2a 宽为2b (a >b )的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,求中间空白部分的面积(用含a 、b 的式子表示 )20. (本题8分)计算(2126)3×(1314)4×(43)321. (本题8分)简便计算:1.992+1.99×0.0122. (本题10分)当a=3,b=-1时,求()()a b a b +-的值。
七年级数学下册《因式分解》单元测试卷(附带答案解析)一.选择题1.下列多项式不能用平方差分解因式的是()A.0.36a2﹣0.04b2B.x2﹣16C.﹣a2+b2+c2D.﹣x2+y22.多项式4ab2+8ab2﹣12ab的公因式是()A.4ab B.2ab C.3ab D.5ab3.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣44.下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1D.a2﹣1=a(a﹣)5.已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形②是直角三角形③是钝角三角形④是等边三角形,其中正确说法的个数是()A.4个B.3个C.2个D.1个6.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值为()A.6B.18C.28D.507.若a=x﹣20,b=x﹣18,c=x﹣16,则a2+b2+c2﹣ab﹣ac﹣bc的值为()A.12B.24C.27D.54二.填空题(共8小题)8.因式分解:a3+2a2b+ab2=.9.已知x2+2x+2y+y2+2=0,则x2022+y2023=.10.若x2+2x﹣3=0,则x3+x2﹣5x+2022=.11.分解因式:25a﹣ab2=.12.若x2+mx﹣n=(x+2)(x﹣5),则m﹣n=.13.若mn=1,m﹣n=2,则m2n﹣mn2的值是.14.若x2+2(3﹣m)x+25可以用完全平方式来分解因式,则m的值为.15.甲乙两人完成因式分解x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x﹣2),乙看错了b的值,分解的结果为(x﹣8)(x+4),那么x2+ax+b分解因式正确的结果为.三.解答题16.分解因式:x(x+4)+4.17.将下列多项式因式分解(1)8x2﹣4xy(2)3x4+6x3y+3x2y2(3)a2﹣ab+ac﹣bc18.因式分解:(1)2a3﹣8a(2)3x2y﹣18xy2+27y319.因式分解:(1)x2(a﹣b)+9(b﹣a)(2)(a2+4)2﹣16a2.20.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,设x+y=m,则原式=m2+2m+1=(m+1)2.再将x+y=m代入,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法.请你完成下列各题:(1)因式分解:1﹣2(x﹣y)+(x﹣y)2(2)因式分解:25(a+2)2﹣10(a+2)+1(3)因式分解:(y2﹣6y)(y2﹣6y+18)+81.21.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)若F(a)=且a为100以内的正整数,则a=(2)如果m是一个两位数,那么试问F(m)是否存在最大值或最小值?若存在,求出最大(或最小)值以及此时m的取值并简要说明理由.参考答案与解析一.选择题1.解:A、0.36a2﹣0.04b2=(0.6a+0.2b)(0.6a﹣0.2b),能分解因式,本选项不符合题意B、x2﹣16=(x+4)(x﹣4),本选项不合题意C、﹣a2+b2+c2无法分解因式,本选项符合题意D、﹣x2+y2=(y+x)(y﹣x),本选项不合题意故选:C.2.解:多项式4ab2+8ab2﹣12ab的公因式4ab故选:A.3.解:A、原式不能分解B、原式=(x+y)2﹣2=(x+y+)(x+y﹣)C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4)D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2)故选:A.4.解:把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,称为多项式的因式分解故选:B.5.解:∵a2+b2+c2=ab+bc+ca∴2a2+2b2+2c2=2ab+2bc+2ca即(a﹣b)2+(b﹣c)2+(a﹣c)2=0∴a=b=c∴此三角形为等边三角形,同时也是锐角三角形.故选:C.6.解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2将a+b=3,ab=2代入得,ab(a+b)2=2×32=18故代数式a3b+2a2b2+ab3的值为18故选:B.7.解:原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]∵a=x﹣20,b=x﹣18,c=x﹣16∴a﹣b=﹣2,a﹣c=﹣4,b﹣c=﹣2则原式=×(4+16+4)=12故选:A.二.填空题8.解:原式=a(a2+2ab+b2)=a(a+b)2故答案为a(a+b)29.解:∵x2+2x+2y+y2+2=0∴(x2+2x+1)+(y2+2y+1)=0∴(x+1)2+(y+1)2=0∴x+1=0,y+1=0解得:x=﹣1,y=﹣1∴x2022+y2023=(﹣1)2022+(﹣1)2023=1+(﹣1)=0故答案为0.10.解:∵x2+2x﹣3=0∴x2=3﹣2x∴x3+x2﹣5x+2022=x(3﹣2x)+x2﹣5x+2022=3x﹣2x2+x2﹣5x+2022=﹣3+2x﹣2x+2022=2019 11.解:25a﹣ab2=a(25﹣b2)=a(5+b)(5﹣b)故答案为a(5+b)(5﹣b)12.解:∵x2+mx﹣n=(x+2)(x﹣5)=x2﹣3x﹣10∴m=﹣3,n=10∴m﹣n=﹣3﹣10=﹣13.故答案为﹣13.13.解:∵mn=1,m﹣n=2∴m2n﹣mn2=mn(m﹣n)=1×2=2故答案为2.14.解:∵x2+2(3﹣m)x+25可以用完全平方式来分解因式∴2(3﹣m)=±10解得:m=﹣2或8.故答案为﹣2或8.15.解:因式分解x2+ax+b时∵甲看错了a的值,分解的结果是(x+6)(x﹣2)∴b=6×(﹣2)=﹣12又∵乙看错了b的值,分解的结果为(x﹣8)(x+4)∴a=﹣8+4=﹣4∴原二次三项式为x2﹣4x﹣12因此,x2﹣4x﹣12=(x﹣6)(x+2)故答案为(x﹣6)(x+2).三.解答题16.解:原式=x2+4x+4=(x+2)217.解:(1)原式=4x(2x﹣y)(2)原式=3x2(x2+2xy+y2)=3x2(x+y)2(3)原式=a(a﹣b)+c(a﹣b)=(a﹣b)(a+c).18.解:(1)原式=2a(a2﹣4)=2a(a+2)(a﹣2)(2)原式=3y(x2﹣6xy+9y2)=3y(x﹣3y)2 19.解:(1)原式=x2(a﹣b)﹣9(a﹣b)=(a﹣b)(x2﹣9)=(a﹣b)(x﹣3)(x+3)(2)原式=(a2+4+4a)(a2+4﹣4a)=(a+2)2(a﹣2)220.解:(1)设x﹣y=m原式=1﹣2m+m2=(1﹣m)2=[1﹣(x﹣y)]2=(1﹣x+y)2(2)设a+2=m原式=25m2﹣10m+1=(5m﹣1)2=[5(a+2)﹣1]2=(5a+9)2(3)设y2﹣6y=m原式=m(m+18)+81=m2+18m+81=(m+9)2=(y2﹣6y+9)2=(y﹣3)4.21.解:(1)2×3=6,4×6=24,6×9=54,8×12=96 (2)F(m)存在最大值和最小值.当m为完全平方数,设m=n2(n为正整数)∵|n﹣n|=0∴n×n是m的最佳分解∴F(m)==1又∵F(m)=且p≤q∴F(m)最大值为1此时m为16,25,36,49,64,81当m为最大的两位数质数97时,F(m)存在最小值,最小值为.故答案为6,24,54,96.。
因式分解单元检测卷时间:90分钟满分:120分班级:__________姓名:__________得分:__________ 一、选择题(每小题3分,共30分)1.下列等式从左到右的变形属于因式分解的是()A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3-x=x(x+1)(x-1)2.多项式-6xy2+9xy2z-12x2y2的公因式是()A.-3xy B.3xyz C.3y2z D.-3xy23.下列各式中,不能用平方差公式因式分解的是()A.-a2-4b2B.-1+25a2 C.116-9a2D.-a4+14.把代数式xy2-9x分解因式,结果正确的是()A.x(y2-9) B.x(y+3)2 C.x(y+3)(y-3) D.x(y+9)(y-9) 5.若(x+y)3-xy(x+y)=(x+y)·M,则M是()A.x2+y2B.x2-xy+y2 C.x2-3xy+y2D.x2+xy+y26.计算2100+(-2)101的结果是()A.2100B.-2100 C.2 D.-27.下列因式分解中,正确的是()A.x2y2-z2=x2(y+z)(y-z) B.-x2y+4xy-5y=-y(x2+4x+5)C.(x+2)2-9=(x+5)(x-1) D.9-12a+4a2=-(3-2a)28.如图是边长为a,b的长方形,它的周长为14,面积为10,则a2b+ab2-ab的值为() A.70 B.60C.130 D.1409.设n为整数,则代数式(2n+1)2-25一定能被下列数整除的是()A.4 B.5 C.n+2 D.1210.已知a,b,c是三角形ABC的三条边,且三角形两边之和大于第三边,则代数式(a-c)2-b2的值是()A.正数B.0 C.负数D.无法确定二、填空题(每小题3分,共24分)11.分解因式2a (b +c )-3(b +c )的结果是______________.12.多项式3a 2b 2-6a 3b 3-12a 2b 2c 的公因式是________.13.已知a ,b 互为相反数,则a 2-b 24的值为________. 14.把下面四个图形拼成一个大长方形,并据此写出一个多项式的因式分解:________________.15.分解因式:(m +1)(m -9)+8m =________________.16.若x +y =10,xy =1,则x 3y +xy 3的值是________.17.若二次三项式x 2+mx +9是一个完全平方式,则代数式m 2-2m +1的值为________.18.先阅读,再分解因式:x 4+4=(x 4+4x 2+4)-4x 2=(x 2+2)2-(2x )2=(x 2-2x +2)(x 2+2x +2),按照这种方法分解因式:x 4+64=______________.三、解答题(共66分)19.(16分)分解因式:(1)(2a +b )2-(a +2b )2; (2)-3x 2+2x -13;(3)3m 4-48; (4)x 2(x -y )+4(y -x ).20.(10分)(1)已知x =13,y =12,求代数式(3x +2y )2-(3x -6y )2的值;(2)已知a -b =-1,ab =3,求a 3b +ab 3-2a 2b 2的值.21.(8分)给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.22.(10分)利用因式分解计算:(1)8352-1652; (2)2032-203×206+1032.23.(10分)如图,在半径为R 的圆形钢板上,钻四个半径为r 的小圆孔,若R =8.9cm ,r =0.55cm ,请你应用所学知识用最简单的方法计算剩余部分面积(结果保留π).24.(12分)先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=____________;(2)因式分解:(a+b)(a+b-4)+4;(3)试说明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.参考答案与解析1.D 2.D 3.A 4.C 5.D6.B 7.C 8.B 9.A 10.C11.(b +c )(2a -3) 12.3a 2b 2 13.014.x 2+3x +2=(x +2)(x +1)15.(m +3)(m -3) 16.98 17.25或4918.(x 2-4x +8)(x 2+4x +8)19.解:(1)原式=(2a +b +a +2b )(2a +b -a -2b )=3(a +b )(a -b ).(4分)(2)原式=-3⎝⎛⎭⎫x 2-23x +19=-3⎝⎛⎭⎫x -132.(8分) (3)原式=3(m 4-42)=3(m 2+4)(m 2-4)=3(m 2+4)(m +2)(m -2).(12分)(4)原式=(x -y )(x 2-4)=(x -y )(x +2)(x -2).(16分)20.解:(1)原式=(3x +2y +3x -6y )(3x +2y -3x +6y )=(6x -4y )·8y =16y (3x -2y ).(2分)当x =13,y =12时,原式=16×12×⎝⎛⎭⎫3×13-2×12=0.(5分) (2)原式=ab (a 2+b 2-2ab )=ab (a -b )2.(7分)当ab =3,a -b =-1时,原式=3×(-1)2=3.(10分)21.解:12x 2+2x -1+12x 2+4x +1=x 2+6x =x (x +6)(答案不唯一).(8分) 22.解:(1)原式=(835+165)×(835-165)=1000×670=670000.(5分)(2)原式=2032-2×203×103+1032=(203-103)2=1002=10000.(10分)23.解:S 剩余=πR 2-4πr 2=π(R +2r )(R -2r ).(5分)当R =8.9cm ,r =0.55cm 时,S 剩余=π×10×7.8=78π(cm 2).(9分)答:剩余部分的面积为78πcm 2.(10分)24.解:(1)(x -y +1)2(2分)(2)令A =a +b ,则原式=A (A -4)+4=A 2-4A +4=(A -2)2,故(a +b )(a +b -4)+4=(a +b -2)2.(6分)(3)(n +1)(n +2)(n 2+3n )+1=(n 2+3n )[(n +1)(n +2)]+1=(n 2+3n )(n 2+3n +2)+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n +1)2.∵n 为正整数,∴n 2+3n +1也为正整数,∴式子(n +1)(n +2)(n 2+3n )+1的值一定是某一个整数的平方.(12分)。
第四章因式分解一、选择题1.下列因式分解结果正确的是()A. x2+3x+2=x(x+3)+2B. 4x2﹣9=(4x+3)(4x﹣3)C. x2﹣5x+6=(x﹣2)(x﹣3)D. a2﹣2a+1=(a+1)22.下列从左到右的变形,是因式分解的是()A. (x+3)(x-2)=x2+x-6B. ax-ay-1=a(x-y)-1C. 8a2b3=2a2•4b3D. x2-4=(x+2)(x-2)3.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰或直角三角形4.把多项式x2﹣x分解因式,得到的因式是()A. 只有xB. x2和xC. x2和﹣xD. x和x﹣15.计算:22014﹣(﹣2)2015的结果是()A. B. C. ﹣ D. 3×6.下列多项式能因式分解的是()A. B. C. D.7.下列从左边到右边的变形,属于因式分解的是()A. (x+1)(x﹣1)=x2﹣1B. x2﹣2x+1=x(x﹣2)+1C. x2﹣4y2=(x﹣2y)2D. 2x2+4x+2=2(x+1)28.在实数范围内分解因式x5﹣64x正确的是()A. x(x4﹣64)B. x(x2+8)(x2﹣8)C. x(x2+8)(x+2)(x﹣2)D. x(x+2)3(x﹣2)9.分解因式得正确结果为()A. a2b(a2﹣6a+9)B. a2b(a﹣3)(a+3)C. b(a2﹣3)2D. a2b(a﹣3)210.若多项式x4+mx3+nx﹣16含有因式(x﹣2)和(x﹣1),则mn的值是()A. 100B. 0C. -100D. 50二、填空题11.分解因式:a3﹣ab2=________.12.分解因式:m2﹣16=________.13.分解因式x2-8x+16=________14. 分解因式:x2﹣9= ________.15.分解因式:a2﹣16=________.16.已知一个长方形的面积是a2﹣b2(a>b),其中长边为a+b,则短边长是________ .17.分解因式:x2y﹣4xy+4y=________.18. 分解因式:9x3﹣18x2+9x=________19.已知a=2,x+2y=3,则3ax+6ay=________20.分解因式:9a﹣a3=________ .三、解答题21.因式分解:(1)2x(a﹣b)+3y(b﹣a)(2)x(x2﹣xy)﹣(4x2﹣4xy)22.化简求值:当a=2005时,求﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005的值.23.阅读材料:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式x2﹣2x﹣3=________;a2﹣4ab﹣5b2=________;(2)无论m取何值,代数式m2+6m+13总有一个最小值,请你尝试用配方法求出它的最小值;(3)观察下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ca= [(a﹣b)2+(b﹣c)2+(c﹣a)2] 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.请你说明这个等式的正确性.参考答案一、选择题C D D D D C D C D C二、填空题11.a(a+b)(a﹣b)12.(m+4)(m-4)13.(x-4)214.(x+3)(x﹣3)15.(a+4)(a﹣4)16.解:(a2﹣b2)÷(a+b)=(a+b)(a﹣b)÷(a+b)=a﹣b.故答案为a﹣b.17.y(x﹣2)218.9x(x﹣1)219.1820.a(3+a)(3﹣a)三、解答题21.解:(1)原式=2x(a﹣b)﹣3y(a﹣b)=(a﹣b)(2x﹣3y);(2)原式=x2(x﹣y)﹣4x(x﹣y)=x(x﹣y)(x﹣4).22.解:﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005=﹣3a2(a2﹣2a﹣3)+3a2(a2﹣2a﹣3)+2005=2005.23.(1)(x﹣3)(x+1);(a+b)(a﹣5b)(2)解:m2+6m+13=m2+6m+9+4=(m+3)2+4,因为(m+3)2≥0,所以代数式m2+6m+13的最小值是4(3)解:a2+b2+c2﹣ab﹣bc﹣ca,= (2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),= (a2﹣2b+b2+b2﹣2bc+c2+c2﹣2ca+a2),= [(a﹣b)2+(b﹣c)2+(c﹣a)2]。
因式分解单元测试题一、选择题(每题2分,共10分)1. 下列哪个表达式是因式分解的结果?A. \( x^2 - 4 = x - 2 \)B. \( x^2 - 4 = (x - 2)(x + 2) \)C. \( x^2 - 4 = 2(x - 2) \)D. \( x^2 - 4 = 2x - 8 \)2. 因式分解 \( x^3 - 8 \) 的正确结果是:A. \( (x - 2)(x^2 + 2x + 4) \)B. \( (x - 2)^3 \)C. \( (x - 2)(x^2 + 2x + 4) \)D. \( (x - 2)(x + 2)(x + 4) \)3. 多项式 \( 2x^2 - 4x \) 可以因式分解为:A. \( 2x(x - 2) \)B. \( 2x(x + 2) \)C. \( x(2x - 4) \)D. \( 2(x^2 - 2x) \)4. 因式分解 \( a^2 - b^2 \) 的结果是:A. \( (a - b)(a + b) \)B. \( a^2 - b^2 \)C. \( (a + b)(a - b) \)D. \( (a^2 - b^2) \)5. 如果 \( x^2 + 5x + 6 \) 可以因式分解,那么正确的因式分解是:A. \( (x + 1)(x + 6) \)B. \( (x + 2)(x + 3) \)C. \( (x + 3)(x + 2) \)D. \( (x + 6)(x + 1) \)二、填空题(每题3分,共15分)6. 因式分解 \( x^2 + 7x + 10 \) 为 \( (x + \_\_\_\_\_\_)(x + \_\_\_\_\_\_) \)。
7. 多项式 \( 4y^2 - 9 \) 是一个差平方,可以因式分解为\( (\_\_\_\_\_\_ + \_\_\_\_\_\_)(\_\_\_\_\_\_ - \_\_\_\_\_\_) \)。
北师大版2020八年级数学下册第四章因式分解单元过关测试题1(附答案) 1.下列各式从左到右的变形是因式分解的是( ) A .()a b c ab ac -=- B .()222312x x x -+=-+ C .()()2422x x x -=+-D .2(1)(2)32x x x x ++=++2.下列多项式中,可以提取公因式的是( ) A .ab +cd B .mn +m 2 C .x 2-y 2D .x 2+2xy +y 23.若m -n =-6,mn =7,则mn 2-m 2n 的值是( ) A .-13 B .13 C .42 D .-42 4.下列多项式中,不能因式分解的是( ) A .a 2+1B .a 2﹣6a+9C .a 2+5aD .a 2﹣15.下列等式从左到右的变形,属于因式分解的是 A .(a +b )(a ﹣b )=a 2﹣b 2 B .a 2+4a +1=a (a +4)+1 C .x 3﹣x =x (x +1)(x ﹣1)D .2111x x x x x ⎛⎫++=++⎪⎝⎭6.把多项式x 3-4x 因式分解所得的结果是( ) A .x (x 2-4)B .x (x +4)(x -4)C .x (x +2)(x -2)D .(x +2)(x -2)7.下列变形是因式分解是( ) A .211()x x x x+=+B .24(2)(2)am a a m m -=+-C .2221(2)(1)(1)a ab b a a b b b ++-=+++-D .2224(2)x x x ++=+ 8.下列各式中能用完全平方公式分解因式的是( ) A .22a ab b ++B .294y y -C .2414a a +-D .221q q +-9.已知a 、b 、c 是ABC V 的三条边,且满足22a bc b ac +=+,则ABC V 是( ) A .锐角三角形 B .钝角三角形 C .等腰三角形D .等边三角形10.已知a 、b 、c 是△ABC 的三边,且满足a 2﹣b 2+ac ﹣bc =0,则△ABC 的形状是( ). A .直角三角形 B .等边三角形 C .等腰三角形 D .无法确定 11.因式分解:a 2﹣b 2=_____.12.已知a 、b 满足2284200a b a b +--+=,则22a b -=________.13.分解因式0.81x 2-16y 2=(0.9x+4y )(__).14.因式分解:n (m ﹣n )(p ﹣q )﹣n (n ﹣m )(p ﹣q )=__. 15.分解因式:23a a +=_______________. 16.分解因式:2x 3﹣6x 2+4x =__________.17.把多项式m 2(a ﹣2)+m (2﹣a )分解因式等于_____. 18.把x 3y ﹣xy 3分解因式的结果是_____________________. 19.分解因式:b 2-9 =_____.20.分解因式:m 2n ﹣4mn ﹣4n=_____. 21.分解因式: (1)8a 3b 2+12ab 3c ; (2)(2x+y )2﹣(x+2y )2.22.分解因式: (1)a 3-a ;(2)8(x 2-2y 2)-x (7x +y )+xy .23.分解因式:(1)323a b 16a - (2)2x 2y-4xy+2y24.若正整数k 满足个位数字为1,其他数位上的数字均不为1且十位与百位上的数字相等,我们称这样的数k 为“言唯一数”,交换其首位与个位的数字得到一个新数k',并记F (k )=11127k k k k -'-'++. (1)最大的四位“言唯一数”是 ,最小的三位“言唯一数”是 ; (2)证明:对于任意的四位“言唯一数”m ,m+m'能被11整除;(3)设四位“言唯一数”n=1000x+100y +10y+1(2≤x≤9,0≤y≤9且y≠1,x 、y 均为整数),若F (n )仍然为“言唯一数”,求所有满足条件的四位“言唯一数”n .25.(1)计算:(a ﹣b )(a 2+ab+b 2)(2)利用所学知识以及(1)所得等式,分解因式:m 3﹣n 3﹣3mn (m ﹣n )26.已知x ≠1,计算: (1-x )(1+x )=1-x 2, (1-x )(1+x +x 2)=1-x 3, (1-x )(1+x +x 2+x 3)=1-x 4.(1)观察以上各式并猜想:(1-x )(1+x +x 2+…+x n )=________(n 为正整数). (2)根据你的猜想计算:①(1-2)×(1+2+22+23+24+25)=________; ②2+22+23+…+2n =________(n 为正整数); ③(x -1)(x 99+x 98+x 97+…+x 2+x +1)=________. (3)通过以上规律请你进行下面的探索: ①(a -b )(a +b )=________; ②(a -b )(a 2+ab +b 2)=________; ③(a -b )(a 3+a 2b +ab 2+b 3)=________.27.将一个三位正整数n 各数位上的数字重新排列(含n 本身)后,得到新的三位数abc (a <c ),在所有重新排列大的数中,当|a+c ﹣2b|最小时,我们称abc 是n 的“天时数”,并规定F (n )=b 2﹣ac .当|a+c ﹣2b|最大时,我们称abc 是n 的“地利数”,并规定G (n )=ac ﹣b 2.并规定M (n )=()()F nG n 是n 的“人和数”,例如:215可以重新排列为125,152,215,因为|1+5﹣2×2|=2,|1+2﹣2×5|=7,|2+5﹣2×1|=5,且2<5<7,所以125是215的“天时数”F (125)=22﹣1×5=﹣1,152是215的“地利数”,G (152)=1×2﹣52=﹣23,M (215)=112323-=-. (1)计算:F (168),G (168);(2)设三位自然数s=100x+50+y (1≤x≤9,1≤y≤9,且x ,y 均为正整数),交换其个位上的数字与百位上的数字得到t ,若s ﹣t=693,那么我们称s 为“厚积薄发数”;请求出所有“厚积薄发数”中M (s )的最大值. 28.把下列多项式因式分解 (l)x 3=4xy 2; (2)(a-1)(a+3)+4 29.把下列各式分解因式:(1)236x y xy - (2)2332525x y x y -(3)3241626m m m -+- (4)22(3)3a a --+(5)23()2()m x y y x --- (6)2318()12()b a b a b ---(7)1532223520x y x y x y +- (8)6x(x+y)-4y(x+y)(9)()()()a x a b a x c x a -+--- (10)()()()()m n p q m n p q ++-+- 30.(1)分解因式:(p+4)(p-1)-3p ; (2)化简:参考答案1.C【解析】试题解析:A. 右边不是整式积的形式,不是因式分解,故本选项错误;B. 右边不是整式积的形式,不是因式分解,故本选项错误;C. 是因式分解,故本选项正确;D. 右边不是整式积的形式,不是因式分解,故本选项错误;故选C.点睛:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解. 2.B【解析】【分析】直接利用提取公因式法分解因式的步骤分析得出答案.【详解】解:A.ab+cd,没有公因式,故此选项错误;B.mn+m2=m(n+m),故此选项正确;C.x2﹣y2,没有公因式,故此选项错误;D.x2+2xy+y2,没有公因式,故此选项错误.故选B.【点睛】本题主要考查了提取公因式法分解因式,正确找出公因式是解题的关键.3.C【解析】【分析】首先把mn2+m2n分解因式,然后把已知等式代入其中即可求解.【详解】mn2+m2n=mn(n-m)=- mn(m-n),∵m-n=-6,mn=7,∴原式=6×7=42.故选:C.【点睛】此题考查了因式分解的应用,解题时首先通过因式分解把所求代数式变形,然后代入已知数据计算即可求解. 4.A 【解析】分析:利用因式分解的方法判断即可. 详解:A. 原式不能分解,符合题意; B. 原式2(3)a =-, 不合题意; C. 原式=x (x +5),不合题意; D. 原式(1)(1)a a =+-,不合题意, 故选A.点睛:考查因式分解的方法,常见的因式分解的方法有,提取公因式法,公式法,十字相乘法. 5.C 【解析】A. 是整式的乘法,故A 错误;B. 没把一个多项式转化成几个整式积的形式,故B 错误;C. 把一个多项式转化成几个整式积的形式,故C 正确;D. 没把一个多项式转化成几个整式积的形式,故D 错误; 故选:C. 6.C 【解析】试题解析:()()()324422.x x x x x x x -=-=+-故选C.点睛:先提取公因式,再用公式进行因式分解. 7.B 【解析】解:A .211()x x x x+=+ ,右边不是整式的乘积的形式,不是因式分解,故A 错误;B .24(2)(2)am a a m m -=+-,正确;C .2221(2)(1)(1)a ab b a a b b b ++-=+++-,右边不是整式的乘积的形式,不是因式分解,故C 错误;D .2224(2)x x x ++=+,左右两边不相等,不是恒等变形,故C 错误. 故选B . 8.C 【解析】A 选项中间乘积项不是两底数积的2倍,故本选项错误;B 选项不符合完成平方公式的特点,故本选项错误;C 选项符合完全平方公式的特点;D 选项不符合完成平方公式的特点,故本选项错误, 故选C . 9.C 【解析】 【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状. 【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0, ∵a+b-c≠0, ∴a-b=0,即a=b , 则△ABC 为等腰三角形. 故选C . 【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键. 10.C【解析】a 2−b 2+ac−bc=0, 由平方差公式得: (a+b)(a−b)+c(a−b)=0, (a−b)(a+b+c)=0,∵a 、b 、c 三边是三角形的边, ∴a 、b 、c 都大于0, ∴本方程解为a=b , ∴△ABC 一定是等腰三角形. 故选:C.11.(a+b )(a ﹣b ) 【解析】试题分析:直接应用平方差公式即可:()()22a b a b a b -=+-.12.12 【解析】分析:先根据完全平方公式的特征对等式2284200a b a b +--+=的左边进行因式分解可得:()()22420a b -+-=,再根据非负数的非负性可得:4,2a b ==,然后代入求解即可. 详解:因为2284200a b a b +--+=,所以22816440a a b b -++-+=, 所以()()22420a b -+-=, 所以()()2240,20a b -=-=, 所以4,2a b ==,所以2216412a b -=-=.点睛:本题主要考查利用完全平方公式进行因式分解,解决本题的关键是要熟练掌握利用完全平方公式进行因式分解. 13.0.9x -4y 【解析】试题分析:本题利用的是平方差公式进行因式分解,则原式=()()()()220.940.9x 4y 0.9x 4y x y -=+-. 14.2n (m ﹣n )(p ﹣q ).【解析】解:原式=n (m ﹣n )(p ﹣q )+n (m ﹣n )(p ﹣q )=2n (m ﹣n )(p ﹣q ).故答案为:2n (m ﹣n )(p ﹣q ). 15.(3)a a + 【解析】试题解析:23a a +=a(a+3). 16.2x (x ﹣1)(x ﹣2). 【解析】分析:首先提取公因式2x ,再利用十字相乘法分解因式得出答案. 详解:2x 3﹣6x 2+4x =2x (x 2﹣3x+2) =2x (x ﹣1)(x ﹣2). 故答案为2x (x ﹣1)(x ﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键. 17.:m (a ﹣2)(m ﹣1) 【解析】m 2(a ﹣2)+m (2﹣a )=m 2(a ﹣2)﹣m (a ﹣2)=m (a ﹣2)(m ﹣1). 故答案为m (a ﹣2)(m ﹣1). 18.xy (x +y )(x ﹣y ) 【解析】 【分析】先提公因式3x ,再利用平方差公式分解因式. 【详解】 解:故答案是:【点睛】本题主要利用提公因式法、完全平方公式分解因式,熟记公式结构特点是解题的关键. 19.(b+3)(b-3) 【解析】原式=(3)(3)b b +-. 故答案为:(3)(3)b b +-. 20.n (m 2﹣4m ﹣4) 【解析】 试题解析:244,m n mn n --()244n m m =--.故答案为:()244n m m --.21.(1)4ab 2(2a 2+3bc );(2)3(x+y )(x ﹣y ). 【解析】 【分析】(1)直接提取公因式4ab 2,进而分解因式即可; (2)直接利用平方差公式分解因式得出答案. 【详解】解:(1)8a 3b 2+12ab 3c =4ab 2(2a 2+3bc ); (2)(2x+y )2-(x+2y )2 =(2x+y+x+2y )(2x+y-x-2y ) =3(x+y )(x-y ).22.(1)a (a -1)(a +1);(2)(x +4y )(x -4y ).【解析】试题分析:(1)首先提取公因式,进而利用平方差公式分解因式即可; (2)首先去括号,进而合并同类项,再利用平方差公式分解因式即可. 试题解析:解:(1)原式=a (a 2-1)=a (a -1)(a +1).(2)原式=8x 2-16y 2-7x 2-xy +xy =x 2-16y 2=(x +4y )(x -4y ). 23.(1)a 3(b+4)(b-4) (2)2y 2(1)x - 【解析】试题分析:(1)(2)利用提取公因式和公式法因式分解.试题解析:(1)3233216(16a b a a b -=-)=a 3(b +4)(b -4) .(2)2x 2y -4xy +2y =2y (x 2-2x +1)=2y (x-1)2.24.(1)9991;221;(2)详见解析;(3)满足条件的所有的四位“言唯一数”为3221和8551【解析】【分析】根据题目给出的新定义,正整数k 满足个位数字为1,其他数位上的数字均不为1且十位与百位上的数字相等,称这样的数k 为“言唯一数”,解答即可.【详解】(1)最大的四位“言唯一数”是 9991 ,最小的三位“言唯一数”是 221 ;(2)证明:设1000100101m a b b =+++,则'100010010m b b a =+++()'1001220100111912091m m a b a b ∴+=++=++,a b Q 都为正整数,则912091a b ++也是正整数∴对于任意的四位“言唯一数”m ,'m m +能被11整除.(3) Q 1000100101n x y y =+++(29x ≤≤,09y ≤≤且1y ≠,x 、y 均为整数) '1000110n y x ∴=++.则()()11912091''9999991111271127x y n n n n x F n +++--=-+=-+ 91109137371x y x =++-++5420129x y =++()F n Q 仍然为言唯一数, 20y 末尾数字为0,129末尾数字为9则54x 的末尾数字为2,3x ∴=或8x =①当3x =时,542012920291x y y ++=+,2y =时,()331F n =,此时3221n =②当8x =时,542012920561x y y ++=+,5y =时,()661F n =,此时8551n =满足条件的所有的四位“言唯一数”为3221和8551【点睛】本题主要考查了对因式分解的应用,对新定义的理解程度时解答本题的关键.25.(1)a3﹣b3;(2)(m﹣n)3.【解析】【分析】(1)根据多项式乘以多项式的法则进行计算即可;(2)利用分组分解法,先将前两项分为一组,根据(1)的立方差公式分解因式,再提公因式即可.【详解】解:(1)原式=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3;(2)原式=(m﹣n)(m2+mn+n2)﹣3mn(m﹣n)=(m﹣n)(m2﹣2mn+n2)=(m﹣n)3【点睛】本题考查了多项式乘以多项式和因式分解,熟练掌握立方差公式是关键.26.(1)①-63;②2n+1-2;③x100-1.(2)①a2-b2;②a3-b3;③a4-b4【解析】试题分析:(1)根据题意易得(1-x)(1+x+x2+…+x n)=1-x n+1;利用猜想的结论得到①(1-2)(1+2+22+23+24+25)=1-26=1-64=-63;②先变形2+22+23+24+…+2n=2(1+2+22+23+24+…+2n-1)=-2(1-2)(1+2+22+23+24+…+2n-1),然后利用上述结论写出结果;③先变形得到(x-1)(x99+x98+x97+…+x2+x+1)=-(1-x)(1+x+x2+…+x99),然后利用上述结论写出结果;(2)根据规律易得①(a-b)(a+b)=a2-b2;②(a-b)(a2+ab+b2)=a3-b3;③(a-b)(a3+a2b+ab2+b3)=a4-b4.试题解析:(1)由题意知(1−x)(1+x+x2+…+x n)=1−x n+1;所以①(1−2)(1+2+22+23+24+25)=1−26=1−64=−63;②2+22+23+24+…+2n=2(1+2+22+23+24+…+2n−1)=−2(1−2)(1+2+22+23+24+…+2n−1)=−2(1−2n)=2n+1−2;③(x−1)(x99+x98+x97+…+x2+x+1)=−(1−x)(1+x+x2+…+x99)=−(1−x100)=x100−1,(3)①(a−b)(a+b)=a2−b2;②(a−b)(a2+ab+b2)=a3−b3;③(a−b)(a3+a2b+ab2+b3)=a4−b4.故答案为:(1)①-63;②2n+1-2;③x100-1.(2)①a2-b2;②a3-b3;③a4-b4点睛:此题考查了平方差公式,规律型:数字的变化类以及多项式乘多项式,熟练掌握运算法则及公式是解本题的关键.27.(1)28,47;(2)17 39【解析】【分析】(1)将168重新排列为168、186,618,计算出|1+8﹣2×6|=3、|1+6﹣2×8|=98+6﹣2×1|=12,且3<9<12,可得168的天时数与地利数,再根据天时数和地利数的定义计算可得;(2)由s=100x+50+y,t=100y+50+x,根据s﹣t=693可得81xy=⎧⎨=⎩或92xy=⎧⎨=⎩,据此得出s的“厚积薄发数”为851或952,再分别求出这两个数的“人和数”,比较大小即可得.【详解】(1)168重新排列为168、186、618.∵|1+8﹣2×6|=3、|1+6﹣2×8|=9、|8+6﹣2×1|=12,且3<9<12,∴168是168的天时数,F (168)=62﹣1×8=28;618是168的地利数,G(618)=6×8﹣12=47.(2)s=100x+50+y,t=100y+50+x.∵s﹣t=99x﹣99y=693,∴99(x﹣y)=693,x﹣y=7,x=y+7,∴1≤x≤9,1≤y≤9,∴1≤y+7≤9,∴1≤y≤2,∴81xy=⎧⎨=⎩或92xy=⎧⎨=⎩,∴s的“厚积薄发数”为851或952,当s=851时,可以重新排列为158,185,518.∵|1+8﹣2×5|=1,|1+5﹣2×8|=10,|5+8﹣2×1|=11,∴158为851的“天时数”,F(851)=52﹣1×8=17;518为851的“地利数”G(851)=5×8﹣12=39;则M (851)=1739; 当s =952时,可以重新排列为529、295、259.∵|5+9﹣2×2|=10,|2+5﹣2×9|=11,|2+9﹣2×5|=1,∴259为952的“天时数”,F (952)=52﹣2×9=7; 295为952的“地利数”,G (952)=2×5﹣92=﹣71,则M (952)=﹣771; 综上,知所有“厚积薄发数”中M (s )的最大值为1739. 【点睛】本题考查了因式分解的应用,解题的关键是理解题意,灵活运用所学知识解决问题,解题的突破点是学会应用枚举法求出满足条件的天时数、地利数及人和数. 28.(1)()() x x 2y x 2y +- ;(2) ()2a 1+ 【解析】试题分析:(1)先提取公因式,然后再利用平方差公式进行分解即可;(2)先进行乘法运算,合并同类项后利用完全平方公式进行分解即可.试题解析:(1)()3222x 4xy x x 4y-=- ()()x x 2y x 2y =+- ; (2)()()2a 1a 34a 2a 34-++=+-+ 2a 2a 1=++ ()2a 1=+.29.(1)3xy(x-2); (2)225(5)x y y x -; (3)22(2813m m m --+); (4)3)(27)a a --(; (5)()(322)x y m x y --+; (6)26()(52a b b a --);(7) 225314)x y xy y +-(; (8)2(x+y)(3x-2y); (9)()()x a a b c ---; (10)2()q m n +.【解析】试题分析:都利用提公因式法分解因式即可.试题解析:(1)原式=3xy(x-2);(2)原式=()2255x y y x -;(3)原式=22(2813m m m --+);(4)()3)27a a =--原式(;(5)原式=()()322x y m x y --+;(6)原式=()26(52a b b a --);(7)原式= 225314)x y xy y +-(;(8)原式=2(x+y)(3x-2y);(9)原式=()()x a a b c ---;(10)原式=()2q m n +.30.(1)原式=p+2)(p-2);(2)原式=a+6.【解析】试题分析:(1)先计算多项式乘多项式,将原式转化为多项式的形式,然后利用平方差公式进行分解即可;(2)先利用完全平方公式计算乘方,然后计算单项式乘多项式和多项式除单项式,最后合并同类项即可.试题解析:解:(1)原式=p 2+3p -4-3p=p 2-4=(p +2)(p -2);(2)原式=a 2 +4a +4-a 2-2a -a +2=a +6.。
因式分解单元测试题及答案因式分解是代数中一项重要的技能,它涉及到将多项式表达为几个因子的乘积。
以下是一套因式分解单元测试题及答案,供学生练习和教师参考。
一、选择题1. 下列哪个表达式不能被因式分解?A. \( x^2 - 1 \)B. \( x^2 + 2x + 1 \)C. \( x^2 - 4x + 4 \)D. \( x^2 + 4 \)答案:D2. 将 \( 6x^3 - 8x \) 因式分解,正确的结果是什么?A. \( 2x(3x^2 - 4) \)B. \( 2x^2(3x - 4) \)C. \( 2x(3x + 2)(3x - 2) \)D. \( 2x(3x - 2)(3x + 2) \)答案:D二、填空题3. 将 \( 9x^2 - 16 \) 因式分解,结果为 \( (3x + 4)(3x - 4) \)。
4. 多项式 \( ax^3 + bx^2 + cx + d \) 可以因式分解为 \( (x -p)(x - q)(x - r) \),其中 \( p, q, r \) 是______。
答案:多项式的根三、解答题5. 给定多项式 \( 2x^3 - 11x^2 + 14x - 5 \),尝试将其因式分解。
答案:首先寻找公共因子,这里没有公共因子。
接下来,尝试分组或多项式长除法。
经过计算,我们发现可以将其分解为 \( (2x -1)(x - 5)(x - 1) \)。
6. 证明 \( a^4 - b^4 \) 可以因式分解为 \( (a^2 + b^2)(a +b)(a - b) \)。
答案:使用差平方公式,\( a^4 - b^4 = (a^2)^2 - (b^2)^2 =(a^2 + b^2)(a^2 - b^2) \)。
进一步分解 \( a^2 - b^2 \) 为\( (a + b)(a - b) \),得到 \( (a^2 + b^2)(a + b)(a - b) \)。
因式分解单元达标测试题一.选择题(共8小题,满分40分)1.下列各式,从左到右的变形正确且是因式分解的是()A.x2﹣16=(x+16)(x﹣16)B.6(x+y)=6x+6yC.x2+6x+6=x(x+6)+6D.5x2﹣3x=x(5x﹣3)2.下列各组多项式中,没有公因式的是()A.ax﹣bx和by﹣ay B.3﹣9y和6y2﹣2yC.x2﹣y2和x﹣y D.a+b和a2﹣2ab+b23.把多项式m(a﹣2)+(a﹣2)分解因式等于()A.m(a﹣2)B.(a﹣2)(m+1)C.m (a+2)D.(m﹣1)(a﹣2)4.相邻边长为a,b的矩形,若它的周长为20,面积为24,则a2b+ab2的值为()A.480B.240C.120D.100 5.(﹣2)2021+(﹣2)2022计算后的结果是()A.22021B.﹣2C.﹣22021D.﹣16.已知多项式x2﹣x+m因式分解后得到一个因式为x+2,则m 的值为()A.﹣5B.5C.﹣6D.67.如果a2+2a﹣1=0,那么代数式a3﹣5a的值是()A.1B.﹣1C.﹣2D.28.已知a=2021x+2020,b=2021x+2021,c=2021x+2022,则多项式a2+b2+c2﹣ab﹣bc﹣ac的值为()A.0B.1C.2D.3二.填空题(共8小题,满分40分)9.若关于x的二次三项式x2﹣3x+k有一个因式是(x﹣2),则k 的值是.10.分解因式4x(x+1)﹣(x+1)2的结果是.11.多项式18x n+1﹣24x n的公因式是.12.分解因式:(x﹣3)2﹣2x+6=.13.若x2+mx+n=(x﹣2)(x﹣1),则m n=.14.多项式(3x+2y)2﹣(2x+3y)2分解因式的结果是.15.若一个自然数能表示为两个相邻自然数的平方差,则这个自然数为“智慧数”,比如22﹣12=3,3就是智慧数.从0开始,不大于2022的智慧数共有个.16.已知x≠y,且满足两个等式x2﹣2y=20212,y2﹣2x=20212,则x2+2xy+y2的值为.三.解答题(共6小题,满分40分)17.分解因式:(1)12xyz﹣9x2y2;(2)6xy2﹣9x2y﹣y3.18.因式分解:(1)m3n﹣9mn;(2)(x2+y2)2﹣4x2y2.19.求证:32022﹣4×32021+10×32020能被7整除.20.(1)化简:(a﹣b)2+(b﹣c)2+(a﹣c)2.(2)利用(1)中的结果,计算a2+b2+c2﹣ab﹣bc﹣ac的值,其中a=98,b=100,c=102.(3)若a﹣b=1,b﹣c=2,a2+b2+c2=7,求ab+bc+ac的值.21.已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.22.(1)观察下面拼图过程,写出相应的关系式:(2)把下列两个多项式分解因式:①x2+6x+9;②﹣x2﹣4y2+4xy;(3)先分解因式,后计算求值:3x2+4xy+y2,其中x=,y =﹣.。
《因式分解》单元测试(1)
一、精心选一选(每题3分,共21分)
1、下列从左到右的变形,属于分解因式的是( )
A 、2
)3x (x 2x 3x 2+-=+- B 、x 2y x 6)1xy 3(x 22-=-
C 、222)y 3x (y 9xy 6x -=+-
D 、)x 1x (x 1x 2+=+ 2、多项式223223b a 12b a 18b a 36+-各项的公因式是( )
A 、22b a
B 、33b a 12
C 、33b a 6
D 、22b a 6
3、下列分解因式正确的是( )
A 、)1y 2x 2)(y x ()y x ()x y (22---=---
B 、)y x 2)(y x ()y x ()x y (x 32--=---
C 、)1y 3x 3)(y x (2)x y (2)y x (62+++=+-+
D 、)y x 3)(y x (x 2)x y (x 4)y x (x 2223--=---
4、下列各式中,能用平方差公式分解因式的是( )
A 、22y x +
B 、22y x --
C 、22y x +-
D 、x x 2-
5、把多项式)
a 2(m )2a (m 2-+-分解因式,正确的是( ) A 、)m m )(2a (2+- B 、)m m )(2a (2--
C 、)1m )(2a (m +-
D 、)1m )(2a (m --
6、下列各式中属于完全平方式的是( )
A 、22y xy x ++
B 、4
x 2x 2+- C 、9x 6x 2-+ D 、1x 6x 92+-
7、利用分解因式计算22011-22010,则结果是 ( )
( A )2 ( B ) 1 ( C )22010 ( D ) 22011
二、耐心填一填(每题2分,其中第16题3分,共19分)
8、单项式a 2b 与 ab 2的公因式是
9、分解因式:16y 2-=_________________;
10.若一个多项式分解因式的结果为(a+2)(a -3),则这个多项式为
11、已知8y x =-,2xy =,则y x xy 22-的值为__________________;
12、x 2-(________)+25y 2=(________________)2;
13、已知一个长方形的面积为22cm
)81a 4(-,它的长为cm )9a 2(+,那么它的宽是__________________m 。
14、如果)3x )(5x (15x 2x 2+-=--,那么15)n m (2)n m (2----分解因式的结果是
______________________; 15、已知(x -x 2)+ (x 2-y)=1,求代数式
221()2x y xy +-= 16、在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码,方便
记忆。
原理是:如对于多项式44y x -,因式分解的结果是)
y x )(y x )(y x (22++-,若
取x=9,y=9时,则各个因式的值是:0)y x (=-,18)y x (=+,162)y x (22=+,于
是就可以把“018162”作为一个六位数的密码,对于多项式23xy
x 4-,取x=10,y=10,用上述方法产生的密码是____________;
17、把1
x 42+加上一个单项式,使其成为一个完全平方式,请你写出所有符合条件的单项式___________________;
三、细心想一想(60分)
18、将下列各式分解因式:(每小题5分,共30分)
(1) x 3y-xy 3 (2) -5a 2b 3+20ab 2-5ab
(3)(2m -3n)2-2m+3n (4)9(x-y)2-16(y-z)2
(5)14-a (6)8a (x -y )2-4b (y -x )
19.利用简便方法计算下列各题(每小题5分,共10分)
(1)991×1009 (2)20112-4022×2010+20102
20、先化简,再求值:(每小题10分,共20分)
(1)[(3a -7)2-(a+5)2]÷(4a -24),其中a=150
.
(2)已知x 2+y 2-2x+4y+5=0,求(x+1)(y-1)的值。