第五讲 三角形
- 格式:doc
- 大小:273.50 KB
- 文档页数:6
A B C A ’B ’C ’A BC A ’B ’C ’第四讲 全等三角形的判定(三)(一)知识要点1、三角形全等的判定三、四:ASA 及AAS两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”)。
书写格式:、在△ABC 和△A ’B ’C ’中,∵⎪⎩⎪⎨⎧∠=∠=∠=∠''''B B B A AB A A ∴△ABC ≌△A ’B ’C ’(ASA ) 知识延伸:“ASA ”中的“S ”必须是两个“A ”所夹的边。
两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)。
书写格式:在△ABC 和△A ’B ’C ’中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠''''C A AC B B A A ∴△ABC ≌△A ’B ’C ’(AAS ) 知识延伸:“AAS ”可以看成是“ASA ”的推论。
规律方法小结:由“角边角”及“角角边”可知两角及一边对应相等的两个三角形全等。
无论这个一边是“对边”还是“夹边”,只要对应相等即可。
(二)例题讲解:例1.如图所示,D 在AB 上,E 在AC 上,AB=AC, ∠B=∠C. 求证:AD=AE例2.如图,AB ⊥BC, AD ⊥DC, ∠1=∠2. 求证:AB=AD练习:如图所示,点B 、F 、C 、E 在同一条直线上,AB ∥DF ,AC ∥DE ,AC =DE ,FC 与BE 相等吗?请说明理由.A B C D A ’B ’C ’D ’ 例3.已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .例4:如图,已知△ABC ≌△A ’B ’C ’,AD ,A ’D ’分别是△ABC 和△A ’B ’C ’的边BC 和B ’C ’上的高。
求证:AD=A ’D ’例5.如图,点E 在AC 上,∠1=∠2,∠3=∠4.试证明BE= DE.(三)练习1.如图,已知AB= DC ,AD =BC ,E ,F 是DB 上的两点,且BE=DF.若∠AEB=100º,∠ADB= 30º.则∠BCF= 。
第5讲 全等三角形的判定四(全等的综合)【课前热身】1、如图,∠1=∠2,PD ⊥OA 于D ,PE ⊥OB 于E ,则下列结论中,错误的是( ) A .PD =PEB .OD =OEC .∠DPO =∠EPOD .PD =OD2、如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6 cm ,则△DEB 的周长为( ) A .40 cmB .6 cmC .8 cmD .10 cm3、如图,在△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠C =70°,求∠DAC 和∠BOA 的度数4、(本题10分)如图,在△ABC 中,∠C =90°,BC =AC ,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,AE =21BD ,且DF ⊥AB 于F ,求证:CD =DF【本讲说明】本讲重难点:全等三角形的综合,手拉手模型与半角模型这讲内容,是全等三角形这章的大综合,全等是中考常考知识点并且是几何的基础,奠定了后续所有几何的学习。
综合的难度提高,是对前面的简单复习,更是提高,其中,我们已经学习了三垂直模型,四大金刚模型,今天我们继续学习手拉手模型和半角模型。
这些模型是初二全等几何非常重要的模型,其证明过程巧妙,图形变化之丰富,还能与很多知识点相结合,是很多区、校大型考试压轴题中的常客。
【课程引入】提问式引入(顾及班上所有学生)老师:同学们,全等三角形这一章已经全部学完了,大家还记得这一章都学了哪些知识点呢?生:SSS,SAS,ASA, AAS,HL,四大金刚模型,三垂直模型……(学生七嘴八舌)师:很好,大家都说出了自己心里印象最深的一节,那我们一起回顾下本章内容。
这一章我们主要学习了全等三角形的概念,是什么?生:能够完全重合的两个三角形叫做全等三角形。
师:全等三角形有哪些性质?生:全等三角形的对应边相等、对应角相等、周长相等、面积相等、对应中线、角平分线、高线分别相等。
七下第5讲三⾓形内外⾓平分线夹⾓模型归纳与内外⾓和计算⽅法总结写在前⾯在前四讲中,我们对本章的重点内容作了归纳,剩下的知识点仅剩⼀个重要模型和内外⾓的相关题型变式,就以本讲作为本章的收尾,更多的难题,留⾄期中复习吧.⼀、三⾓形内外⾓平分线夹⾓模型模型呈现:如图,已知,在△ABC中,BD平分∠ABC,CD平分∠ACB,CH平分∠ACI,BG平分∠EBC,CG平分∠BCF.试探究∠BDC,∠BHC,∠BGC与∠A的关系.分析:这是本章的最后⼀个重要模型,要结合整体思想,外⾓定理综合运⽤.解答:补充结论:其实这个模型中,还能有许多发现,⽐如,∠GBD=90°,∠DCH=90°,理由是邻补⾓的⾓平分线互相垂直.∠BGC和∠BHC互余,∠BGC和∠BDC互补,在△DCH中,∠BDC作为外⾓,∠BDC=90°+∠BHC.例1:如图,O是三⾓形三条⾓平分线的交点,∠1=15°,则∠2=_____°.分析:本题的关键是,发现∠2的作⽤,∠2可以作为△AOB的外⾓,即∠OAB和∠OBA的和,⼜是∠AOB的邻补⾓,∠AOB是三⾓形两内⾓平分线的夹⾓,因此本题既可以⽤⼀步⼀步完成,也可⽤结论模型⼝算.解答:例2:如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=_______.分析:本题是⼀道将三个模型结合在⼀起的题⽬,我们要关注哪些⾓可以求,∠BDC是两内⾓平分线的夹⾓,则知道∠A即可求,∠E是两外⾓,∠MBC,∠NCB的⾓平分线的夹⾓,则知道∠BDC即可求,∠F是△EBC的内⾓∠EBC和外⾓∠ECQ的⾓平分线夹⾓,则知道∠E即可求.解答:例3:分析:解答:综上所述,结论正确的是①②③⑤共4个.⼆、多边形内外⾓计算例1:⼀个学⽣计算多边形的内⾓和,少算了⼀个内⾓,得到答案是1400°,求少算的内⾓的度数及多边形边数.分析:显然,根据多边形内⾓和公式(n-2)·180°,可知内⾓和⼀定是180度的倍数,我们可以⽤1400除以180,算出其余数,那么⾃然可得,少算的那个内⾓与余数的和⼀定是180度的倍数,⽽根据多边形每个内⾓必然⼩于180°,则这个内⾓度数就是⽤180°减去这个余数即可.解答:1400°÷180°=7······140°,180°–140°=40°,设多边形边数为n,(n–2)·180=1400+40,n=10答:少算的内⾓度数为40°,边数为10.例2:⼀个学⽣计算多边形的内⾓和,多算了⼀个外⾓,得到答案是1400°,求多算的外⾓的度数及多边形边数.分析:显然,本题是上⼀题的变式,⽅法还是⽤1400除以180,算出其余数,那么多算的外⾓度数,就是这个余数.解答:1400°÷180°=7······140°,设多边形边数为n,(n–2)·180=1400-140,n=9答:多算的外⾓度数为140°,边数为9.例3:⼀个多边形每个内⾓都等于150°,求这个多边形的边数.分析:本题不难,但我们要学会多种思路解题,可以从多边形内⾓和公式⼊⼿,也可以逆向思维,求出每个外⾓的度数,⽤外⾓和除以每个外⾓的度数.解答:法1:设多边形边数为n,(n–2)·180=150n,n=12法2:180°-150°=30°,360°÷30°=12答:多边形边数为12.三、作图探究例:在△ABC中,∠ACB=90°,BD是△ABC的⾓平分线,P是射线AC上任意⼀点(不与A、D、C三点重合),过点P作PQ⊥AB,垂⾜为Q,交直线BD于E.(1)探索∠PDE与∠PED的关系,画出图形并说明理由.(2)作∠CPQ的⾓平分线交直线AB于点F,则PF与BD有怎样的位置关系?画出图形并说明理由.分析:本题中,点P的位置不确定,在射线AC上,就有多种可能,线段AD上,线段DC上,线段DC延长线上,在延长线上时,⼜要考虑垂⾜Q的位置,可能在线段AB上,也可能在线段AB的延长线上.因此,分四种情况讨论.碍于篇幅,我们将两⼩题的图汇总在⼀起.解答:①点P在线段AD上(1)∵PQ⊥AB,∴∠EQB=∠C=90°,∴∠PED+∠EBQ=90°,∠CBD+∠CDB=90°,∵∠PDE=∠CDB,∴∠CBD+∠PDE=90°,∵BD为∠ABC的平分线,∴∠CBD=∠EBQ,∴∠PDE=∠PED;(2)在四边形PQBC中,∠CPQ+∠CBA=360°-2×90°=180°∵PF平分∠CPQ,BD平分∠CBA∴∠1+∠2=90°∵∠1+∠3=90°∴∠2=∠3,PF∥BD②点P在线段DC上(1)∵PQ⊥AB,∴∠EQB=∠C=90°,∴∠BEQ+∠EBQ=90°,∠CBD+∠PDE=90°,∵∠PED=∠BEQ,∴∠PED +∠EBQ=90°,∵BD为∠ABC的平分线,∴∠CBD=∠EBQ,∴∠PDE=∠PED;(2)在四边形PQBC中,∠CPQ+∠CBA=360°-2×90°=180°∵PF平分∠CPQ,BD平分∠CBA∴∠1+∠2=90°∵∠1+∠3=90°∴∠2=∠3,PF∥BD③点P在线段DC延长线上,点Q在线段AB上(1)∵PQ⊥AB,∴∠EQB=∠ACB=90°,∴∠BEQ+∠EBQ=90°,∠CBD+∠PDE=90°,∵∠PED=∠BEQ,∴∠PED +∠EBQ=90°,∵BD为∠ABC的平分线,∴∠CBD=∠EBQ,∴∠PDE=∠PED;(2)∵∠CPQ+∠A=90°∠CBA+∠A=90°∴∠CPQ=∠CBA∵PF平分∠CPQ,BD平分∠CBA∴∠1=∠2∵∠1+∠3=90°∴∠2+∠3=90°,PF⊥BD④点P在线段DC延长线上,点Q在线段AB延长线上(1)∵PQ⊥AB,∴∠EQB=∠ACB=90°,∴∠PED+∠EBQ=90°,∠CBD+∠PDE=90°,∵∠ABD=∠EBQ,∴∠PED +∠ABD=90°,∵BD为∠ABC的平分线,∴∠CBD=∠ABD,∴∠PDE=∠PED;(2)∵∠CPQ+∠A=90°∠CBA+∠A=90°∴∠CPQ=∠CBA∵PF平分∠CPQ,BD平分∠CBA∴∠1=∠2∵∠1+∠3=90°∴∠2+∠3=90°,PF⊥BD上讲思考题答案。
第五讲 三角形全等的判定一、全等三角形的性质:二、判定两个三角形全等的方法一般有以下4种:1、 的两个三角形全等(可以简写成“边边边”或“SSS ”)。
2、 的两个三角形全等(可以简写成“边角边”或“SAS ”)。
3、 的两个三角形全等(可以简写成“角边角”或“ASA ”)。
4、 的两个三角形全等(可以简写成“角角边”或“AAS ”)。
三、判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用:的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”)。
四、注意点:1、ASA 与AAS 的区别。
2、证明全等三角形时,各对应顶点,对应角,对应边必须认清。
3、区别单独角和复合角各自用字母表示。
4、直角三角形的符号Rt △ABC 。
五、尺规作图运用尺规作图作相等角、相等线段以及全等三角形。
六、应用三角形的判定方法三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢?(1)条件充足时直接应用(2)条件不足,会增加条件用判别方法(3)条件比较隐蔽时,可通过添加辅助线用判别方法(4)条件中没有现成的全等三角形时,会通过构造全等三角形用判别方法(5)会在实际问题中用全等三角形的判别方法七、经典常考题练习:(一)精心选一选1、不能推出两个三角形全等的条件是( )A 、有两边和夹角对应相等B 、有两角和夹边对应相等C 、有两角和一边对应相等D 、有两边和一角对应相等2、根据下列条件画三角形,不能确定唯一三角形的是( )A 、已知三个角B 、已知三条边C 、已知两角和夹边D 、已知两边和夹角3、在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A.∠A B.∠B C.∠C D.∠B 或∠C4、如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( )A.线段CD 的中点B.OA 与OB 的中垂线的交点C.OA 与CD 的中垂线的交点D.CD 与∠AOB 的平分线的交点第4题图 第5题图 第6题图5、如图所示,△ABD ≌△CDB ,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD ∥BC ,且AD =BC6、如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF A D B C E F D A C B O D C B AA C E DB BC ED A A O D C BE B A D CF AF D E O B CA B = ( ) A.150° B.40° C.80° D.90°7、如图,AB ⊥BC ,BE ⊥AC ,∠1=∠2,AD =AB ,则( )A.∠1=∠EFDB.BE =ECC.BF =DF =CDD.FD ∥BC第7题图 第8题图8、如图所示,BE ⊥AC 于点D ,且AD =CD ,BD =ED ,若∠ABC =54°,则∠E =( )A.25°B.27°C.30°D.45°9、将一张长方形纸片按如图所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( ) A .60° B .75° C .90° D .95°10、方格纸中,每个小格顶点叫做一个格点,以格点连线为边的三角形叫做格点三角形.如图,在4×4的方格纸中,有两个格点三角形△ABC 、△DEF ,下列说法中成立的是( )A 、∠BCA=∠EDFB 、∠BCA=∠EFDC 、∠BAC=∠EFD D 、这两个三角形中,没有相等的角 第10题图 第11题图 第12题图11、如图所示,已知在△ABC 中,∠C=90°,AD=AC ,DE ⊥AB 交BC 于点E ,若∠B=28°,则∠AEC=( )A 、28°B 、59°C 、60°D 、62°12、如图,要测量河岸相对两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD=BC ,再作出BF 的垂线DE ,使A 、C 、E 在同一直线上,可以证明△EDC ≌△ABC 得ED=AB ,因此测得DE 的长就是AB 的长,判断△EDC ≌△ABC 的理由是( )A 、角边角 B 、边角边 C 、边边边 D 、斜边、直角边13、在△ABC 与△DEF 中,如果∠A=∠D ,∠B=∠E,要使这两个三角形全等,还需要的条件可以是( )A 、AB=EFB 、BC=EFC 、AB=ACD 、∠C=∠D14、△ABC 和△A ′B ′C ′中,条件①AB= A ′B ′,②BC= B ′C ′,③AC= A ′C ′,④∠A=∠A,⑤∠B=∠B ′,⑥∠C=∠C ′,则下列各组条件中不能保证△ABC ≌△A ′B ′C ′的一组是( )A 、①②③B 、①②⑤C 、①③⑤D 、②⑤⑥(二)、细心填一填1、已知△ABC ≌△A ′B ′C ′,∠A=∠A,∠B=∠B ′,∠C=70°,AB=15cm ,则∠C ′=_____, A ′B ′=________.2、在△ABC 中,∠A:∠C:∠B=4:3:2,且△ABC ≌△DEF ,则∠E=_______.3、如图,线段AC 、BD 相交于点O,且AO=OC ,请添加一个条件使△ABO ≌△CDO,应添加的条件为_________________________.(添加一个条件即可) 第3题 第4题 第5题 4、如图,AB//CF,E 为DF 的中点,AB=10,CF=6,则BD=_______.5、如图,O 是△ABC 内一点,且O 到△ABC 三边AB 、BC 、CA 的距离OF=OD=OE ,若∠BAC=70°,则∠BOC=________. 6、△ABC ≌△DEF ,且△ABC 的周长为12,若AB =3,EF =4,则AC = .7、△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,且CD =4cm ,则点D 到AB •的距离是________. F E F CD A BC D E F12DA C EBC D A B E D AC F B EO C B AF E (三)、用心做一做1、如图,B 、C 、E 三点在同一直线上,AC//DE ,AC=CE, ∠ACD=∠B,求证:△ABC ≌△CDE.2、如图,△ABC 中,∠ACB=90°,AC=BC,AE 是BC 边上的中线,过C 作CF ⊥AE,F 是垂足,过B 作BD ⊥BC 交CF 的延长线于点D. (1)求证:AE=CD ;(2)AC=12cm,求BD 的长. 3、如图,AB=CD,AE ⊥BC 于E,DF ⊥BC 于F ,CE=BF,连接AD 交EF 于点O ,猜想O 为那些线段的中点?请选择其中一种结论证明.4、已知:如图,在直线MN 上求作一点P ,使点P 到 ∠AOB 两边的距离相等(要求写出作法,并保留作图痕迹,写出结论)5、已知:如图,A 、C 、F 、D 在同一直线上,AF =D C ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .6、已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .7、已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .8、如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =20cm ,AC =8cm ,求DE 的长.A EB DC F B CDEF A AC BDE FO NM B A9、如图所示,ABC ∆绕顶点A 顺时针旋转(旋转角度不大于1800),若∠B =300,∠C =400,问:(1)顺时针旋转多少度时,旋转后的C B A ''∆的顶点C '与原ABC ∆的顶点B 和A 在同一条直线上?(2)再继续旋转多少度时,C 、A 、C ''在同一条直线上(原ABC∆是指开始位置)?10、如图,AC=AD,BC=BD.求证:∠C=∠D.11、如图,已知:AC ,BD 相交于O 点,且CD AB BD AC ==,.求证:∠B=∠C.12、如图,已知:BF CE DF AE CD AB ===,,.求证:(1)DE AF =;(2)AE ∥DF.13、如图,AB=AC,AD=AE,∠1=∠2.求证::ABD ∆≌ACE ∆.14、如图,已知:BF DE DC AB BC AD ===,,. 求证:DF BE =.15、 如图,已知: AO CO DO BO ==,,求证:OF OE =C C 'AC 'B B 'BDC A A DB CEAB C DE 12A FD BCE。
第二篇三角形本篇的主要内容是三角形、全等三角形和等腰三角形以及勾股定理,主要了解三角形的中线、角平分线.在知道三角形的三个内角的和等于180°的基础上.学习全等三角形的性质及各种三角形全等的判定方法,同时学会如何利用全等三角形进行证明.这些内容都是研究特殊的三角形,如等腰三角形、直角三角形)的基础,也是研究其他图形的基础知识.从全等三角形开始,我们要开始理解证明的基本过程,掌握用综合法证明的格式.这既是本篇的重点,也是学习的难点.研究三角形全等条件的重点应放在第一个条件(“边边边”条件)上,然后以“边边边”条件为例,理解什么是三角形的判定,怎样判定.在掌握了“边边边”条件的基础上,学会怎样运用“边边边”条件进行推理论证,怎样正确地表达证明过程.“边边边”条件掌握好了,再学习其他条件就不困难了.在“角平分线和垂直平分线”一讲中,介绍了角的平分线和垂直平分线的作法,角平分线和垂直平分线的性质与判定,这些结论是用三角形全等证明得到的,利用这些结论证明线段相等和角度相等,比用全等知识来证明线段相等和角度相等更方便.本讲中探究三角形三条角平分线和垂直平分线相交于一点.也为今后在“圆”一章学习内心和外心作好了准备.等腰三角形是一种特殊的三角形,它除了具有一般三角形的所有性质外,还有许多特殊的性质.由于它的这些特殊性质,使它比一般三角形应用更广泛.而等腰三角形的许多特殊性质,又都和它是轴对称图形有关.在本讲中,利用等腰三角形的轴对称性,得出了“等边对等角”、“三线合一”等性质,并进一步讨论了等腰三角形的判定方法以及等边三角形的性质与判定方法的内容.课程标准对于推理证明的安排,在“全等三角形”已经要求会用符号表示推理(证明)的基础上,对于一些图形的性质(如线段垂直平分线的性质、等腰(边)三角形的性质与判定等),仍是要求证明.由于刚开始接触用符号表示推理,图形、题目的复杂程度明显增加,多练、多想、多总结是是学好本篇的基本方法.第5讲三角形边角关系〖学习目标〗1.理解三角形及与三角形有关的线段的概念,证明三角形两边的和大于第三边.2.理解三角形的内角、外角的概念,探索并证明三角形内角和定理,掌握直角三角形的两个锐角互余,掌握两个内角互余的三角形是直角三角形,掌握三角形的一个外角等于与它不相邻的两个内角的和.3.了解多边形有关的概念,探索并掌握多边形的内角和与外角和公式.※考情分析三角形是正式学习几何的第一步,其主要内容是三角形的三边关系和三角形的内角和,这些都是中考关注的热点,本篇涉及的一些几何证明已经具有一定的难度.在中考数学试卷中,如果是计算或证明,难度可能达到中等,而对概念的考查,就可能比较简单.题型一般为填空或选择为主,分值一般3分左右.〖基础知识·轻松学〗一、三角形的有关概念1.三角形定义的要点:①三条线段;②不在同一条直线上;③首尾顺次连接.2.三角形的分类(1)按边分类 (2)按角分类⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底边和腰不相等的等腰三角形等腰三角形等边三角形 ⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形 精讲:(1)等边三角形是特殊的等腰三角形,等腰三角形包括等边三角形.(2)不等边三角形是指三条边都不相等的三角形.无论哪种标准进行分类,原则上做到不重不漏.二、三角形三边关系(1)三角形任意两边之和大于第三边,三角形任意两边之差小于第三边.(2)三边关系的应用:①若两条较短的线段长度之和大于第三条线段,则这三条线段可以组成三角形.②当已知三角形两边长,两边之差<第三边<两边之和.精讲:这里的“两边”指的是任意两边.对于“两边之差”它可能是正数,也可能是负数,一般地取“差”的绝对值.三、三角形的高、角平分线和中线高:三角形的一个顶点到它对边的垂线段.中线:三角形的一个顶点到它对边中点的连线段.角平分线:一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段.精讲:(1)三条高所在的直线相交于一点(垂心).①锐角三角形三条高的交点在三角形的内部(如图5-1);②钝角三角形的三条高所在的直线交于一点,这点在三角形外部(如图5-2);③直角三角形的三条高的交点是直角顶点(如图5-3).图5-1 图5-2 图5-3 图5-4(2)三角形的三条中线相交于一点,如图5-4(重心),三角形的每一条中线将三角形分成两个面积相等的三角形.(3)三角形的三条角平分线相交于一点,如图(内心)四、三角形三个内角的和等于180°.表示:在△ABC 中,∠A +∠B +∠C =180°.应用:在三角形中,已知两个角的度数,可求另一个角的度数;或已知各角之间的数量关系可求各角.推论:直角三角形的两个锐角互余,这个性质是由三角形的内角和定理得到的.反之,当一个三角形的两个锐角互余时,这个三角形是直角三角形.精讲:由三角形内角和定理可以推出以下几个常见结论:结论1:如图5-5,如果∠C =90°,则∠A +∠B =90°; AB C D AB CI A E C D B图5-5 图5-6 图5-7 图5-8 图5-9(图5-5未标注顶点ABC )结论2:在△ABC 中,如果∠A +∠B =90°或∠A +∠B =∠C 或∠C -∠A =∠B 或∠C -∠B =∠A ,则△ABC 为直角三角形;结论3:如图5-6,在△ABC 中,AB =AC ,BD ⊥AC 于D ,则∠DBC =12∠A ; 结论4:如图5-7,在△ABC 中,∠ABC ,∠ACB 的角平分线相交于I ,则∠BIC =90°+12∠A . 结论5:如图5-8,在△ABC 中,AB =AC ,FD ⊥BC 于D ,DE ⊥AB 于E ,则∠EDF =∠B =∠C ;结论6:如图5-9,在△ABC 中,AD ,AE 分别是△ABC 的角平分线和高,则∠DAE =12|∠C -∠B |. A C B五、三角形的外角的性质性质1:三角形的一个外角等于与它不相邻的两个内角之和;性质2:三角形的一个外角大于与它不相邻的任何一个内角.精讲:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证时经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.六、多边形1.多边形的对角线①从同一顶点出发,可以画(n-3)条对角线;②从同一顶点出发的对角线将n边形分成(n-2)个三角形;n n 条对角线.③n边形一共有(3)22.n边形的内角和等于(n-2)×180°.3.n边形的外角和等于360°.精讲:多边形的内角和随着边数的增加而增加,而且是每增一边,都增加180°,而外角和不随边数的变化而变化,保持度数不变.〖重难疑点·轻松破〗一、这三条线段能否构成三角形例1:下面分别是三根小木棒的长度,用它们能摆成三角形吗? .(1)5cm,8cm,2cm;(2)5cm,8cm,13cm;(3)5cm,8cm,5cm.分析:只要比较两条较短线段之和与最长线的大小即可.答案:(1)∵5+2=7< 8,不满足两边之和大于第三边∴不能摆成三角形.(2)∵5+8=13,出现两边之和等于第三边的情况∴不能摆成三角形.(3)∵5+5=10>8,两个较小边之和大于第三边,∴能摆成三角形.点评:如果三条线段能够构成三角形,则任意两边之和大于第三边.但是当两条较短线段长之和大于第三边的话,那么另外两组不等式也是成立的.变式练习1:下列长度的三条线段中,能组成三角形的是()A.3cm,5cm,8cm B.8cm,8cm,18cmC.0.1cm,0.1cm,0.1cm D.3cm,40cm,8cm二、中线等分对边的应用三角形中线的应用体现在两个方面,一是讨论中线将三角形周长分成的两部分的关系;二是中线等分三角形面积问题.例2:如图5-10,等腰△ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分成15和6两部分,求这个三角形的腰长及底边长.AB C D图5-10分析:由题意可知,中线BD 将△ABC 的周长分成AB +AD 和BC +CD 两部分(注意不是AB +AD +BD 和BC +CD +BD 两部分),故有两个可能(1)AB +AD =15且BC +CD =6;(2)AB +AD =6且BC +CD =15.再由AB =AC =2AD =2CD 及三角形三边关系知(1)成立,(2)不成立.解:设AB =AC =2x ,则AD =CD =x .(1)当AB +AD =15,BC +CD =6时,有2x +x =15,所以x =5,2x =10,BC =6-5=1.(2)当AB +AD =6,BC +CD =15时,有2x +x =6.所以x =2,2x =4,所以BC =13.因为4+4<13,故不能组成三角形.答:三角形的腰长为10,底边长为1.点评:(1)由于AD =CD ,因此本题中线BD 将△ABC 周长分成的两部分之差,等于AB 与BC 边长之差.(2)涉及等腰三角形边的问题时,常要分情况讨论,然后看它们是否满足三边关系,不满足的要舍去.变式练习2:在△ABC 中,AB =AC ,AC 上的中线BD 把三角形的周长分为24cm 和30cm 的两个部分,求三角形的三边长.例3:如图5-11,在△ABC 中,AD ,BE ,CF 是三条中线,它们相交于同一点G ,问△AGF 的面积和△AGE 的面积是否相等?为什么?图5-11分析:三角形的中线可将三角形的面积分成面积相等的两部分,本题中除了AD ,CF ,BE 可以看作中线外,GF ,GE ,GD 也可以看作中线.解:这两个三角形的面积相等.理由:∵AD 是BC 边上的中线,∴△ABD 与△ADC 等底同高,∴S △ABD =S △ADC .同理:S △BGD =S △CGD .∴S △ABG =S △AGC .∵GE ,GF 分别是△AGC ,△AGB 的中线.∴S △AGF =S △BFG ,S △AGE =S △GEC .∴S △AGF =S △AGE点评:根据“三角形的面积=21×底×高”可知,“同高等底的两个三角形的面积相等”本题正是利用这一性质解决问题的.变式练习3:如图5-12,在△ABC 中,已知点D ,E ,F 分别是BC 、AD 、CE 的中点,且ABC S △=4cm 2,则BEF S △=_______cm 2. AB DC EF图5-12三、基本图形――两角平分线的夹角问题三角形中两个内角平分线夹角、一个内角和一个外角平分线的夹角、以及两个外角平分线的夹角都与第三个内角有关,了解这些结论推导的过程,并熟记这些结论,对今后的解题有很大的帮助.例4:如图5-13,已知在△ABC 中,BD 平分∠ABC ,CD 平分△ABC 的外角∠ACE ,BD 、CD 相交于点D .求证:∠A =2∠D ;图5-13分析:根据外角性质可得∠A =∠ACE -∠ABC ,∠D =∠DCE -∠DBC ,要证明∠A =2∠D ,只需证明∠ACE -∠ABC =2(∠DCE -∠DBC )即可.证明:∵BD 平分∠ABC ,CD 平分△ABC 的外角∠ACE ,∴∠ACE =2∠DCE ,∠ABC =2∠DBC∵∠A =∠ACE -∠ABC ,∠D =∠DCE -∠DBC∴∠A =2∠D .模型梳理:在三角形中,一个外角平分线和一个内角平分线的夹角等于第三个角度数的一半,即∠D =12∠A ; 类似的结论还有:(1)如图5-14,在△ABC 中,BO ,CO 分别平分∠ABC ,∠ACB ,则∠BOC =90°+12∠A . (2)如图5-15,在△ABC 中,CP ,BP 分别是∠ACB ,∠ABC 的外角的平分线,则∠P =90°-12∠A ,可见∠P 为锐角. AB C O A B C P D E图5-14 图5-15变式练习4:如图5-16,在△ABC 中,∠A =42°,∠B 和∠C 的三等分线分别交于点D ,E ,则∠BDC 等于_______.图5-16四、利用外角求角度例5:一个零件的形状如图5-17,按规定,∠CAB 应等于90°,∠C ,∠B 应分别等于20°和300.李师傅量得∠CDB =142°,就断定了这个零件不合格,你能说出其中的道理吗?A B CD E图5-17分析:由于李师傅量得∠CDB =142°,我们可由∠CAB =90°,∠B =∠C =20°计算出∠CDB 的度数,如果∠CDB 不等于142°,则这个零件肯定不合适.解:延长BD 交AC 于E ,则∠CDB =∠C +∠CED ;又∠CED =∠CAB +∠B ,所以∠CDB =∠C +∠CAB +∠B =140°.而实际测量∠CDB =142°,所以可以断定这个零件不合格.点评:(1)解形如图5-17的图形的角度计算问题时,我们常常通过延长某条线段将该图形分割成两个三角形,构造三角形的外角解决问题.(2)从本题的解法可以总结出这样一个规律:∠CDB =∠C +∠CAB +∠B .变式练习5:如图5-18,△ABC 的三条角平分线交于点O ,过O 作OE ⊥BC 于E ,求证:∠BOD =∠COEAB C DEC B AH G DE O图5-18五、基本图形――“又”字型例6:如图5-19,BE 与CD 交于A ,CF 为∠BCD 的平分线,EF 为∠BED 平分线.(1)试探求:∠F 与∠B ,∠D 之间的关系?(2)若∠B ∶∠D ∶∠F =2∶4∶x .求x 的值.DE FA B C G HD E F C G E F B C H D E A B C图5-19 图5-20 图5-21 图5-22分析:这个图形我们可分解为图5-20、图5-21、图5-22三个基本图形,这三个基本图形分别可得结论:①∠D +∠DEF =∠F +∠DCF ;②∠F +∠FEB =∠B +∠BCF ;③∠D +∠DEB =∠B +∠BCD .我们可任选两个结论来探究∠F 与∠B ,∠D 之间的关系.证明:∵∠EGC =∠D +∠DEF ,∠EGC =∠F +∠DCF ,∴∠D +∠DEF =∠F +∠DCF .即∠D -∠F =∠DCF -∠DEF .同样道理:∠F -∠B =∠BCF -∠FEB .∵CF 为∠BCD 的平分线,EF 为∠BED 平分线,∴∠DCF =∠BCF ,∠DEF =∠FEB ,∴∠DCF -∠DEF =∠BCF -∠FEB .∴∠D -∠F =∠F -∠B .即2∠F =∠B +∠D(2)设∠B =2k ,∠D =4k ,∠F =xk ,∵2∠F =∠B +∠D ,∴2xk =2k +4k ,解得:x =3.点评:本题问题的顺利解决主要得益于基本图形的使用,平时注意积累基本图形及其基本规律对于解题非常有帮助,同时对于复杂的图形,我们要善于将复杂的图形分解成简单的图形,从而发现解题思路.变式练习6:如图5-23,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.图5-23六、多边形边数的探究思路例7:如果一个多边形除了一个内角外,其余各内角之和为1190°,则这个多边形的边数是多少?这个内角是多少度?分析:从n边形的内角和我们可以看出两方面内容:一是多边形的内角和是180°的倍数;二是多边形的内角和与多边形的边数有关,如果将内角和除以180°,然后加2后就等于多边形边数;在本题中,这个多边形的内角和是比1190°大,是180°的倍数,而且是与1190°最接近的那个180°的倍数,所以这个多边形的内角和为1260°.解:设这个多边形为n边形由题意:这个多边形的内角和为1260°∴180(n-2)=1260,解得n=91260°-1190°=70°答:这个多边形为九边形,这个内角为70°.点评:判断一个多边形的内角和是否计算错误,首先这个内角和必须是180°的倍数,如果少计算了一个角,则内角和要比计算结果大,与计算结果最接近的那个180°的倍数,如果多计算了一个角,则内角和要比计算结果小,也是与计算结果最接近的那个180°的倍数.变式练习7:一个多边形截取一个角后,形成的另一个多边形的内角和是1620°,则原来多边形的边数是()A.10 B.11 C.12 D.以上都有可能例8:如果一个各边都相等的多边形,若它的每一个内角是144°,则这个多边形是()A.正十边形B.正九边形C.正八边形D.正七边形分析:本题有两种解决问题的思路,思路一是借助多边形的内角和定理,设这个多边形为n 边形,则这个多边形的内角和为180(n-2)°或144n°,则可得方程180(n-2)=144n,求出这个多边形的边数;思路二是转化为多边形的外角来求,由于这个多边形的每个内角为144°,所以它的每个外角等于36°,根据多边形的外角和是360°可知这个多边形是十边形.解:法一:设这个多边形为n边形.则180(n-2)=144n,解得n=10.答:这个多边形是十边形.法二:因为这个多边形的每一个内角是144°,所以这个多边形每个外角等于36°,360°÷36°=10.答:这个多边形是十边形.点评:尽管多边形的内角和度数随着边数的增加而增加,但是多边形的外角和的度数始终保持不变,利用这一不变性,可使问题变得简单.变式练习8:一个正多边形的一个内角为120°,则这个正多边形的边数为().A.9B.8C.7D.6【课时作业·轻松练】A.基础题组1.如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是( )A .锐角三角形B .钝角三角形C .直角三角形D .等边三角形2.能把一个三角形分成面积相等的两个三角形的是( ).A .高B .中线和角平分线C .角平分线D .中线3.如图5-24,AE ,AD 分别是△ABC 的高和角平分线,且∠B =36°,∠C =76°,则∠DAE 的度数为( )A .40°B .20°C .18°D .38° AE C D B图5-244.如图5-25,∠A =55°,∠B =30°,∠C =35°,求∠D 的度数.图5-255.一个正多边形的每个外角都是36°,这个正多边形的边数是_______.B .提升题组6.如图5-26,把△ABC 的纸片沿DE 折叠,当点A 落在四边形BCED 内部时,则∠A 与∠1,∠2之间有一种数量关系始终保持不变,请试着找出这个规律为_______________. 1 2 BC AE D 图5-267.如图5-27,在△ABC 中E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF ,△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.图5-278.如图5-28,在△ABC 中,∠C =90°,AD 平分∠BAC ,且∠B =3∠BAD ,求∠ADC 的度数.CAB D图5-289.(1)如图5-29,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY ,XZ 分别经过点B ,C ,△ABC 中,∠A =30°,则∠ABC +∠ACB = 度,∠XBC +∠XCB = 度;(2)如图5-30,改变直角三角板XYZ 的位置,使三角板XYZ 的两条直角边XY ,XZ 仍然分别经过点B ,C ,那么∠ABX +∠ACX 的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX +∠ACX 的大小.X XYA BCCB A YZ Z图5-29 图5-3010.如图5-31,∠XOY =90°,点A ,B 分别在射线OX ,OY 上移动,BE 是∠ABY 的平分线,BE的反向延长线与∠OAB 的平分线相交于点C ,试问∠ACB 的大小是否发生变化,如果保持不变,请给出证明,如果随点A ,B 移动发生变化,请求出变化范围.YXOA BCE图5-31〖中考试题初体验〗1.(2013湖南长沙 3, 3分)如果一个三角形的两边长分别是2和4,则第三边可能是( ).A .2B .4C .6D .82.(2013四川达州,17,3分)如图5-32,在△ABC 中,∠A =m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2012BC 和∠A 2012CD 的平分线交于点A 2013,则∠A 2013=___度.图5-32五、我的错题本参考答案变式练习1.答案:C解析:较短的两边长度之和大于较长的边.2.答案:三角形的三边长分别为20,20,14或16,16,223.答案:1解析:△BEF面积等于△BEC面积的一半,而△ABE与△BDE,△ACE与△CDE的面积相等,所以△BEF的面积等于△ABC面积的四分之一.4.答案:88°解析:∵∠B和∠C的三等分线分别交于点D,E,∴∠DBC=23∠ABC,∠DCB=23∠ACB,∵∠ABC+∠ACB=180°-∠A=138°,∴∠DBC+∠DCB=23(∠ABC+∠ACB)=92°.5. 证明:∵AD,BG,CH是△ABC的三条角平分线,∴∠ABG=12∠ABC,∠BAD=12∠BAC,∠BCH=12∠ACB∵∠ABC+∠BAC+∠ACB=180°,∴∠ABG+∠BAD+∠BCH=90°∴∠ABG+∠BAD=90°-∠BCH∵OE⊥BC,∴∠BCH+∠COE=90°,∴∠COE=90°-∠BCH∴∠BOD=∠COE6.解:∵∠GKF=∠E+∠F,∠GKF=∠KGH+∠KHG,∴∠E+∠F=∠KGH+∠KHG,同理:∠A+∠B=∠GKH+∠KHG,∠C+∠D=∠KGH+∠GKH.∴∠A+∠B+∠C+∠D+∠E+∠F=2(∠KGH+∠GKH+∠KHG)=360°.7.答案:D解析:由多边形的内角和公式得,(n-2)180=1620,解得n=11;通过操作可以发现,一个多边形截取一个角后,所得出的边数与原多边形边数比较有三种情况:等于原边数、比原边数少1、比原边数多1.8.答案:D解析:设这个多边形的边数为n ,则有120n =(n -2)180,解得n =6. 课时作业·轻松练 A .基础题组 1.答案:C 2.答案:D 3.答案:B 解析:∠DAE =12(∠C -∠B ). 4.延长BD 到点E ,∵∠A =55°,∠B =30°,∴∠BEC =∠A +∠B =85°,∴∠BDC =∠BEC+∠C =120°. 5.答案:10解析:多边形的外角和为360°,而正多边形的每个外角都相等,都是36°. B.提升题组 6.2∠A =∠1+∠2解析:∵∠1=180°-2∠ADE , ∠2=180°-2∠AED,∴∠1+∠2=2(180°-∠ADE -∠AED )= 2∠A. 7.答案:2解析:∵EC =2BE ,点D 是AC 的中点,∴S △ACE =23S △ABC =8,S △BCD =12S △ABC =6,S △ADF -S △BEF =S △ACE -S △BCD =2.8.解:设∠BAD =x °,则∠B =3x °,∵AD 平分∠BAC ,∴∠BAC =2∠BAD =2x °,∵∠C =90°,∴∠BAC +∠B =90°,∴3x °+2x °=90°,解得:x =18,∴∠ADC =72°. 9.(1)150、90;(2)不变化、60°. 10.∠C 的大小保持不变.理由:∵∠ABY =90°+∠OAB ,AC 平分∠OAB ,BE 平分∠ABY , ∴∠ABE =21∠ABY =21(90°+∠OAB )=45°+21∠OAB , 即∠ABE =45°+∠CAB ,又∵∠ABE =∠C +∠CAB , ∴∠C =45°,故∠ACB 的大小不发生变化,且始终保持45°. 中考试题初体验1.答案:B解析:本题考查了三角形的三边关系,由于“三角形两边之和大于第三边;三角形两边之差小于第三边”知三条线段能组成三角形的条件是任何两边之和都大于第三边,对于选项A 中2+2=4,不能构成三角形;选项C 中2+4=6,不能构成三角形;选项D 中2+4<8,不能构成三角形;只有选项B 能构成三角形.2.答案:20132m解析:利用角平分先性质、三角形外角性质,易证∠A 1=21∠A ,进而可求∠A 1,由于∠A 1=21∠A ,∠A 2=21∠A 1=221∠A ,…,以此类推可知∠A 2013=201321∠A = 20132m 度.。
第5讲 三角形三角形的特性概念由3条线段围成的图形叫做三角形各部分名称顶点顶点顶点边边角角角高特性顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高三角形具有稳定性两点间的距离三边关系两点间所有连线中线段最短三角形任意两边的和大于第三边三角形的分类三角形的内角和三角形的内角和是180°三角形内角和四边形内角和四边形的内角和是360°知识梳理知识点一:三角形的特性1. 由3条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高。
这条对边叫做三角形的底。
三角形ABC ,具有稳定性。
2.三角形三边关系三角形任意两边的和大于第三边。
知识点二:三角形的分类 1.按角进行分类1个直角2个锐角1个钝角2个锐角直角三角形钝角三角形锐角三角形3个锐角:2. 按边进行分类三条边相等两条边相等三条边都不等等边三角形(正三角形)等腰三角形知识点三:三角形的内角和考点一:三角形的特性例1.(2019春•沛县月考)一个等腰三角形两条边的长度分别是5厘米和11厘米,这样的三角形有几个?周长是多少厘米?【分析】根据三角形三边的关系:两边之和大于第三条边,一个等腰三角形两条边的长度分别是5厘米和11厘米,只有一种情况:腰为11厘米,底为5厘米时,周长为11+11+5厘米.【解答】解:根据分析,这个等腰三角形的周长为:11+11+5=27(厘米)答:有一个这样的三角形,周长分别为27厘米.【点评】此题关键利用三角形三边的关系,再根据三角形周长的计算方法,列式解答即可.1.(2019春•明光市期末)一个三角形的两边长分别是6厘米和9厘米,第三条边的长度一定大于3厘米,同时小于15厘米.【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;进行解答即可.【解答】解:9﹣6<第三边<9+6,即3<第三边<15.故答案为:3;15.【点评】解答此题的关键是根据三角形的特性进行分析、解答即可.2.(2018春•厦门期末)王老师给同学们准备了一些小棒,数量如图.选用其中的部分小棒搭成一个长方体.(1)长方体一共有12条棱,每组相对的棱有4条,因此,不可能选用8cm的小棒.(2)这个长方体相交于一个顶点的三条棱的长度分别是5cm、4cm和4cm.(3)计算这个长方体的表面积.【分析】(1)(2)根据长方体的特征即可求解;(3)根据长方体的表面积公式:S=(ab+ah+bh)×2,把数据代入公式解答即可.【解答】解:(1)长方体一共有12条棱,每组相对的棱有4条,因此,不可能选用8cm的小棒.(2)这个长方体相交于一个顶点的三条棱的长度分别是5cm、4cm和4cm.(3)(5×4+5×4+4×4)×2=(20+20+16)×2=56×2=112(平方厘米)答:这个长方体的表面积是112平方厘米.故答案为:12,4,8;5,4,4.【点评】此题主要考查长方体的表面积公式的灵活运用,关键是熟记公式.3.(2018春•射阳县月考)把一根12厘米的吸管剪成3段(每段都是整厘米数),摆成一个三角形,共有几种剪法,你能全部列举出来吗?【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;进行解答即可.【解答】解:三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边,且12=3+4+5=4+4+4=2+5+5,符合题意的三角形各边分别为:①3、4、5;②4、4、4;③2、5、5;所以共有3种剪法,可以是3、4、5;4、4、4;2、5、5.【点评】围成三角形中任意两条边的和大于第三边,即最长边要小于总长度的一半,是判断三条线段能否围成一个三角形的关键.考点二:三角形的分类例2.(2020春•灯塔市期末)在点子图上按要求画图.【分析】根据平行四边形、梯形、直角三角形、等腰三角形的定义以及它们的特征,即可画图,因为没有规定的确切数据,所以此题答案不唯一.【解答】解:【点评】此题主要考查了常见的几种简单图形的定义以及画法.1.(2019春•肇州县校级期末)分一分,将正确答案的序号填在括号内.【分析】根据三角形按照角的大小分类情况,三角形按照角的大小分为锐角三角形、直角三角形、钝角三角形.三个角都是锐角的三角形叫做锐角三角形;有一个角等于90°的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形;据此进行判断即可.【解答】解:锐角三角形:①④⑦直角三角形:②⑧钝角三角形:③⑤⑥故答案为:【点评】此题考查的目的是理解掌握三角形按照角的大小分类的情况及应用,要熟悉各类三角形的判定条件.2.(2018秋•醴陵市期末)(探究题)两个椭圆圈重合的部分应是什么三角形?【分析】有两个角相等的直角三角形是等腰直角三角形,据此解答.【解答】解:有两个角相等的直角三角形是等腰直角三角形;所以两个椭圆圈重合的部分应是等腰直角三角形.答:两个椭圆圈重合的部分应是等腰直角三角形.【点评】掌握等腰直角三角形的特点是解题的关键.3.(2016春•岑溪市期中)下面3个三角形被盖住了一个或两个角,你能知道各是什么三角形吗?【分析】根据三角形按角分类的特征可知,三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形,解答即可.【解答】解:观图可知:第一个三角形有一个角是直角,所以是直角三角形,第二个三角形有一个角是钝角,所以是钝角三角形第三个三角形有2个角是锐角,所以有可能是锐角三角形,也可能是钝角三角形和直角三角形;故答案为:.【点评】正确理解锐角三角形、直角三角形和钝角三角形的定义是解决此题的关键.考点三:三角形的内角和例3.(2020春•铁西区期末)写出下面∠C的度数.【分析】根据三角形内角和为180°,用内角和减去其余两个角的度数即可求出∠C的度数。
第5讲三角形【知识点归纳总结】1. 三角形的特性三角形具有稳定性.三内角之和等于180度,根据角可以分为锐角三角形〔每个角小于90°〕,直角三角形〔有一个角等于90°〕,钝角三角形〔有一个角大于90°〕.任意两边之和大于第三边,任意两边之差小于第三边.2.三角形的分类1.按角分判定法一:锐角三角形:三个角都小于90°.直角三角形:可记作Rt△.其中一个角必须等于90°.钝角三角形:有一个角大于90°.判定法二:锐角三角形:最大角小于90°.直角三角形:最大角等于90°.钝角三角形:最大角大于90°.其中锐角三角形和钝角三角形统称为斜三角形.2.按边分不等边三角形;等腰三角形;等边三角形.3. 三角形的内角和三角形内角和为180°.直角三角形的两个锐角互余.典例精讲【典例1】〔2021•宾阳县〕在以下三条线段的长度中,能围成一个三角形的是〔〕A.1cm、3cm、5cm B.2cm、3cm、4cmC.5cm、2cm、8cm D.5cm、4cm、9cm【典例2】〔2021秋•红花岗区期末〕一个三角形三个角的度数比是1:2:3,这是一个〔〕三角形。
A.锐角B.直角C.钝角【典例3】〔2021秋•桓台县期末〕如图中有个直角,个三角形。
【典例4】〔2021春•文水县期末〕仔细观察如图∠1=60°,∠4=125°,求出∠2=°,∠3=°.【典例5】〔2021春•安陆市期末〕钝角三角形中,除钝角外的另两个角一定都是锐角且和小于90°.〔判断对错〕综合练习一.选择题1.〔2021•永川区〕有5根小棒,长度分别为2cm、3cm、4cm、5cm、6cm,任取其中的3根首尾相接摆三角形,可以摆出不同的三角形〔〕个。
A.7B.6C.52.〔2021•含山县〕一个三角形的下部被─张纸遮住了〔如图〕,只露出了一个角,这个三角形是〔〕三角形。
第5讲 特殊三角形之等腰三角形知识互联网模块一 等腰三角形【例1】 ⑴ 如图,ABC △中,AC AD BD ==,80DAC ∠=︒,则B ∠的度数是( )A .40︒B .35︒C .25︒D .20︒D CB A⑵ ABC △的一个内角的大小是40︒,且A B ∠=∠,那么C ∠的外角的大小是( ) A .140︒ B .80︒或100︒ C . 100︒或140︒ D . 80︒或140︒ ⑶如图,ABC △内有一点D ,且DA DB DC ==,若20DAB ∠=︒,30DAC ∠=︒,则BDC ∠的大小是( ) A.100︒ B.80︒ C.70︒ D.50︒【例2】 ⑴等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm两部分,则这个等腰三角形的底边的长为( ) A .17cm B .5cm C .17cm 或5cm D .无法确定⑵如图,在△ABA 1中,∠B =20°,AB =A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,∠A n 的度数为_________.【例3】 如图,△ABC 是等边三角形,BD 是中线,延长BC 至E ,CE=CD ,(1)求证:DB=DE .(2)在图中过D 作DF ⊥BE 交BE 于F ,若CF=4,求△ABC 的周长.【例4】 如图,已知点D 为等腰直角△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA .⑴求证:DE 平分∠BDC ;⑵若点M 在DE 上,且DC=DM ,求证:ME=BD .DCB A A nA 4A 3A 2A 1E D C AB E模块二 等边三角形知识导航【引例】下面给出的五种三角形:①所有外角都相等的三角形;②三边上的高都相等的三角形;③有两个角是60︒的三角形;④有一个角是60︒的等腰三角形;⑤以等边三角形三边中点为顶点的三角形.其中是等边三角形的个数有( ) A .2个 B .3个 C .4个 D .5个【例5】 ⑴如下左图,等边三角形ABC 中,D 、E 分别在AB 、AC 边上,且AD =CE ,BE 、CD 交于P 点,则图中︒60的角共有( )A. 6个B. 5个C. 4个D. 3个⑵如下右图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A.13 B.12 C.23 D.不能确定PE DCBA QPEDBA【例6】 数学课上,李老师出示了如下框中的题目.在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED =EC ,如图,试确定线段AE 与DB 的大小关系,并说明理由.EDCB A小敏与同桌小聪讨论后,进行了如下解答: ⑴特殊情况,探索结论当点E 为AB 的中点时,如图1确定线段AE 与DB 的大小关系,请你直接写出结论:AE DB (填“>”,“<”或“=”).FD ABCE图2图1ED C BA⑵特例启发,解答题目解:题目中,AE 与DB 的大小关系是:AE DB (填“>”,“<”或“=”).理由如下:如图2,过点E 作EF BC ∥,交AC 于点F .(请你完成以下解答过程)【例7】 MON ∠是一个钢架,10MON ∠=o ,在其内部添加一些钢管BC ,CD ,DE ,EF ,FG ,…添加的钢管长度都与OB 相等.⑴当添加到第五根钢管时,求FGM ∠的度数.⑵假设OM 、ON 足够长,能无限地添加下去吗?如果能,请说明理由.如果不能,则最多能添加几根?D NMFEO CBG巩固练习题一.选择题1.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°.若BE=6cm,DE=2cm,则BC的长为()A.4cm B.6cm C.8cm D.12cm2.已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE 相交于点M,AD、CE相交于点N,则下列五个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④AN=BM;⑤△CMN是等边三角形.其中,正确的有()A.2个B.3个C.4个D.5个3.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°4.如图,在△ABC中,AB=AC,点D是AC上一点,BC=BD=AD,则∠A的大小是()A.36°B.54°C.72°D.30°5.如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为()A.15°B.30°C.45°D.60°6.已知如图:△ABC中,AB=AC,BE=CD,BD=CF,则∠EDF=()A.2∠A B.90°﹣2∠A C.90°﹣∠A D.7.如图所示,△ABC是边长为20的等边三角形,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF=()A.5 B.10 C.15 D.208.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2015=()A.22013B.22014C.22015D.22016二.填空题9.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.10.如图,在△ABC中,D,E,F分别是AB,BC上的点,且AE=AD,BD=BF,若∠EDF=42°,则∠C的度数为度.11.如图,在等腰△ABC中,AB=AC=BD,∠BAD=70°,∠DAC=°.三.解答题13.如图,在ABC中,AB=AC,点E在CA的延长线上,EP⊥BC,垂足为P,EP交AB于点F,FD∥AC交BC 于点D.求证:△AEF是等腰三角形.14.如图所示,已知△ABC中,AB=AC,∠BAD=30°,AD=AE,求∠EDC的度数.16.如图,等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE⊥AC交BC于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,试求BF的长.17.如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.18.如图,△ABC中,AB=AC=CD,BD=AD,求△ABC中各角的度数.。
三角形的判定大题知识点1、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”) 斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:例题精讲---sss例1.如图,,,求证:.例2.如图,AB = DE,AC = DF,BE = CF. 求证:AB∥DE.对应练习3.如图CE=CB,CD=CA,DE=AB,求证:∠DCA=∠ECB4.已知:如图A、F、B、D四点在同一直线上,且AC=DE,CB=EF,AF=DB.求证:∠A=∠D.例题精讲---ASA例1:.如图,已知:AD是BC上的中线,BE∥CF.求证:DF=DE.对应练习7.如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.例题精讲--AAS例1.如图,在△ABC中,,,,垂足为,,垂足为.求证:.例2 .如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F. 求证:DF=EF.对应练习10:.如图已知:如图,DE⊥AC于点E,BF⊥AC于点F,CD∥AB,AB=CD。
求证:△ABF≌△CDE。
11.已知:如图,∠ABC=90°,AB=BC,CE⊥BE,AD⊥BE,求证:△ABD≌△BCE.例题精讲-SAS例1.如图,已知AC=AD,∠CAB=∠DAB,求证:∠C=∠D。
例2.如图,点B,E,F,C在一条直线上,AB=DC,BE=CF,∠B=∠C.求证:∠A=∠D。
对应练习13.如图,点B、E、C、F在同一条直线上,AB=DE,∠ABC=∠DEF,BE=CF,求证:∠ACB=∠F.例题精讲--HL14.如图,,,,垂足分别为, ,.求证:.15.如图,AB⊥BD,AC⊥CD,垂足分别为点B、C,AB=CD。
《三角形平行四边形梯形》专项训练
一、填空
1、一个三角形,其中两个角分别是40°和60°,这个三角形是( )三角形。
2、一个三角形最多可以画( )条高。
3、一个等腰三角形,从它的顶点向对边作垂线,分成的每个小三角形的内角和是( )。
4、由三条( )围成的图形叫三角形。
5、一个等腰三角形,其中一个角是40°,它的另个两个角可能是( )和( ),也可能是( )和( )。
7、在三角形ABC 中,已知∠A =∠B =36°,那么∠C =( ),这是一个( )三角形,也是一个( )三角形。
8、
9. 这个架子太危险,怎样加固呢?这是利用了三角形的( )特性。
8、在一个等腰三角形中,顶角是一个底角的3倍,这个三角形三个角的度数分别为( )、( )、( )。
9、三角形的三边关系:①三角形任意两边之和 第三边;②三角形任意两边之差 第三边。
下列每组分别是三根小木棒的长度,用它们能摆成三角形吗?(单位:厘米。
填“能”或“不能”) (1)3,4,5( ) (2)8,7,15( ) (3)13,12,20( ) (4)5,5,11( ) 二、小小评判家(对的画“√”,错的画“×”。
)
1、用三根分别长13厘米、20厘米和6厘米的小木棒,一定能摆出一个三角形。
( )
2、等腰三角形一定是锐角的三角形。
( )
3、一个三角形中,最大的角是锐角,那么,这个三角形一定是锐角三角形。
( )
4、一个三角形至少有两个内角是锐角。
( )
5、直角三角形中只能有一个角是直角。
( ) 2在一个三角形中,三条边的长度可能分别是4厘米,6厘米,11厘米( ) 3 等腰三角形也可以是直角三角形。
( )
我是等边三角形,其中一个角的度数是(
)
我有一个锐角是50度,另一个锐角是( )度。
4 三角形任意俩边大于或等于第三条边。
()
8正方形有俩条对称轴,平行四边形有一条对称轴()
9 等腰三角形一个底脚是70度,顶角是110度()
1、平行线间的距离处处相等。
()
2、平行四边形的一组对边之间,只能画一条高。
()
()
3、如果两条直线都与同一条直线平行,那么这两条直线互相垂直。
4、当梯形的两腰相等时,这个梯形叫等腰梯形。
()
5、长方形和正方形都是四个角是直角的特殊平行四边形。
()
1、等腰三角形都是锐角三角形。
()
4、任意一个三角形中,最大的一个内角一定比60º大。
()
5、用长10㎝、4㎝和3㎝的三根小棒不能围成一个三角形。
()
3、有一个角是锐角的三角形就是锐角三角形。
()
6、直角三角形只有两个锐角。
()
7、如果三角形中最大的一个角小于90度,那么这个三角形一定是锐角三角形。
()
8、一个三角形不是锐角三角形就是钝角三角形。
()
三、小法官,判一判
1、平行四边形一定能分成两个完全一样的梯形。
()
2、梯形的底和高一定是垂直的。
()
3、三角形具有稳定性的特点,而平行四边形却有容易变形的特点。
()
4、钝角三角形和直角三角形都只能画出一条高。
()
5、梯形是只有一组对边平行的四边形。
()
1、下面错误的是()
A、正方形相邻的两条边互相垂直。
B、两条直线互相平行,这两条直线相等。
C、长方形是特殊的平行四边形。
D、任意一个四边形的四个内角的和都是3600 。
2、把一个长方形框架拉成一个平行四边形,这个平行四边形的周长比原长方形的周长
()。
A、大
B、小
C、一样大
D、无法比较
3、从直线外一点到这条直线的距离,是指这一点到这条直线的()的长。
A、线段
B、射线
C、直线
D、垂直线段
4、下面四边形中()不是轴对称图形。
A、 B、 C、
5、在一个等腰梯形中画一条线段,可以将它分割成两个完全一样的()。
A、梯形
B、平行四边形
C、三角形
三、选择题
1、修凳子时常在旁边加固成三角形是运用了三角形的()。
A、三条边的特性
B、易变形的特性 C 、稳定不变形的特性
2、有一个角是600的()三角形,一定是正三角形。
A、任意
B、直角
C、等腰
3、所有的等边三角形都是()。
A、直角三角形
B、钝角三角形
C、锐角三角形
4、三角形越大,内角和( )
A.越大 B.不变 C.越小
2、分别画出每个三角形中的其中一条高。
并标出相应的底。
3、求出下面图形中的角的度数。
五、解决问题
1、如右图。
(单位:米)
(1)小明家到少年宫有几条路线?
(2)其中最近的是哪条?有多远?
3 等边三角形一条边长是10厘米,他的周长是多少厘米
4在一个等腰三角形中,有一个角的度数是40度,你能求出另外俩个角的度数吗?
5,一个等腰三角形的顶角是一个底脚的2倍,这个三角形各个角是多少度?
六、挑战奥数
1、是由一个七巧板拼成一个正方形,已知这个正方形的面积是32平方厘米,求图形1和图形2的面积和。
14、一个三角形的两边长分别是3和8,而第三边长为奇数,那么第三边长是 15、已知一个等腰三角形的一边是3cm ,一边是7cm ,这个三角形的周长是 16、如右图,∠1=60°,∠D=20°,则∠A= 度
17、如右图,AD 垂直于BC ,∠1=40°,∠2=30°,则∠B= 度,∠C= 度 18、在空白处填入“锐角”、“直角”或“钝角”:
(1) 如果三角形的三个内角都相等,那么这个三角形是 三角形; (2)如果三角形的两个内角都小于40°,那么这个三角形是 三角形。
A
B
C
D
E 1
1、在同一平面内两条直线相交成直角,就说这两条直线()。
2、两个完全一样的梯形可以拼成一个()。
3、有()的四边形叫平行四边形。
只有()的四边形叫做梯形。
长方形、正方形是()的平行四边形。
4、过直线外一点,可以画()直线和这条直线垂直,可以画()直线和这条直线平行。
5、从平行四边形的一个顶点出发做一条高,可以把平行四边形分成一个三角形和一个()形。
7、长方形邻边是()的,对边是()的。
8、一个平行四边形,周长为30厘米,其中一条边长9厘米,另外三条边分别是()厘米,()厘米和()厘米。
9、下图中有()种图形。
分别有()、()、()
4、画出下面图形底边对应的高。
上底上底
下底下底底
5、在点子图上画一个平行四边形和等腰梯形,并画出一条高。
1、在()的两条直线叫做平行线。
2、两组对边( )的四边形叫做平行四边形。
3、常见的四边形有( )。
4、只有一组对边平行的四边形叫做( )。
5、两条直线相交成( )角时,这两条直线互相垂直。
6、( )的梯形叫等腰梯形。
7、两条平行线之间的距离是6厘米,在这两条平行线之间作一条垂线,这条垂线的长是( )厘米。
8、右图中有( )个平行四边形,( )个梯形。
2、画出下面图形底边上的高。
上底
底
底 下底
3、画一个相邻两边长分别为4厘米、3厘米的平行四边形。
4、按要求在下面图形中画一条线段:
(1)、 分成两个梯形。
(2)、分成一个平行四边形和一个梯形
5、如图,要从东村挖一条水渠与小河相通,要使水渠最短,应该怎样挖?请在图上画出来。
东村 ●
小
河。