高等数学课件:12-4 傅立叶级数的复数形式
- 格式:ppt
- 大小:506.00 KB
- 文档页数:9
傅⾥叶级数介绍傅⾥叶变换能将满⾜⼀定条件的某个函数表⽰成三⾓函数(正弦和/或余弦函数)或者它们的积分的线性组合。
在不同的研究领域,傅⾥叶变换具有多种不同的变体形式,如连续傅⾥叶变换和离散傅⾥叶变换。
最初傅⾥叶分析是作为热过程的解析分析的⼯具被提出的。
要理解傅⽴叶变换,确实需要⼀定的耐⼼,别⼀下⼦想着傅⽴叶变换是怎么变换的,当然,也需要⼀定的⾼等数学基础,最基本的是级数变换,其中傅⽴叶级数变换是傅⽴叶变换的基础公式。
变换提出让我们先看看为什么会有傅⽴叶变换?傅⽴叶是⼀位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了⼀篇论⽂,运⽤正弦曲线来描述温度分布,论⽂⾥有个在当时具有争议性的决断:任何连续周期信号可以由⼀组适当的正弦曲线组合⽽成。
当时审查这个论⽂的⼈,其中有两位是历史上著名的数学家拉格朗⽇(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论⽂时,拉格朗⽇坚决反对,在近50年的时间⾥,拉格朗⽇坚持认为傅⽴叶的⽅法⽆法表⽰带有棱⾓的信号,如在⽅波中出现⾮连续变化斜率。
法国科学学会屈服于拉格朗⽇的威望,拒绝了傅⽴叶的⼯作,幸运的是,傅⽴叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国⼤⾰命后因会被推上断头台⽽⼀直在逃避。
直到拉格朗⽇死后15年这个论⽂才被发表出来。
谁是对的呢?拉格朗⽇是对的:正弦曲线⽆法组合成⼀个带有棱⾓的信号。
但是,我们可以⽤正弦曲线来⾮常逼近地表⽰它,逼近到两种表⽰⽅法不存在能量差别,基于此,傅⽴叶是对的。
为什么我们要⽤正弦曲线来代替原来的曲线呢?如我们也还可以⽤⽅波或三⾓波来代替呀,分解信号的⽅法是⽆穷的,但分解信号的⽬的是为了更加简单地处理原来的信号。
复数形式的傅里叶级数[傅里叶级数维基百科自由的百科全书] 给定一个周期为T的函数x(t),那么它可以表示为无穷级数:(i为虚数单位)(1)其中,可以按下式计算:(2)注意到是周期为T的函数,故k 取不同值时的周期信号具有谐波关系(即它们都具有一个共同周期T)。
k=0时,(1)式中对应的这一项称为直流分量,也就是在整个周期的平均值。
时具有基波频率,称为一次谐波或基波,类似的有二次谐波,三次谐波等等。
三角函数族的正交性连续傅里叶变换一般情况下,若“傅里叶变换”一词不加任何限定语,则指的是“连续傅里叶变换”(连续函数的傅里叶变换)。
连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。
这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。
连续傅里叶变换的逆变换(inverse Fourier transform)为即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。
一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。
除此之外,还有其它型式的变换对,以下两种型式亦常被使用。
在通讯或是讯号处理方面,常以来代换,而形成新的变换对:或者是因系数重分配而得到新的变换对:离散时间傅里叶变换离散时间傅里叶变换(DTFT,D iscrete-t ime F ourier T ransform)是傅里叶变换的一种。
它将以离散时间(其中,为采样间隔)作为变量的函数(离散时间信号)变换到连续的频域,即产生这个离散时间信号的连续频谱,值得注意的是这一频谱是周期的。
记连续时间信号的采样为,其傅里叶变换为这就是采样序列的DTFT:为方便起见,通常将采样间隔T归一化,则有上式即为的离散时间傅里叶变换。
它的反变换为:考虑到DTFT的周期性,它的逆变换实际上是以周期的连续函数作为输入,离散的谱作为输出,这正是傅里叶级数的形式。
常用傅里叶级数公式总结傅里叶级数是一种非常重要的数学工具,可以将周期函数分解为一系列正弦和余弦函数的和,从而方便进行分析和计算。
在信号处理、图像处理、物理学等领域都有广泛的应用。
本文将以常用傅里叶级数公式为线索,介绍傅里叶级数的基本概念和性质。
1. 傅里叶级数的基本形式任何周期为T的周期函数f(t),都可以表示为正弦函数和余弦函数的线性组合,即傅里叶级数。
其基本形式为:f(t) = a0 + Σ(an*cos(2πnft) + bn*sin(2πnft))其中,a0为直流分量,an和bn分别为函数f(t)的傅里叶系数,f为基本频率,n为正整数。
2. 傅里叶级数的计算公式傅里叶系数an和bn的计算公式为:an = (2/T) * ∫[0,T] f(t)*cos(2πnft) dtbn = (2/T) * ∫[0,T] f(t)*sin(2πnft) dt这两个公式描述了函数f(t)在频率为nf时的正弦和余弦分量的大小,通过计算这些系数,可以得到傅里叶级数的展开式。
3. 傅里叶级数的性质傅里叶级数具有许多重要的性质,其中包括线性性、偶函数和奇函数的傅里叶级数、周期延拓性等。
这些性质使得傅里叶级数在实际应用中具有广泛的适用性。
4. 傅里叶级数的收敛性对于一个周期为T的周期函数f(t),其傅里叶级数展开并不一定收敛于原函数f(t)。
在一定条件下,傅里叶级数可以收敛于原函数,这就是傅里叶级数的收敛性问题。
5. 傅里叶级数的频谱分析傅里叶级数可以将一个周期函数表示为不同频率的正弦和余弦函数的叠加,从而可以对信号进行频谱分析。
通过分析不同频率成分的幅值和相位,可以了解信号的频谱特性,对信号进行处理和识别。
6. 傅里叶级数的离散化在数字信号处理中,通常需要对离散信号进行傅里叶变换。
离散傅里叶变换(DFT)和快速傅里叶变换(FFT)是常用的算法,可以高效地计算离散信号的频谱。
7. 傅里叶级数的应用傅里叶级数在信号处理、通信、图像处理、物理学等领域都有广泛的应用。
从头到尾彻底理解傅里叶变换算法、上前言第一部分、DFT第一章、傅立叶变换的由来第二章、实数形式离散傅立叶变换(Real DFT)从头到尾彻底理解傅里叶变换算法、下第三章、复数第四章、复数形式离散傅立叶变换/***************************************************************************************************/这一片的傅里叶变换算法,讲解透彻,希望对大家会有所帮助。
感谢原作者们(July、dznlong)的精心编写。
/**************************************************************************************************/前言:“关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解”---dznlong,那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复杂列?傅里叶变换(Fourier transform)是一种线性的积分变换。
因其基本思想首先由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。
哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。
这下,你就知道了,傅里叶就是一种变换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。
ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复杂:以下就是傅里叶变换的4种变体(摘自,维基百科)连续傅里叶变换一般情况下,若“傅里叶变换”一词不加任何限定语,则指的是“连续傅里叶变换”。
连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。