湖泊富营养化
- 格式:ppt
- 大小:237.50 KB
- 文档页数:45
长江流域重点湖泊的富营养化及防治长江流域重点湖泊的富营养化及防治一、引言长江是中国最长的河流,流域广阔,贡献了丰富的自然资源和人文景观。
长江流域中蕴含有大量的湖泊,拥有丰富的水资源,对于当地人民的生活和经济发展起着至关重要的作用。
然而,随着人口的增加和经济的发展,长江流域的湖泊面临着严重的富营养化问题,给湖泊生态环境带来了巨大的威胁。
二、富营养化的原因1. 农业活动排放的农业废水长江流域的农业非常发达,大量的农药、化肥等农业废水排放到湖泊中。
这些废水中的营养物质直接导致湖泊水体中富营养化现象的发生。
2. 工业废水的排放随着工业的不断发展,长江流域的一些工业企业在生产过程中排放了大量的废水。
这些废水中含有大量的有机物和化学物质,对湖泊水质产生了严重的污染,加剧了湖泊富营养化的速度。
3. 生活污水的排放人口的增加和城市化进程的加快,使得长江流域的城市生活污水排放量急剧增加。
这些污水中含有大量的废水和有机物,直接排入湖泊,加重了湖泊的富营养化程度。
三、富营养化的影响1. 水质下降湖泊富营养化会导致湖泊水质下降,水中的营养物质过多,容易引发水华现象。
水华会消耗大量的溶解氧,导致水质恶化,严重影响水生生物的生长和繁殖。
2. 水生生物减少富营养化会导致湖泊中大量的藻类大量繁殖,形成藻华。
藻华所释放的毒素对水生生物产生严重危害,导致湖泊中的鱼类和其他生物数量大幅减少。
3. 湖泊生态系统崩溃湖泊富营养化会导致湖泊生态系统失衡,水生植被大量衰退,湖泊中的生物多样性急剧降低。
长江流域的一些湖泊甚至出现了环境退化和生态系统崩溃的情况。
四、富营养化防治措施1. 加强农业面源污染控制政府应加强对农业面源污染的监管,制定严格的法律法规,加强对农民的培训和宣传,提倡绿色农业,减少化肥和农药的使用。
2. 加强工业废水治理政府应加大对工业企业废水排放的监管力度,对违法排放行为进行严厉处罚。
鼓励企业进行环境友好型改造,减少废水的排放。
人工湖水体富营养化的原因与控制措施近年来,随着城市化进程的加速和人们对自然环境的需求增加,人工湖泊作为城市生态系统的重要组成部分,扮演着重要的角色。
然而,一些人工湖泊普遍出现水体富营养化的问题,这不仅会对湖泊的生态系统造成破坏,也会威胁周边居民的健康。
本文将从原因和控制措施两个方面进行详细探讨。
一、人工湖水体富营养化的原因:1.过度施肥:城市周边农田对作物的施肥需要使用大量化肥和有机肥料,这些肥料中的氮和磷元素容易通过径流进入人工湖泊,从而导致湖泊水体富营养化。
2.城市污水排放:城市污水中富含含氮、磷等营养物质,如果经过处理无效或者直接排放入湖泊,会极大地促进湖泊水质富营养化的发生。
3.农田灌溉水排放:农田灌溉水中残留的化肥和农药,通过排放进入人工湖泊,会导致湖水营养含量过高。
4.乱倒垃圾:许多人把垃圾随意倾倒在湖岸边,这些垃圾中含有大量有机可分解物质,这些物质在湖泊中会分解产生养分,继而导致人工湖水体富营养化。
二、人工湖水体富营养化的控制措施:1.加强农田管理:加强对农田施肥的管理,合理控制化肥和有机肥的使用量,避免过度施肥现象的发生,减少营养物质进入湖泊的量。
2.改善城市污水处理:对城市污水进行有效处理,确保处理后的污水达到排放标准,防止含氮、磷等营养物质直接流入湖泊。
3.加强农田灌溉管理:对农田灌溉水的排放进行检测和管理,避免枯水期排放、化肥残留等现象,降低对人工湖富营养化的负面影响。
4.加强环境教育宣传:通过开展环境教育和宣传活动,提高公众对保护湖泊水质的认识,引导公众养成爱护环境、不乱倒垃圾的良好习惯。
5.增加湖泊水体流动性:通过增加湖泊的流动性,如增设水泵、喷泉等,能够有效减少富营养水位的发生,带走湖泊中的养分。
6.监测与应急处理:建立湖泊水质监测系统,定期监测并及时发现湖泊水体富营养化问题,采取应急处理措施,如氧化剂喷洒等,防止富营养环境加剧。
综上所述,人工湖水体富营养化的原因主要与过度施肥、城市污水排放、农田灌溉水排放和乱倒垃圾等因素有关。
湖泊富营养化分析湖泊富营养化导致的藻类暴发一直是我国最为突出的水环境问题之一. 藻类过度生长是多种因素共同作用的结果,既包括水温、光照、风速等自然因素,也包括氮(N)、磷(P)、铁(Fe)等营养物过量排放的人类活动因素. 在诸多因素中,全球气候变暖背景下的水温变化与高强度人类活动所引起的N、 P排放增加被认为是导致湖泊富营养化最关键因素,因此,同时考虑水温、 N、 P因子变化的湖泊富营养化相关研究在逐渐增多,但温度与营养物对湖泊藻类生物量的交互作用等还需要深入研究[7],比如水温、 N、 P促进藻类生物量增长的相对重要度的长期变化规律和季节性特征.富营养化湖泊的藻类生长是自然界中一个非期望或非平均的现象,藻类生物量数据异质性很强,水华期间的藻类数据会呈“高峰厚尾”的分布,或存在显著的异方差等情况. 近年来在环境科学和生态学领域受到重视的分位数回归(quantile regression)方法特别适合处理这种波动性大、异质性很强的环境数据. 该方法可针对回归变量任何一个分位点进行回归分析,且在存在极端值或重尾情况时仍能保持较好的稳健性,适宜处理应变量对自变量的极端响应,而不只是平均水平的响应,因此能更加全面地反映藻类生物量对水温、 N、 P 等环境指标的响应特征. 本研究基于云南洱海长时间尺度(1990-2013年)的水质观测数据,运用分位数回归方法,按不同年份区间和不同季节分别分析洱海藻类生物量[以叶绿素a(Chl-a)表征]对N、 P、水温的定量响应关系,探讨营养物因子与水温因子相对重要性的长时间尺度演变规律和季节性变化规律,对制定洱海富营养化控制策略提供科学依据.1 材料与方法1.1 研究区域洱海是云南省第二大高原淡水湖泊,为滇西最大的断陷湖,跨洱源、大理两县市,处于东经100°06′-100°17′,北纬25°36′-25°55′之间. 水面面积249.80 km2,汇水面积2 565.0 km2,最大水深21.0 m,平均水深10.5 m,库容28.8亿m3(图 1). 洱海是沿湖人民生活、灌溉、工业用水的主要水源地,是整个流域社会经济可持续发展的基础[14]. 洱海湖面多年平均海拔1 965.8 m,光照充足,辐射强,气温温和,为浮游藻类的大量繁殖提供了有利条件. 区年均气温15℃左右,年均降雨量1 055 mm,年均蒸发量1 970 mm. 流域水系发达,入湖河流大小共 117条.图 1 洱海流域及水质监测点分布示意1.2 数据来源从云南省环境监测中心站、中国大理洱海湖泊研究中心等环境监测和研究部门收集了洱海1990-2013年的水环境常规监测数据,全湖水质监测点为13个(图 1),经纬度依次为:25°51′36″N 100°10′12″E,25°51′18″N 100°11′24″ E,25°51′00″N 100°12′36″E,25°41′42″N 100°12′54″E,25°42′00″N 100°13′48″E,25°42′18″N 100°15′00″E,25°37′48″N 100°13′48″E,25°36′0″N 100°15′0″E,25°37′60″N 100°15′50″E,25°55′30″N 100° 6′54″E,25°54′54″N 100°8′42″E,25°54′36″N 100°10′48″E,25°47′29″N 100°11′43″E. 水质指标主要包括总氮(TN)、总磷(TP)、水温、藻类叶绿素a(Chl-a),采样频次为一年6次或12次. 各水质指标的主要测试方法如下:TN为过硫酸钾氧化紫外分光光度法,TP为钼锑抗分光光度法,水温为温度计现场实时测定,Chl-a为四波段分光光度法[15]. 数据主要统计特征见表 1,TP的变异系数最大(239.7%),其次是Chl-a和TN,这可能与各指标的年份间差异和季节性差异有关. 各指标数据的Kolmogorov-Smirnov正态分布检验,除了水温数据呈正态分布以外,所有指标的数据都呈非正态分布.表 1 洱海水温、总氮、总磷及藻类叶绿素a的统计值(n=1 419)1.3 分位数回归方法分位数回归模型(quantile regression)是依据因变量的条件分位数对自变量进行回归,得到所有分位水平的回归模型.假设随机变量的分布函数为F(y)=Prob(Y≤y),Y 的τ分位数为满足F(y) ≥τ的最小y 值:F(y)的τ分位点Q(τ)由最小化关于ξ的目标函数得到:其中ρτ(u)称为检验函数:假设因变量Y和自变量X 在τ分位的线性函数关系为Y=X′β+ε,给定X=x时,Y的条件分布函数为FY (y | x),则τ分位数为:线性条件分位数通常表示为:分位数回归能在不同的分位数τ得到不同的分位函数,残差计算方法不同于最小二乘法,具体如下:1.4 数据处理与分析考虑长时间尺度变化,将1990-2013年的监测数据按照相同年限(6 a)分成4组:1990-1995年、 1996-2001年、 2002-2007年、 2008-2013年,分别对这4组进行三元分位数回归分析. 为分析季节变化,将所有监测数据按春、夏、秋、冬四季分成4组,按不同季节分别进行三元分位数回归分析,比较各因子的斜率值变化,并计算95%置信区间(CI),CI覆盖0(包含0),表示相关性“不显著”,而CI未覆盖0(不包含0),说明相关性“显著”. 为便于比较3个因子的斜率值变化,在进行多元分位数回归之前,所有原始数据取对数(lg) 处理.使用统计软件STATA V.12.0进行分位数回归分析和参数估计.2 结果与讨论2.1 水质指标的年际变化与季节变化2.1.1 年际变化从TN变化趋势图看,2001年之前,TN浓度呈缓慢上升趋势,但总体处于较好的Ⅱ类水质. 在2001-2003年期间有一次跳跃式增长,从Ⅱ类区跨入Ⅲ类区,近10年(2003-2013年)TN浓度维持在Ⅲ类水平,达到2001年之前浓度水平的近2倍[图 2(a)]. TP浓度年均值的变化趋势表现为有升有降,基本在Ⅱ类水平线上下浮动,浓度高峰出现在2002-2004年区间和2013年. 近10余年(2002-2013年)的TP浓度水平比前10年(1990-2001年)的浓度水平总体高出15%左右[图 2(b)]. 洱海的年平均水温在16-19℃之间周期性波动,未见明显的上升或下降趋势[图 2(c)].图 2 洱海TN、 TP、水温和藻类Chl-a的逐年变化(1990-2013年)从藻类Chl-a变化趋势看,2000年之前洱海全湖Chl-a维持在低浓度水平,变化范围为1.0-3.5 mg·m-3. 2000-2002的3年期间,Chl-a浓度呈直线上升,藻类生物量从低水平跨越至较高水平. 2003年之后的Chl-a平均浓度达到2000年之前的10余倍[图 2(d)]. Pearson相关性分析显示藻类Chl-a与TN以及水温均呈显著正相关性(P<0.01),而与TP的相关性不显著(P>0.05).2.1.2 季节变化4项水质指标具有明显的季节性特征,均表现为夏、秋两季较高,且两季数据接近,而春、冬季数值较低. 8-10月TN浓度最高,5月是一年中TN上升的起点,11月是TN开始下降的拐点[图 3(a)]. 一年中TP浓度在4-7月是洱海上升速率最快的时段[图 3(b)]. 水温在夏季和秋季最高,分别为23.3℃和20.2℃,很适宜藻类生长[图 3(c)]. 藻类Chl-a 浓度在6-7月出现跳跃式上升,平均值由10 mg·m-3跃升至20 mg·m-3,在7-11月维持在最高水平[图 3(d)].图 3 洱海TN、 TP、水温和藻类Chl-a的季节变化2.2 藻类对氮、磷及水温的长时间尺度响应特征通过三元分位数回归方法分析洱海N、 P和水温对藻类Chl-a的耦合效应随时间变化特征. 4个年份区间的lg(TN)、 lg(TP)和lg(水温)的斜率值随分位点的变化谱图见图 4,斜率值及其95%置信区间的统计特征见表 2.表 2 不同年份区间的多元分位数回归的斜率参数统计图 4 4个年份区间的三元分位数回归中lg(TN)、 lg(TP)和lg(Temp)的斜率变化4个时间段lg(TN)、 lg(TP)和lg(水温)的平均斜率值变化范围分别为0.03-0.20、-0.30-0.80、 0.44-2.70,3个因子对藻类的促进效应依次为水温>磷>氮. 各因子的斜率值随时间变化很大,水温的斜率值逐渐下降,从1990-1995年期间的2.05-4.78快速下降至2008-2013期间的0.15-0.75,说明水温对藻类生长的正效应在持续相对下降. 水温斜率的95%置信区间(CI)在2007年之前的时间段全未覆盖0,而在2008-2013年期间只有部分区间(0.45<τ<0.71)未覆盖0,说明水温与藻类Chl-a之间相关性总体表现为极显著,但在2008年之后显著度出现下降. 相反,TP的斜率值逐渐上升,从1990-1995年期间的负值(-0.42--0.05)快速攀升至2008-2013年期间的0.52-1.07,说明P对藻类生长的正效应逐渐在相对增强. 除了1996-2001年时间段,TP斜率的95%CI在绝大部分位点均是未覆盖0,说明TP与藻类Chl-a之间相关性总体呈极显著. 在过去20余年中TN的斜率值比较低,但在绝大部分分位条件下表现为正效应,在1996-2001年和2002-2007年两个时段的数值略高,而在2008-2013年的正效应达到最低. TN斜率的95%CI只在1996-2007年期间的部分分位点未覆盖0,说明TN与藻类Chl-a之间相关显著度较低.总体上看,水温和营养物共同支撑着洱海藻类生物量,这与国内外其他富营养化湖泊的研究结果类似. 营养物和水温对藻类生物量变化的耦合效应比较复杂,据1980-2014年的洱海陆域大理站气象资料,当地日平均气温、日最高气温以及日最低气温均存在缓慢上升的趋势,近30余年日最低气温上升幅度为0.05℃·a-1,有气候变暖趋势. 而分位数回归结果显示水温是洱海藻类增长的重要限制因素,但其相对重要度随着时间推移(富营养化程度加重)明显下降,而P的相对重要度明显持续上升,P比N对藻类的限制作用更强. 与水温相比,营养盐浓度可能是影响洱海藻类生物量的更重要因素. 这与Jeppesen等提出的亚热带到温带区域的35个湖泊中浮游藻类生物量与结构主要是由营养物决定,而气候变暖的作用较小的结论基本一致.分位数回归分析结果显示洱海藻类属于N、 P共同限制,这与N/P比值有关. 一般当N/P质量比在10∶1-25∶1的范围时,藻类生长出现氮磷共同限制的概率大. 洱海N/P质量比值一般在10-30之间波动,平均值为23,中位数21(表 1),符合藻类出现N、 P共同限制的条件. 藻类Chl-a对营养物和水温的响应关系可能与藻类群落结构演替有很大关系. 洱海的富营养化演进过程是藻类群落结构逐渐从硅藻门占优势向蓝藻门占优势的演变过程. 不同藻类对N、 P和水温的响应程度差别会很大,硅藻的最主要限制因子可能是水温等气象条件,其次是营养盐,而蓝藻一般受N/P质量比值的影响显著,还有水温、光照、气压等条件[29]. 洱海N/P质量比值现状适合微囊藻、鱼腥藻等蓝藻门在藻类竞争中占优势.2.3 藻类对氮、磷及水温响应的季节性特征不同季节中lg(TN)、 lg(TP)和lg(水温)的斜率值随分位点的变化谱图见图 5. 春季,TN和水温的斜率值均始终保持为正值,两者的95% CI在绝大部分分位条件下均未覆盖0(极显著). TP斜率在大多数条件下(τ<0.85)为负值. 在较高分位时(τ>0.7,Chl-a>5.4 mg·m-3),水温和TN的斜率值同时下降,而TP斜率值明显相应上升,当τ>0.85处(Chl-a>8.0 mg·m-3)TP的斜率值转为正. 这说明N和水温是支撑春季藻类生物量的重要因素,但出现高生物量的决定性因子是P.图 5 分季节的三元分位数回归中lg(TN)、 lg(TP)和lg(Temp)的斜率值变化夏季,水温的斜率值在所有分位点全部为负值,数值范围为-2.27-0.03,而TN和TP 斜率平均值分别为0.51和0.26,在较高分位时两者的95% CI均未覆盖0(极显著). 当τ<0.40(Chl-a<3mg·m-3),TN斜率持续上升,而TP斜率相应下降. 而当τ>0.40,TN斜率持续缓慢下降,而TP斜率持续快速上升,说明夏季藻类是N、 P共同限制,但随着藻类生物量增长,TP对藻类的正效应逐渐强于TN.秋季,TN和水温的斜率全部为正值,平均值分别为0.66和4.59,两者的95% CI在所有分位点都未覆盖0(极显著). TP斜率总体是大于0,平均值0.16,而95%CI在绝大部分分位条件下是覆盖0(不显著). 秋季藻类增长的限制因子重要度排序为:水温>TN>TP.冬季,TN斜率始终为负值,TP斜率虽然在绝大部分条件下为正值,但其95%CI全覆盖0(不显著). 温度的斜率始终保持正值,其95% CI在绝大部分条件下(0.22<τ<1.52)未覆盖0(极显著),说明水温是冬季藻类增长的主导限制因子.TN、 TP、水温、 Chl-a的数值季节性变化表现出高度一致,均是在夏、秋两季达到最高(图 3),这反映了营养物与水温共同促进洱海藻类生物量变化. 但分位数回归结果显示藻类对各因子的响应关系在夏季和秋季完全不同,夏季日平均气温最高,普遍达到藻类生长所需要的最佳温度,因此水温不属于夏季藻类生长的限制因子. 夏季降雨量大,暴雨径流携带更多营养物进入湖体,促进藻类暴发,N、 P成为藻类共同限制因子. 夏季持续高温还会加速下层水中有机物质的耗氧分解,造成溶解氧浓度急剧下降,容易出现缺氧状态,促进底泥中大量氨氮和磷酸盐加快溶出,致使水中TN、 TP含量升高,支撑全湖藻类出现暴发性增长. 秋季,经过夏季藻类暴发已消耗了大量N、 P,而且秋季气温昼夜温差加大,水温数据的离散度明显大于夏季,藻类生物量对水温变化表现可能更加敏感,使水温成为藻类主要限制因子. 春季和冬季,营养物浓度水平较低,湖水呈相对清洁状态,水温的波动对藻类生物量影响也比较大.洱海藻类群落的季节性特征很明显,在春季以硅藻和蓝藻占优势,冬季以绿藻和蓝藻占优势,而蓝藻在全年绝大部分时间占优势,尤其是在夏秋两季处于绝对优势地位,水华发生时蓝藻数量高达107 cells·L-1. 夏季水温能普遍达到蓝藻生长最理想水温(20℃以上),营养物浓度则成为藻类生物量的决定性因子.具体参见污水宝商城资料或更多相关技术文档。
湖泊富营养化与水环境质量改善湖泊富营养化是指湖泊水体中的营养物质过多,导致水体中营养物质的浓度异常高,进而引发水环境质量的下降。
富营养化是目前全球水环境面临的严重问题之一,对生态系统和人类健康都带来了诸多负面影响。
因此,富营养化的治理和水环境质量的改善成为了当今世界各国共同关注的议题。
首先,湖泊富营养化主要是由人类活动导致的。
农业过度使用化肥、城市污水排放、工业废水排放以及大规模养殖等都是导致湖泊富营养化的重要原因。
化肥中的氮、磷等营养物质通过冲刷到湖泊中,成为水体中富营养化的主要源头。
而废水排放中含有大量的有机物和营养物质,也会使湖泊水体富营养化。
因此,要改善湖泊的水环境质量,首先需要减少人类活动对湖泊的负面影响。
其次,湖泊富营养化对生态系统造成了重大危害。
水体中富集的营养物质会导致水中藻类的大量繁殖,形成藻华。
藻华的存在不仅破坏了水体的生态平衡,还对水中的氧气供应产生了极大的影响。
藻类繁殖后,死亡的藻类会沉入湖底,细菌分解藻类尸体会消耗大量的氧气,使水体中的溶解氧大幅度下降。
这样一来,湖泊中的水生动物就无法正常呼吸和生活,久而久之会引发生态系统的崩溃。
同时,藻类还会分泌毒素,对其他生物产生剧毒作用,对人类健康造成威胁。
湖泊富营养化还给人类带来了一系列问题。
湖泊水体中过高的营养物浓度会使水呈现绿色或黄色,不仅影响了湖泊的观赏价值,也降低了湖泊的娱乐功能。
此外,富营养化还会引起水体异味和水质污染,影响人们的生活水源。
长期暴露在富营养化的湖泊环境中,人们还可能受到藻毒素的危害,造成慢性病甚至致命。
面对湖泊富营养化问题,各国都采取了一系列措施来改善水环境质量。
首先,减少营养物源头,控制农业的化肥使用量、加强城市和乡村污水的处理,严格控制工业废水的排放等,都是有效控制湖泊富营养化的重要举措。
其次,加强湖泊周边的生态修复,增加湖泊的自净能力。
种植湿地和水生植物等可以吸收营养物质,并起到过滤、净化水体的作用,从而改善湖泊的水环境质量。
湖泊(水库)富营养化评价方法及分级技术规定(中国环境监测总站,总站生字[2001]090号)1、湖泊(水库)富营养化状况评价方法:综合营养状态指数法综合营养状态指数计算公式为:TLI (∑)=∑Wj·TLI (j )式中:TLI (∑)—综合营养状态指数;Wj —第j 种参数的营养状态指数的相关权重。
TLI (j )—代表第j 种参数的营养状态指数。
以chla 作为基准参数,则第j 种参数的归一化的相关权重计算公式为:∑==mj ijijr r wj 122 式中:r ij —第j 种参数与基准参数chla 的相关系数;m —评价参数的个数。
中国湖泊(水库)的chla 与其它参数之间的相关关系r ij 及r ij 2见下表。
中国湖泊(水库)部分参数与chla 的相关关系r ij 及r ij 2值※ 参数chla TP TN SD COD Mn r ij1 0.84 0.82 -0.83 0.83 r ij 21 0.7056 0.6724 0.6889 0.6889※:引自金相灿等著《中国湖泊环境》,表中r ij 来源于中国26个主要湖泊调查数据的计算结果。
营养状态指数计算公式为:⑴ TLI (chl )=10(2.5+1.086lnchl )⑵ TLI (TP )=10(9.436+1.624lnTP )⑶ TLI (TN )=10(5.453+1.694lnTN )⑷ TLI (SD )=10(5.118-1.94lnSD )⑸TLI(COD Mn)=10(0.109+2.661lnCOD)式中:叶绿素a chl单位为mg/m3,透明度SD单位为m;其它指标单位均为mg/L。
2、湖泊(水库)富营养化状况评价指标:叶绿素a(chla)、总磷(TP)、总氮(TN)、透明度(SD)、高锰酸盐指数(COD Mn)3、湖泊(水库)营养状态分级:采用0~100的一系列连续数字对湖泊(水库)营养状态进行分级:TLI(∑)<30 贫营养(Oligotropher)30≤TLI(∑)≤50 中营养(Mesotropher)TLI(∑)>50 富营养(Eutropher)50<TLI(∑)≤60 轻度富营养(light eutropher)60<TLI(∑)≤70 中度富营养(Middle eutropher)TLI(∑)>70 重度富营养(Hyper eutropher)在同一营养状态下,指数值越高,其营养程度越重。
湖泊(水库)富营养化评价方法及分级技术规定(中国环境监测总站,总站生字[2001]090号)1、湖泊(水库)富营养化状况评价方法:综合营养状态指数法 综合营养状态指数计算公式为:TLI (∑)=∑Wj·TLI (j )式中:TLI (∑)—综合营养状态指数;Wj —第j 种参数的营养状态指数的相关权重。
TLI (j )—代表第j 种参数的营养状态指数。
以chla 作为基准参数,则第j 种参数的归一化的相关权重计算公式为:∑==m j ijijrr wj 122式中:r ij —第j 种参数与基准参数c hla 的相关系数; m —评价参数的个数。
中国湖泊(水库)的chla 与其它参数之间的相关关系rij 及rij2见下表。
中国湖泊(水库)部分参数与c hla 的相关关系r i j 及ri j2值※※:引自金相灿等著《中国湖泊环境》,表中rij 来源于中国26个主要湖泊调查数据的计算结果。
营养状态指数计算公式为:⑴ TLI (chl )=10(2.5+1.086ln c hl ) ⑵ TLI (TP )=10(9.436+1.624ln T P ) ⑶ TLI (TN )=10(5.453+1.694ln T N ) ⑷ TLI (SD )=10(5.118-1.94lnS D ) ⑸ TLI (CODMn )=10(0.109+2.661ln C OD )式中:叶绿素a chl单位为mg/m3,透明度SD单位为m;其它指标单位均为mg/L。
2、湖泊(水库)富营养化状况评价指标:叶绿素a(chla)、总磷(TP)、总氮(TN)、透明度(SD)、高锰酸盐指数(CODMn)3、湖泊(水库)营养状态分级:采用0~100的一系列连续数字对湖泊(水库)营养状态进行分级:TLI(∑)<30 贫营养(Oligot rophe r)30≤TLI(∑)≤50 中营养(Mesotr opher)TLI(∑)>50 富营养(Eutrop her)50<TLI(∑)≤60 轻度富营养(lighteutrop her)60<TLI(∑)≤70 中度富营养(Middle eutrop her)TLI(∑)>70 重度富营养(Hypereutrop her)在同一营养状态下,指数值越高,其营养程度越重。
湖泊(水库)富营养化评价方法及分级技术规定(中国环境监测总站,总站生字[2001]090号)1、湖泊(水库)富营养化状况评价方法:综合营养状态指数法 综合营养状态指数计算公式为:TLI (∑)=∑Wj·TLI(j )式中:TLI (∑)—综合营养状态指数;Wj —第j 种参数的营养状态指数的相关权重。
TLI (j )—代表第j 种参数的营养状态指数。
以chla 作为基准参数,则第j 种参数的归一化的相关权重计算公式为:∑==m j ijijr r wj 122式中:r ij —第j 种参数与基准参数chla 的相关系数; m —评价参数的个数。
中国湖泊(水库)的chla 与其它参数之间的相关关系r ij 及r ij 2见下表。
中国湖泊(水库)部分参数与chla 的相关关系r ij 及r ij 2值※※:引自金相灿等著《中国湖泊环境》,表中r ij 来源于中国26个主要湖泊调查数据的计算结果。
营养状态指数计算公式为:⑴ TLI (chl )=10(2.5+1.086lnchl ) ⑵ TLI (TP )=10(9.436+1.624lnTP ) ⑶ TLI (TN )=10(5.453+1.694lnTN ) ⑷ TLI (SD )=10(5.118-1.94lnSD )⑸ TLI(COD Mn)=10(0.109+2.661lnCOD)式中:叶绿素a chl单位为mg/m3,透明度SD单位为m;其它指标单位均为mg/L。
2、湖泊(水库)富营养化状况评价指标:叶绿素a(chla)、总磷(TP)、总氮(TN)、透明度(SD)、高锰酸盐指数(COD Mn)3、湖泊(水库)营养状态分级:采用0~100的一系列连续数字对湖泊(水库)营养状态进行分级:TLI(∑)<30 贫营养(Oligotropher)30≤TLI(∑)≤50 中营养(Mesotropher)TLI(∑)>50 富营养 (Eutropher)50<TLI(∑)≤60 轻度富营养(light eutropher)60<TLI(∑)≤70 中度富营养(Middle eutropher)TLI(∑)>70 重度富营养(Hyper eutropher)在同一营养状态下,指数值越高,其营养程度越重。
湖泊(水库)富营养化评价方法及分级技术规定及计算示例(中国环境监测总站,总站生字[2001]090号)1、湖泊(水库)富营养化状况评价方法:综合营养状态指数法 综合营养状态指数计算公式为:TLI (∑)=∑Wj·TLI (j )式中:TLI (∑)—综合营养状态指数;Wj —第j 种参数的营养状态指数的相关权重。
TLI (j )—代表第j 种参数的营养状态指数。
以chla 作为基准参数,则第j 种参数的归一化的相关权重计算公式为:∑==m j ijijrr wj 122式中:r ij —第j 种参数与基准参数chla 的相关系数; m —评价参数的个数。
中国湖泊(水库)的chla 与其它参数之间的相关关系r ij 及r ij 2见下表。
中国湖泊(水库)部分参数与chla 的相关关系r ij 及r ij 2值※※:引自金相灿等著《中国湖泊环境》,表中r ij 来源于中国26个主要湖泊调查数据的计算结果。
营养状态指数计算公式为:⑴ TLI (chl )=10(2.5+1.086lnchl ) ⑵ TLI (TP )=10(9.436+1.624lnTP ) ⑶ TLI (TN )=10(5.453+1.694lnTN )⑷TLI(SD)=10(5.118-1.94lnSD)⑸TLI(COD Mn)=10(0.109+2.661lnCOD)式中:叶绿素a chl单位为mg/m3,透明度SD单位为m;其它指标单位均为mg/L。
2、湖泊(水库)富营养化状况评价指标:叶绿素a(chla)、总磷(TP)、总氮(TN)、透明度(SD)、高锰酸盐指数(COD Mn)3、湖泊(水库)营养状态分级:采用0~100的一系列连续数字对湖泊(水库)营养状态进行分级:TLI(∑)<30 贫营养(Oligotropher)30≤TLI(∑)≤50 中营养(Mesotropher)TLI(∑)>50 富营养(Eutropher)50<TLI(∑)≤60 轻度富营养(light eutropher)60<TLI(∑)≤70 中度富营养(Middle eutropher)TLI(∑)>70 重度富营养(Hyper eutropher)在同一营养状态下,指数值越高,其营养程度越重。
淡水湖泊水质富营养化与生态修复淡水湖泊是人类赖以生存的重要水资源,然而近年来,一些淡水湖泊出现了水质富营养化的现象,给生态环境带来了巨大挑战。
本文将探讨淡水湖泊水质富营养化的原因以及可能的生态修复措施。
首先,我们来了解什么是水质富营养化。
水质富营养化是指水体中氮、磷等营养物质的过度富集,导致水体中藻类和水生植物大量生长,形成大规模的水华。
水中的氮、磷等营养物质来自于农业、工业以及城市污水等人类活动的排放,尤其是化肥和污水中的营养物质的输入,使得水体中的营养物质浓度迅速上升,从而引发水质富营养化。
造成水质富营养化的原因有多种。
首先,农业是导致水质富营养化的主要原因之一。
农业使用的化肥中富含氮、磷等营养物质,这些养分往往通过洪水、灌溉水等进入水体,造成水体富营养化。
其次,城市化和人口增加导致城市污水的排放量增加,其中含有大量的营养物质,使得水域中富营养化现象加剧。
此外,工业排放和交通尾气等也是水质富营养化的原因之一。
水质富营养化对淡水湖泊的生态环境造成了很大的影响。
首先,水体中过多的营养物质会促进藻类和水生植物的大量繁殖,形成水华。
水华不仅影响水体的透明度,降低水质,还会消耗水体中的氧气,导致水中生物窒息。
同时,水华中的某些有害藻类还会产生毒素,对水生动物和人类健康造成威胁。
此外,过多的营养物质还会导致水体中的氧气含量降低,引发富营养化湖泊的缺氧现象,破坏湖泊的生态平衡。
面对淡水湖泊水质富营养化问题,我们需要采取有效的生态修复措施。
第一步是控制污染源。
通过加强农田排水管网建设,进行农业面源污染的治理,限制化肥使用量和施肥时间,可以减少农业排放的养分。
同时,要加强城市污水处理设施的建设,提高污水处理率,减少城市污水对水体的污染。
第二步是生态修复。
可以通过增加湖泊的深度,改善水体自净能力,提高湖泊的水质。
此外,引入一些水生植物,如浮萍、藻类等,能够吸收水体中的有机物,降低水体中的营养物浓度。
还可以通过人工采样等方法,控制富营养化水域中的藻类数量,防止水华的发生。
湖泊富营养化控制和管理技术一、减少营养物质流入控制湖泊富营养化的首要任务是减少营养物质的流入。
这可以通过以下几种方式实现:1.建立截污工程:通过建设污水处理厂或截流管网,将生活和工业废水中的营养物质在排放前进行处理,以减少营养物质的流入。
2.农业面源污染控制:通过改变耕作方式、合理使用化肥和农药等措施,减少农田径流中的营养物质。
3.水产养殖管理:合理规划水产养殖,选择适合的养殖品种,避免因过量投饵而导致的营养物质流失。
二、生态修复生态修复是利用生态系统自身的修复能力,通过恢复和重建受损的生态系统,达到控制和减少富营养化的目的。
具体措施包括:1.湖泊清淤:清除湖泊底部的淤泥,减少底部营养物质的释放。
2.恢复水生植被:种植适合当地气候和土壤条件的水生植物,吸收水中的营养物质。
3.引入滤食性生物:投放滤食性鱼类或贝类,吸收水中的悬浮颗粒物和营养物质。
4.生物多样性保护:保护湖泊中的生物多样性,促进生态系统的稳定性和自我修复能力。
三、定期监测定期监测是了解湖泊富营养化状况和制定管理措施的重要依据。
通过对水质、水量、水生生物等进行监测,可以及时发现和解决潜在的富营养化问题。
四、提高公众意识提高公众意识是湖泊富营养化控制和管理的关键。
政府和相关部门应加强宣传和教育,提高公众对富营养化的认识和保护意识。
同时,鼓励公众积极参与湖泊保护活动,形成全社会共同参与的良好氛围。
五、立法管理制定相关法律法规是湖泊富营养化控制和管理的重要保障。
政府应加强立法工作,明确湖泊保护的责任和义务,对违法排污等行为进行严厉打击,确保湖泊资源的合理开发和有效保护。
六、科学治理科学治理是湖泊富营养化控制和管理的基础。
通过开展科学研究,深入了解湖泊富营养化的成因、演变过程及影响因素,制定科学合理的治理方案。
同时,积极引进先进技术和管理经验,提高湖泊富营养化治理的效率和效果。
七、合理规划合理规划是湖泊富营养化控制和管理的关键措施之一。
政府和相关部门应制定湖泊保护总体规划,明确湖泊保护的目标、任务和措施。
湖泊(水库)富营养化评价方法及分级技术规定2004-08-111、湖泊(水库)富营养化状况评价方法:综合营养状态指数法综合营养状态指数计算公式为:式中:—综合营养状态指数;Wj—第j种参数的营养状态指数的相关权重。
TLI(j)—代表第j种参数的营养状态指数。
以chla作为基准参数,则第j种参数的归一化的相关权重计算公式为:式中:rij—第j种参数与基准参数chla的相关系数;m—评价参数的个数。
中国湖泊(水库)的chla与其它参数之间的相关关系rij及rij2见下表。
※:引自金相灿等著《中国湖泊环境》,表中rij来源于中国26个主要湖泊调查数据的计算结果。
营养状态指数计算公式为:⑴ TLI(chl)=10(2.5+1.086lnchl)⑵ TLI(TP)=10(9.436+1.624lnTP)⑶ TLI(TN)=10(5.453+1.694lnTN)⑷ TLI(SD)=10(5.118-1.94lnSD)⑸ TLI(CODMn)=10(0.109+2.661lnCOD)式中:叶绿素a chl单位为mg/m3,透明度SD单位为m;其它指标单位均为mg/L。
2、湖泊(水库)富营养化状况评价指标:叶绿素a(chla)、总磷(TP)、总氮(TN)、透明度(SD)、高锰酸盐指数(CODMn)3、湖泊(水库)营养状态分级:采用0~100的一系列连续数字对湖泊(水库)营养状态进行分级:TLI(∑)<30贫营养(Oligotropher)30≤TLI(∑)≤50中营养(Mesotropher)TLI(∑)>50富营养 (Eutropher)50<TLI(∑)≤60轻度富营养(light eutropher)60<TLI(∑)≤70中度富营养(Middle eutropher)TLI(∑)>70重度富营养(Hyper eutropher)在同一营养状态下,指数值越高,其营养程度越重。
注:此规定由中国环境监测总站生态室负责解释欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求。
湖泊富营养化评价方法及分级标准1. 外部养分负荷评价法是一种常用的湖泊富营养化评价方法,该方法通过分析和计算湖泊接受的外部养分负荷和湖泊自身的处理能力来评价湖泊的富营养化程度。
2. 水质监测法是湖泊富营养化评价的常用方法之一,通过定期监测湖泊的水质参数,如营养盐浓度和浊度等,来评估湖泊的营养状态。
3. 水华发生频率评价法是评价湖泊富营养化程度的一种方法,通过记录和统计湖泊发生水华的频率和规模来评估湖泊的富营养化程度。
4. 湖泊透明度评价法是一种常用的湖泊富营养化评价方法,透明度是反映湖泊内溶解性物质、浮游生物等因子的重要指标,透明度较低可能表明湖泊存在富营养化问题。
5. 氯叶藻生物量评价法是一种常用的湖泊富营养化评价方法,通过测量湖泊水体中的氯叶藻生物量来评估湖泊的富营养化程度。
6. 叶绿素a浓度评价法是一种常用的湖泊富营养化评价方法,叶绿素a是湖泊中浮游植物的重要生物标志物,测量湖泊水体中的叶绿素a浓度可以反映湖泊的富营养化状态。
7. 湖泊底泥养分含量评价法是一种常用的湖泊富营养化评价方法,通过分析湖泊底泥中的养分含量,如氮、磷等元素,来评估湖泊的富营养化程度。
8. 藻类多样性评价法是一种常用的湖泊富营养化评价方法,通过调查和记录湖泊中不同种类藻类的物种组成和数量来评估湖泊的富营养化水平。
9. 湖泊生态系统变化评价法是一种综合评价湖泊富营养化程度的方法,通过分析湖泊生态系统的组成和结构变化,如鱼类种群结构和水生植物分布等,来评估湖泊的富营养化程度。
10. 湖泊生物群落结构评价法是一种常用的湖泊富营养化评价方法,通过调查和记录湖泊生物群落的组成和结构,如浮游植物和动物种群的密度和多样性等,来评估湖泊的富营养化程度。
11. 水生植物覆盖度评价法是一种常用的湖泊富营养化评价方法,通过测量湖泊中水生植物的覆盖度来评估湖泊的富营养化程度。
12. 水体色度评价法是一种常用的湖泊富营养化评价方法,水体的颜色和透明度可以反映湖泊水质的改变,较高的颜色值可能与富营养化有关。
附件1:湖泊(水库)富营养化评价方法及分级技术规定1、湖泊(水库)富营养化状况评价方法:综合营养状态指数法综合营养状态指数计算公式为:∑=∙=∑mj j TLI Wj TLI 1)()(式中:)(∑TLI —综合营养状态指数;Wj —第j 种参数的营养状态指数的相关权重。
TLI (j )—代表第j 种参数的营养状态指数。
以chla 作为基准参数,则第j 种参数的归一化的相关权重计算公式为:∑==mj ij ijj rr W 122 式中:r ij —第j 种参数与基准参数chla 的相关系数;m —评价参数的个数。
中国湖泊(水库)的chla 与其它参数之间的相关关系r ij 及r ij 2见下表。
中国湖泊(水库)部分参数与chla 的相关关系r及r 2值※※:引自金相灿等著《中国湖泊环境》,表中r ij 来源于中国26个主要湖泊调查数据的计算结果。
营养状态指数计算公式为:⑴ TLI (chl )=10(2.5+1.086lnchl )⑵ TLI (TP )=10(9.436+1.624lnTP )⑶ TLI (TN )=10(5.453+1.694lnTN )⑷TLI(SD)=10(5.118-1.94lnSD))=10(0.109+2.661lnCOD)⑸TLI(CODMn式中:叶绿素a chl单位为mg/m3,透明度SD单位为m;其它指标单位均为mg/L。
2、湖泊(水库)富营养化状况评价指标:叶绿素a(chla)、总磷(TP)、总氮(TN)、透明度(SD)、高锰)酸盐指数(CODMn3、湖泊(水库)营养状态分级:采用0~100的一系列连续数字对湖泊营养状态进行分级:TLI(∑)<30 贫营养(Oligotropher)30≤TLI(∑)≤50 中营养(Mesotropher)TLI(∑)>50 富营养(Eutropher)50<TLI(∑)≤60 轻度富营养(light eutropher)60<TLI(∑)≤70 中度富营养(Middle eutropher)TLI(∑)>70 重度富营养(Hyper eutropher) 在同一营养状态下,指数值越高,其营养程度越重。
湖泊的形成与水体富营养化湖泊是地球上一种常见的水体形式,形成于地壳运动、水文循环和气候变化的综合作用下。
湖泊的形成过程多种多样,可以是由冰川融化形成的冰川湖,也可以是由火山喷发形成的火山口湖,还可以是由河流冲刷形成的河流湖。
湖泊的形成既受自然因素的影响,也受人类活动的影响。
首先,湖泊的形成与地壳运动密切相关。
地壳运动包括地壳的隆起和下沉,这些运动会导致地表的起伏不平,形成山脉和盆地等地貌。
而在盆地中,由于地表下陷或者地壳抬升,形成了许多湖泊。
例如,我国的青海湖就是由于地壳抬升,造成盆地内积水形成的。
此外,地壳运动还会导致断层的形成,当地壳发生断裂时,断层两侧的地块高低不平,形成了许多断层湖。
比如,我国的洞庭湖就是由于断层的存在,形成了湖泊。
其次,湖泊的形成与水文循环有关。
水文循环是指水在地球上不断循环的过程,包括蒸发、降水、地表径流和地下水流等。
在水文循环的过程中,降水是湖泊形成的重要因素之一。
当地表降水量超过地表蒸发量时,水就会积聚在低洼地区,形成湖泊。
而在干旱地区,由于蒸发量大于降水量,湖泊的水位会下降,甚至干涸。
此外,地下水也是湖泊形成的重要来源之一。
当地下水位高于地表时,地下水就会涌出地表,形成湖泊。
最后,湖泊的形成还受气候变化的影响。
气候变化会导致降水量和蒸发量的变化,进而影响湖泊的水位和面积。
例如,随着全球气候变暖,降水量增加,湖泊的水位和面积也会增加。
相反,如果气候变冷,降水量减少,湖泊的水位和面积就会减小。
此外,气候变化还会导致冰川的融化,形成大量冰川湖。
冰川湖的形成不仅与降水量有关,还与冰川的规模和融化速度有关。
除了湖泊的形成,我们还需要关注湖泊水体的富营养化问题。
水体富营养化是指湖泊中营养物质过多,导致水体富含营养盐的现象。
富营养化的主要原因是人类活动带来的过量营养物质输入。
农业、工业和城市化进程中的化肥、农药、工业废水和生活污水等,都会含有大量的氮、磷等营养物质。
这些营养物质进入湖泊后,会刺激藻类的生长,导致藻华的形成。