一元一次方程同步练习题
- 格式:doc
- 大小:14.00 KB
- 文档页数:5
第一篇:七年级数学解一元一次方程同步测试题【基础过关】一、选择题1、方程=x-2的解是()A.5B.-5C.2D.-22、解方程x=,正确的是( )A.x==x=;B.x=,x=C.x=,x=;D.x=,x=3、下列变形是根据等式的性质的是()A.由2x﹣1=3得2x=4B.由x2=x得x=1C.由x2=9得x=3D.由2x﹣1=3x得5x=﹣14、下列变形错误的是()A.由x+7=5得x+7-7=5-7;B.由3x-2=2x+1得x=3C.由4-3x=4x-3得4+3=4x+3xD.由-2x=3得x=-5、已知方程①3x-1=2x+1②③④中,解为x=2的是方程()A.①、②和③;B.①、③和④C.②、③和④;D.①、②和④二、填空题1、判断:方程6x=4x+5,变形得6x+4x=5()改正:________________________________________________.2、方程3y=,两边都除以3,得y=1()改正:________________________________________________.3、某数的4倍减去3比这个数的一半大4,则这个数为__________.4、当m=__________时,方程2x+m=x+1的解为x=-4.当a=____________时,方程3x2a-2=4是一元一次方程.6、求作一个方程,使它的解为-5,这个方程为__________.三、解下列方程(1)6x=3x-12 (2)2y―=y―3(3)-2x=-3x+8(4)56=3x+32-2x(5)3x―7+6x=4x―8(6)7.9x+1.58+x=7.9x-8.42【知能升级】1、2a—3x=12是关于x的方程.在解这个方程时,粗心的小虎误将-3x看做3x,得方程的解为x=3.请你帮助小虎求出原方程的解.2、在代数式|()+6|+|0.2+2()|的括号中分别填入一个数,使代数式的值等于0.答案【基础过关】一、选择题1、A2、C3、A4、D5、D二、填空题1、错,6x-4x=52、错,y=3、24、5,6、x+5=0三、解下列方程1、x=-42、y=3、x=84、x=245、x=6、x=-10【知能升级】1、x=-32、-4,-0.1第二篇:七年级数学《解一元一次方程》教学设计第六章一元一次方程6.2 解一元一次方程(三)——去分母天水市秦州区藉口中学杨文蕴【教学目标】掌握去分母解方程的方法,体会到转化的思想。
浙教版七年级数学上册《5.3 一元一次方程的解法》同步练习-含参考答案一、选择题1.下面四个方程中,与方程x -1=2的解相同的一个是( ).A.2x=6B.x +2=-1C.2x +1=3D.-3x=92.下列通过移项变形,错误的是( )A.由x+2=2x -7,得x -2x=-7-2B.由x+3=2-4x ,得x+4x=2-3C.由2x -3+x=2x -4,得2x -x -2x=-4+3D.由1-2x=3,得2x=1-33.若关于x 的方程3x +5=m 与x ﹣2m =5有相同的解,则x 的值是( )A.3B.﹣3C.﹣4D.44.下面是一个被墨水污染过的方程:2x ﹣12=3x +,答案显示此方程的解是x=﹣1,被墨水遮盖的是一个常数,则这个常数是( ) A.1 B.﹣1 C.﹣12 D.125.解方程3137143y y ---=时,为了去分母应将方程两边同时乘以( ) A.12 B.10 C.9 D.46.解方程:2-13(2x-4)=-16(x-7),去分母得( ) A.2-2 (2x -4)= -(x -7) B. 12-2 (2x -4)= -x -7C.2-(2x -4)= -(x -7)D. 12-2 (2x -4)= -(x -7)7.把方程中的分母化为整数,正确的是( ) A.B. C.D.8.如果13(2a-9)与13a+1是互为相反数,那么a的值是( )A.6B.2C.12D.﹣69.若关于y的方程2m+y=1与3y﹣3=2y﹣1的解相同,则m的值为( )A.2B.-0.5C.-2D.010.关于x的方程ax+3=4x+1的解为正整数, 则整数a的值为( )A.2B.3C.1或2D.2或3二、填空题11.已知关于x的方程2x﹣3a=﹣1的解为x=﹣1,则a的值等于 .12.若2x-3=0且|3y-2|=0,则xy= 。
13.当x=_____时,代数式2x-3与代数式6-x的值相等.14.若4x2m y n+1与-3x4y3的和是单项式,则m=________,n=________.15.将四个数a 、b、c、d写成两行两列,规定=,若=-9,则x= .16.定义新运算a※b满足:(a+b)※c=a※c +b, a※(b+c)=a※b-c,并规定:1※1=5,则关于x的方程(1+4x)※1 + 1※(1+2x) =12的解是x=三、解答题17.解方程:2(2x+1)﹣(10x+1)=618.解方程:x﹣12(x-1)=2﹣13(x+2).19.解方程:2﹣2x+13=1+x2;20.解方程:1.5x0.6-1.5-x2=0.5.21.根据下列条件列方程,并求出方程的解.(1)某数的13比它本身小6,求这个数;(2)一个数的2倍与3的和等于这个数与7的差.22.已知当x=-1时,代数式2mx 3-3mx+6的值为7,若关于y 的方程2my+n=11-ny -m 的解为y=2,求n 的值.23.已知关于x 的方程2(x -1)=3m -1与3x +2=-4的解互为相反数,求m 的值.24.已知:关于x 的方程2(x -1)+1=x 与3(x+m)=m -1有相同的解,求:以y 为未知数的方程13(3﹣my)=12(m ﹣3y)的解.答案1.A2.C3.B.4.D.5.A6.D7.D8.B9.B10.D11.答案为:-1 3 .12.答案为:1;13.答案为:3.14.答案为:2,2;15.答案为:x=-2;16.答案为:x=117.解:去括号,得4x+2﹣10x﹣1=6 移项,合并同类项,得﹣6x=5系数化为1,得x=﹣5 6 .18.解:去分母,得:6x﹣3(x﹣1)=12﹣2(x+2) 去括号,得:6x﹣3x+3=12﹣2x﹣4移项,得:6x﹣3x+2x=12﹣4﹣3合并同类项,得:5x=5系数化为1,得:x=1.19.解:x=1.20.解:x=5 12 .21.解:(1)设某数为x,则13x+6=x,得x=9;(2)设这个数为x,则2x+3=x-7,得x=-10.22.解:当x=-1时,2mx3-3mx+6=-2m+3m+6=7,解得m=1. 把m=1,y=2代入2my+n=11-ny-m,得2×1×2+n=11-2n-1,解得n=2.23.解:方程3x+2=-4,解得x=-2.所以关于x的方程2(x-1)=3m-1的解为x=2.把x=2代入得2=3m-1,解得m=1.24.解:由2(x-1)+1=x,得x=1.把x=1代入3(x+m)=m-1,得3(1+m)=m-1.解得m=-2.把m=-2代入方程13(3﹣my)=12(m﹣3y)解得y=-12 13 .。
一元一次方程同步练习题一、填空题1. 已知方程3x 7 = 11,求解x的值:x = ______。
2. 方程5x + 8 = 2x 3,移项合并得:x = ______。
3. 若方程2(x 3) = 4x + 10,则x的解为:x = ______。
4. 方程7 3(x + 2) = 8 2x,化简得:x = ______。
5. 已知方程4x 5 = 3(x + 1),求解x的值:x = ______。
二、选择题1. 方程2x 5 = 15的解是()。
A. x = 5B. x = 10C. x = 7.5D. x = 12.52. 方程3(x 2) + 4 = 2x的解是()。
A. x = 2B. x = 4C. x = 6D. x = 83. 下列方程中,x的解为负数的是()。
A. 4x + 9 = 7x + 3B. 5x 8 = 2x + 7C. 3x + 12 = 2x 4D. 6x 5 = 9x 104. 方程5 2(x 1) = 3x的解是()。
A. x = 1B. x = 2C. x = 3D. x = 45. 方程4x + 7 = 2(x + 5)的解是()。
A. x = 1B. x = 2C. x = 3D. x = 4三、解答题1. 解方程:3x 4 = 7 2x。
2. 解方程:5(x 2) + 3 = 2(x + 4)。
3. 解方程:4 3(x + 1) = 2x 7。
4. 解方程:6x 9 = 3(x + 2)。
5. 解方程:7 2(x 3) = 5x 1。
6. 解方程:4(x 1) + 3 = 2x + 7。
7. 解方程:9 5(x 2) = 2(x + 3)。
8. 解方程:8x 3 = 5(x + 2) 7。
9. 解方程:6(x 4) + 2 = 4x 10。
10. 解方程:5x 12 = 3(x + 4) 2x。
四、应用题1. 小华的年龄比小明大3岁,两人的年龄之和为39岁,求小华和小明的年龄。
第三章《一元一次方程》单元练习题一、选择题1.小彬是学校的篮球队长,在一场篮球比赛中,他一人得了25分,其中罚球得了5分,他投进的2分球比3分球多5个,则他本场比赛3分球进了()A. 1个B. 2个C. 3个D. 4个2.解方程3-=1,在下列去分母运算中,正确的是()A. 3-(x+2)=3B. 9-x-2=1C. 9-(x+2)=3D. 9-x+2=33.若a、b互为相反数,则关于x的方程ax+b=0(a≠0)的解是()A.x=1B.x= 1C.x=1或x= 1D.不能确定4.方程3x=-6的解是()A.x=-2B.x=-6C.x=2D.x=-125.如果用“a=b”表示一个等式,c表示一个整式,d表示一个数,那么等式的第一条性质就可以表示为“a±c=b±c”,以下借助符号正确的表示出等式的第二条性质的是()A.a•c=b•d,a÷c=b÷dB.a•d=b÷d,a÷d=b•dC.a•d=b•d,a÷d=b÷dD.a•d=b•d,a÷d=b÷d(d≠0)6.某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合做,求完成这项工程共用的时间.若设完成此项工程共用x天,则下列方程正确的是()A.B.C.D.7.希望中学九年级1班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x人,则下列方程中,正确的是()A. 2(x-1)+x=49B. 2(x+1)+x=49C.x-1+2x=49D.x+1+2x=498.方程去分母后可得()A. 3x-3=1+2xB. 3x-9=1+2xC. 3x-3=2+2xD. 3x-12=2+4x二、填空题9.当m=时,关于x的方程(m3)x22mx+1=0是一元一次方程.10.一通信商场今年2月份销售国产手机--努比亚Z5Mini的价格为每台1880元,共售出600台.3月份,由于该型号手机价格上涨10%,使销售量下降了30%.3月底,国家主席夫人彭丽媛在德国访问时使用该型号手机的照片在新闻中播出后,极大地影响了4月份国货的销售,进入4月份,商场也开展促销活动支持国货,在3月份销售价格的基础上实行九折优惠,使该型号手机销售量增加,预计4月份,该商场此型号手机的销售额比2月份增加15.5%,则预计4月份该型号手机销售量比3月销售量增加台.11.古代有个寓言故事,驴子和骡子一起走路,它们驮着不同袋数的货物,每袋货物都是一样重,驴子抱怨负担太重,骡子说:“你抱怨什么?如果你给我一袋,那我负担的就是你的2倍;如果我给你一袋.我们才恰好驮的一样多.”试问驴子原来所驮的货物是多少袋?设驴子原来所驮的货物为x袋,可列出方程为.12.方程2x=10的解是.13.一个两位数,十位数字比个位数字大2,如果把十位数字和个位数子对调得到的新两位数比原两位数小13,设原数的个位数为x,则列方程为.14.甲仓库的货物是乙仓库货物的2倍,从甲仓库调5吨到乙仓库,这时甲仓库剩余的货物恰好比乙仓库的一半多1吨,设乙仓库原有x吨,则可列方程为.15.若与互为相反数,则a=.16.在一场NBA篮球比赛中,姚明共投中a个2分球,b个3分球,还通过罚球得到9分.在这场比赛中,他一共得了分.三、解答题17.2015-2016赛季中国男子篮球职业联赛(即CBA)激战正酣,浙江广厦队表现不俗,暂居榜首,马布里领衔的卫冕冠军北京首钢队战绩不佳,截止12月23日,在前21轮比赛中,积35分位列第七位,按比赛规则,胜一场得2分,负一场得1分,那么截止12月23日北京首钢队共胜了多少场?18.已知x=1是关于x的方程3x33x2+kx+5=0的解,求2k3+k25k8的值.19.甲、乙两家电器商场以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲商场规定:凡超过4000元的电器,超出的金额按80%收取;乙商场规定:凡超过3000元的电器,超出的金额按90%收取,某顾客购买的电器价格是x(x>4000)元.(1)分别用含有x的代数式表示在甲、乙两家商场购买电器所付的费用;(2)当x=6000时,该顾客应选择哪一家商场购买更优惠?说明理由.(3)当x为何值时,在甲、乙两家商场购买所付的费用相同?20.当x为何值时,2x-5与-3x的值相等.21.已知方程(m3)4=m2是关于x的一元一次方程.求:(1)m的值;(2)写出这个一元一次方程.第三章《一元一次方程》单元练习题答案解析1.【答案】B【解析】设他本场比赛3分球进了x个,根据题意得5+2(x+5)+3x=25,解得x=2.故他本场比赛3分球进了2个.故选B.2.【答案】C【解析】方程两边同乘以3,得9-(x+2)=3,故选择C.3.【答案】A【解析】因为a、b互为相反数,所以a+b=0,在关于x的方程ax+b=0(a≠0)中,当x=1时,ax+b=a+b=0,则方程的解是:x=1.故选A.4.【答案】A【解析】3x=-6两边同时除以3,得x=-2故选A.5.【答案】D【解析】等式的第二条性质的是:等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.其符号表达式:a•d=b•d,a÷d=b÷d(d≠0).故选D.6.【答案】D【解析】设完成此项工程共用x天,根据题意得:,故选D.7.【答案】A【解析】设男生人数为x人,则女生为2(x-1),根据题意得:2(x-1)+x=49,故选A.8.【答案】B【解析】方程两边同时乘以6,得3x-9=1+2x,所以B选项正确.9.【答案】3【解析】由关于x的方程(m3)x22mx+1=0是一元一次方程,得m3=0.解得m=3.故答案为:3.10.【答案】280【解析】设4月份该型号手机销售量比3月销售量增加的百分率为x,依题意有[1880×(1+10%)×0.9]×[600×(1-30%)(1+x)]=1880×600×(1+15.5%),解得x=,600×(1-30%)×=600×0.7×=280(台).答:4月份该型号手机销售量比3月销售量增加280台.故答案为:280.11.【答案】x+1=2(x1) 2【解析】设驴子原来所驮的货物为x袋,由题意,得x+1=2(x1) 2.12.【答案】x=5【解析】方程2x=10,解得:x=5,故答案为:x=513.【答案】10(x+2)+x-[10x+(x+2)]=13【解析】设原数的个位数为x,则十位数为(x+2),根据题意得:10(x+2)+x-[10x+(x+2)]=13,14.【答案】2x-5=(x+5)+1【解析】首先设乙仓库原有x吨,则甲仓库的货物有2x吨,从甲仓库调5吨到乙仓库后甲仓库有(2x-5)吨,乙仓库有(x+5)吨,根据关键语句“甲仓库剩余的货物恰好比乙仓库的一半多1吨,”可得方程2x-5=(x+5)+1.15.【答案】【解析】根据题意列出方程+=0,直接解出a的值,即可解题.解:根据相反数和为0得:+=0,去分母得:a+3+2a-7=0,合并同类项得:3a-4=0,移项得:3a=4,系数化为1得a=.故答案为.16.【答案】2a+3b+9【解析】2×a+3×b+9=2a+3b+9(分).答:他一共得了(2a+3b+9)分.故答案为:2a+3b+9.17.【答案】解:设截止12月23日北京首钢队共胜了x场,则负了(21-x)场,由题意得2x+(21-x)=35,解得x=14.答:截止12月23日北京首钢队共胜了14场.【解析】设截止12月23日北京首钢队共胜了x场,则负了(21-x)场,再根据共得35分列出方程求解即可.18.【答案】解:把x=1代入方程3x33x2+kx+5=0,得,解得k=.则2k3+k25k8==16.【解析】19.【答案】解:(1)甲商场的费用为:4000+(x-4000)80%=0.8x+800(元);乙商场的费用为:3000+(x-3000)90%=0.9x+300(元).(2)当x=6000时,甲商场的费用为:0.8+800=5600(元);当x=6000时,乙商场的费用为:0.9+300=5700(元).由5600,所以在甲商场购买更优惠.(3)由题意得0.8x+800=0.9x+300,解得x=5000.答:当x为5000元时,在甲、乙两家商场购买所付的费用相同.【解析】(1)甲商场的费用为:4000+超过4000元部分80%;乙商场的费用为:3000+超过3000元部分90%.(2)当x=6000时,分别计算出在甲、乙两商场的费用进行比较即可;(3)根据两商场的费用相等列出方程求解即可.20.【答案】解:∵2x-5与-3x的值相等,∴2x-5=-3x,移项得,2x+3x=5,合并同类项得,5x=5,把x的系数化为1得,x=1.【解析】根据题意列出关于x的一元一次方程,求出x的值即可.21.【答案】解:(1)由方程(m3)4=m2是关于x的一元一次方程,得,m30,解得m=.(2)当m=时,方程为.【解析】。
初中七年级上册数学3.1.1 一元一次方程同步专项练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 下列说法中,正确的是()A.代数式是方程B.方程是代数式C.等式是方程D.方程是等式2. 下面的说法不正确的是()A.解方程指的是求方程的解的过程B.解方程指的是方程变形的过程C.解方程指的是求方程中未知数的值,使方程两边相等的过程D.解方程指的是使方程中未知数变为已知数的过程3. 如果方程35x2n−7−17=1是关于x的一元一次方程,则n的值为()A.2B.4C.3D.14. 下列选项中,是一元一次方程的是()A.x+2y=3B.2x−3C.2x−1=x D.x+1=05. 已知关于x的方程5x−a=3的解为x=1,则a的值为( )A.3B.2C.−3D.−26. 方程12x =2x+3的解为()A.x=−1B.x=0C.x=35D.x=17. 对|x−1|+4=5,下列说法正确的是()A.不是方程B.是方程,其解为0C.是方程,其解为4D.是方程,其解为0、28. 下列式子中,是方程的是()A.x−1≠0B.3x−2C.2+3=5D.3x=69. 下列四个方程中,一元一次方程是()=1 D.x=0A.x+y=1B.x2−2x+1=0C.2x10. 已知(y2−1)x2+(y+1)x+4=0是关于x的一元一次方程,若a>1,则化简|y−a|+|a−x|的值是()A.3B.−3C.−2a−1D.2a+1二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 已知x=−2是方程ax+3=−a−2的解,则a的值为________.12. 若关于x的一元二次方程x2+mx+m2−9=0的一个根是0,则m的值是________.后还剩2m,若设铁丝的原长为xm,可列方程为________.13. 一根细铁丝用去2314. 下列说法:①等式是方程;②x=4是方程5x+20=0的解;③x=−4和x=6都是方程|x−1|=5的解.其中说法正确的是________.(填序号)15. 若−2x2+3m+1=0是关于x的一元一次方程,则m=________,x=________.16. 若(m−1)x|m|+5=0是一元一次方程,则m的值为________.17. 方程4x4−20=0的解是________.18. 方程2014x−m=2015的解是x=1,则m=________.19. 下列各式中:①3+3=6;②3+2x>1;③9x−3;④z2−2z=1;⑤m= 0.________是方程,其中________(填写编号)是一元一次方程.20. 你知道下列语句中哪些是对的,哪些是错的吗?如果对,在题后的“下打“√”,如果不对,请在“”下打“√”:(1)方程是等式________(2)等式是方程________(3)因为x=y,所以3x=3y,那么,如果ax=ay,那么x=y.________.三、解答题(本题共计 20 小题,每题 10 分,共计200分,)21. 方程(m−2)x|m|−1+1=0是关于x的一元一次方程,求m的值及方程的解.22. 已知关于x的方程(k−2)x|k|−1+5=3k是一元一次方程,求k的值.23. 在初中数学中,我们学习了各种各样的方程.以下给出了6个方程,请你把属于一元方程的序号填入圆圈(1)中,属于一次方程的序号填入圆圈(2)中,既属于一元方程又属于一次方程的序号填入两个圆圈的公共部分.①3x+5=9:②x2+4x+4=0;③2x+3y=5:④x2+y=0;⑤x−y+z=8:⑥xy=−1.24. 方程x5m−4+5=0是关于x的一元一次方程,求m的值.25. 判断括号内未知数的值是不是方程的根:(1)x2−3x−4=0(x1=−1, x2=1);).(2)(2a+1)2=a2+1(a1=−2, a2=−4326. 下列各式中是方程的有________.(仅填序号)(1)5−(−3)=8:(2)ab+3a;(3)6x −1−9;(4)8x >1;(5)xy =3.27. 已知关于x 的方程5+12x b−2+ax 3=0的一元一次方程,试求x a+b .28. 下列方程中是一元一次方程的是________(只填序号)(1)x −3y +1=0(2)x 2+2x +3=0(3)x =7(4)x 2−y =0.29. 某校是西安传统羽毛球强校,为更好地推动该项运动的开展,学校准备到体育用品店购买一批羽毛球和球拍.甲、乙两家体育用品店出售同样的羽毛球和球拍,球拍每副定价100元,羽毛球每盒定价30元.现两家店搞促销活动,甲店每买一副球拍赠一盒羽毛球;乙店按八八折优惠销售.学校需要在甲、乙两家体育用品店中选一家购买球拍40副,羽毛球若干盒(不少于40盒),设购买羽毛球x 盒,在甲店需付款y 甲元,在乙店需付款y 乙乙元.(1)分别求出y 甲和y 乙与x 之间的函数关系式;(2)该校在哪家体育用品店购买更划算,请说明理由.30. 已知关于x 的方程(m 2−4)x 2+(m −2)x +3m −1=0.求当m 为何值时,它是一元一次方程.31. 现有四个整式:x 2−1,12,x+15,−6.(1)若选择其中两个整式用等号连接,则共能组成________个方程;(2)请列出(1)中所有的一元一次方程,并解方程.32. 判断下列方程是不是一元一次方程,并说明理由.(1)−x+3=x3;(2)2x−9=5y;(3)x−1x=2;(3)x2=x−3;(5)6−y=1.33. 下列方程中,哪些是一元一次方程?哪些不是?(1)5+4x=11;(2)2x+y=5;(3)x2−5x+6=0;(4)2−xx=3;(5)y−12+y3=1.34. 判断下列各式是不是方程,不是的说明为什么(1)4×5=3×7−1(2)2x+5y=3.(3)9−4x>0.(4)x−32=13(5)2x+3.35. 已知(|m|−1)x 2−(m +1)x +8=0是关于x 的一元一次方程,求199(m +x)(x −2m)+m 的值.36. 已知方程3(x −m +y)−y(2m −3)=m(x −y)是关于x 的一元一次方程,求m 的值,并求此时方程的解.37. 已知x =23是方程3(m −34x)+32x =5m 的解,求m 的值.38. (1)已知(m +1)x m 2+2=0是关于x 的一元一次方程,求m 的值; 38.(2)已知(2m −8)x 2+x 3n−2=−6是关于x 的一元一次方程,求m 的值.39. 方程17+15x =245,x−503=x+705,2(x +1.5x)=24都只含有一个未知数,未知数的指数都是1,它们是一元一次方程,方程x 2+3=4,x 2+2x +1=0,x +y =5是一元一次方程吗?若不是,它们各是几元几次方程?40. 指出下列方程中的未知数是什么,方程的左边是什么.方程的右边是什么?并且判断它否是一元一次方程?(1)3=2x −1;(2)x +2y =7;(3)x 2+5x −1=5;(4)x 2=y 2+2y ;(5)x −π=3;(6)3m +5=2m 7−4;(7)a+12−a−13=1.参考答案与试题解析初中七年级上册数学3.1.1 一元一次方程同步专项练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】D【考点】方程的定义【解析】含有未知数的等式叫方程,等式是用等号连接的,表示相等关系的式子,代数式一定不是等式,等式不一定含有未知数也不一定是方程.【解答】解:方程的定义是指含有未知数的等式,A、代数式不是等式,故不是方程;B、方程不是代数式,故B错误;C、等式不一定含有未知数,也不一定是方程;D、方程一定是等式,正确;故选D.2.【答案】B【考点】方程的定义【解析】根据解方程的定义对各选项分析判断利用排除法求解.【解答】解:A、解方程指的是求方程的解的过程,正确,故本选项不符合题意;B、解方程指的是方程变形的过程,错误,故本选项符合题意;C、解方程指的是求方程中未知数的值,使方程两边相等的过程,正确,故本选项不符合题意;D、解方程指的是使方程中未知数变为已知数的过程,正确,故本选项不符合题意.故选:B.3.【答案】B【考点】一元一次方程的定义【解析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).根据未知数的指数为1可求出n的值.【解答】解:由一元一次方程的特点得:2n−7=1,解得:n=4.故选B.4.【答案】D【考点】一元一次方程的定义【解析】一元一次方程是含有一个未知数,并且未知数的最高次数是1的整式方程.【解答】接:A、方程x+2y=3中含有两个未知数x、y,属于二元一次方程;故本选项错误;B、2x−3不是方程,是代数式;故本选项错误;−1=x是分式方程,故本选项错误;C、方程2xD、方程x+1=0符合一元一次方程的定义;故本选项正确;故选D.5.【答案】B【考点】方程的解【解析】此题暂无解析【解答】解:∵关于x的方程5x−a=3的解为x=1,∴5−a=3,解得:a=2.故选B.6.【答案】D【考点】方程的解【解析】此题暂无解析【解答】解:方程可化为x+3=2×2x,3x=3,解得x=1,故选D.7.【答案】D【考点】方程的定义方程的解【解析】根据方程的定义,可得答案.【解答】解:对|x−1|+4=5是方程,其解为0、2,故选:D.8.【答案】D【考点】方程的定义【解析】根据含有未知数的等式叫方程,可得答案.【解答】解:A、是不等式,故A错误;B、是多项式,故B错误;C、不含未知数的等式,故C错误;D、含有未知数的等式叫方程,故D正确;故选:D.9.【答案】D【考点】一元一次方程的定义【解析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),据此可得出答案.【解答】解:A、含有两个未知数,不是一元一次方程;B、未知数的最高次幂为2,不是一元一次方程;C、分母中含有未知数,不是一元一次方程;D、符合一元一次方程的形式.故选D.10.【答案】D【考点】一元一次方程的定义【解析】根据一元一次方程的定义得到y2−1=0,且y+1≠0由此易求y的值;然后去绝对值.【解答】解:∵(y2−1)x2+(y+1)x+4=0是关于x的一元一次方程,∴y2−1=0,且y+1≠0解得,y=1,∴2x+4=0,解得,x=−2.又∵a>1,∴|y−a|+|a−x|=|1−a|+|a+2|=a−1+a+2=2a+1.故选:D.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】5【考点】方程的解【解析】把x=−2代入方程计算即可求出a的值.【解答】解:把x=−2代入方程得:−2a+3=−2−2解得:a=5故答案为512.【答案】±3【考点】方程的解【解析】此题暂无解析【解答】解:∵x=0是方程x2+mx+m2−9=0的一个根,∴m2−9=0,解得m=±3.故答案为:±3.13.【答案】x−23x=2【考点】方程的定义由实际问题抽象出一元一次方程【解析】设铁丝的原长为xm,用去全长的23后还剩2m,根据题意可得出数量关系式:铁丝的全长-铁丝全长×23=剩下铁丝的长度,据此可列出方程.【解答】解:设铁丝的原长为xm,由题意,得:x−23x=2.故答案为:x−23x=2.14.【答案】③【考点】方程的解【解析】根据方程的定义以及方程的解的定义即可作出判断.【解答】解:①方程是含有未知数的等式,等式不含方程就不是方程,则命题错误;②把x =4代入方程,左边=20+20=40≠右边,不是方程的解,则命题错误; ③把x =−4和x =6都是方程|x −1|=5都成立,则都是方程的解,命题正确. 故答案是:③.15.【答案】−13,12 【考点】一元一次方程的定义【解析】根据一元一次方程的定义得到2+3m =1,则易求m 的值.通过解关于x 的一元一次方程来求x 的值.【解答】解:∵ −2x 2+3m +1=0是关于x 的一元一次方程,∴ 2+3m =1,−2x +1=0解得,m =−13,x =12.故答案是:−13;12.16.【答案】−1【考点】一元一次方程的定义【解析】本题考查了一元一次方程的概念.【解答】解:根据一元一次方程的概念,可得:|m|=1,m −1≠0,解得:m =−1,故答案为:−1.17.【答案】 加加加=±√53【考点】方程的解【解析】试题解析:∵ 4x 4−20=0,4x 4=20.x 4=5,x =±√54故答案为:x =±√54此题暂无解答18.【答案】−1【考点】方程的解【解析】此题暂无解析【解答】试题解析:把|x=代入方程204x−m=2015得到:2014−m=2015解得:m=−119.【答案】④⑤,⑤【考点】一元一次方程的定义方程的定义【解析】含有未知数的等式叫方程,据此可找出5个式子中的方程;若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数是1,系数不为0,则这个方程是一元一次方程.据此可找出上述方程中的一元一次方程.【解答】解:①不含未知数,不是方程;②含有不等号,不是方程;③不含等号,是一个代数式,不是方程;④符合方程的定义,是方程;但未知数的最高次数为2,不是一元一次方程;⑤符合方程的定义,是方程;符合一元一次方程的定义,是一元一次方程.故④⑤是方程,其中⑤一元一次方程.故答案为:④⑤,⑤.20.【答案】√,√,√.【考点】方程的定义等式的性质【解析】根据方程的定义,含有未知数的等式叫方程,所以方程一定是等式,而等式是用等号表示相等关系的式子,不一定是方程,【解答】解:∵含有未知数的等式叫方程,∴方程一定是等式,(1)正确,∵等式是用等号表示相等关系的式子,不一定有未知数,∴等式不一定是方程,(2)错误,∵如果a=0,那么ax=ay,但是x不一定等于y,∴(3)错误,三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】解:由(m−2)x|m|−1+1=0是关于x的一元一次方程,得{m−2≠0|m|−1=1.解得m=−2.一元一次方程是−4x+1=0.解得x=14.【考点】一元一次方程的定义【解析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:由(m−2)x|m|−1+1=0是关于x的一元一次方程,得{m−2≠0|m|−1=1.解得m=−2.一元一次方程是−4x+1=0.解得x=14.22.【答案】解:∵关于x的方程(k−2)x|k|−1+5=3k是一元一次方程,∴|k|−1=1,且k−2≠0,解得,k=−2.即k的值是−2.【考点】一元一次方程的定义【解析】根据一元一次方程的定义得到|k|−1=1,且k−2≠0.【解答】解:∵关于x的方程(k−2)x|k|−1+5=3k是一元一次方程,∴|k|−1=1,且k−2≠0,解得,k=−2.即k的值是−2.23.【答案】(1)一元方程,①3x+5=9②x2+4x+4=0;(2)一次方程①3x+5=9⑤x−y+z=8③2x+3y=5;(3)既属于一元方程又属于一次方程的是①3x+5=9.【考点】列代数式求值方法的优势二次函数图象与系数的关系一元二次方程的应用【解析】根据一次方程与一元一次方程的定义即可解答.【解答】(1)一元方程,①3x+5=9②x2+4x+4=0;(2)一次方程①3x+5=9⑤x−y+z=8③2x+3y=5;(3)既属于一元方程又属于一次方程的是①3x+5=9.24.【答案】解:∵方程x5m−4+5=0是关于x的一元一次方程,∴5m−4=1,解得:m=1.【考点】一元一次方程的定义【解析】根据一元一次方程的定义,直接根据次数为1得出即可.【解答】解:∵方程x5m−4+5=0是关于x的一元一次方程,∴5m−4=1,解得:m=1.25.【答案】解:(1)当x1=−1时,左边=1+3−4=0=右边,则它是该方程的根;当x2=1时,左边=1−3−4=−6≠右边,则它不是该方程的根;(2)当a1=−2时,左边=(−4+1)2=9,右边=4+1=5,左边≠右边,则它不是该方程的根;当a2=−43时,左边=(−43×2+1)2=259,右边=(−43)2+1=259,左边=右边,则它是该方程的根.【考点】方程的解【解析】利用方程解的定义找到相等关系.即将未知数分别代入方程式看是否成立.【解答】解:(1)当x1=−1时,左边=1+3−4=0=右边,则它是该方程的根;当x2=1时,左边=1−3−4=−6≠右边,则它不是该方程的根;(2)当a1=−2时,左边=(−4+1)2=9,右边=4+1=5,左边≠右边,则它不是该方程的根;当a2=−43时,左边=(−43×2+1)2=259,右边=(−43)2+1=259,左边=右边,则它是该方程的根.26.【答案】(5)【考点】方程的定义【解析】本题主要考查的是方程的定义,含有未知数的等式叫方程,据此可得出正确答案.【解答】解:(1)不含未知数,故不是方程;(2)(3)(4)不是等式,故不是方程;(5)是方程.27.【答案】解:根据题意,得b−2=1,且a=0,解得b=3,a=0;∴关于x的方程是5+12x=0,解得,x=−10,∴x a+b=(−10)3+0=−1000.【考点】一元一次方程的定义【解析】一元一次方程是含有一个未知数,未知数的次数是1的整式方程.【解答】解:根据题意,得b−2=1,且a=0,解得b=3,a=0;∴关于x的方程是5+12x=0,解得,x=−10,∴x a+b=(−10)3+0=−1000.28.【答案】(3).【考点】一元一次方程的定义【解析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:是一元一次方程的是(3).29.【答案】解:(1)根据题意得y甲=100×40+30(x−40)=30x+2800;y乙=(100×40+30x)×0.88=26.4x+3520;(2)当y甲>y乙时,此时30x+2800>26.4x+3520,解得x>200∴当购买羽毛球的数量大于200盒时,在乙店购买比较划算;y 甲=y乙时,此时30x+2800=26.4x+3520,解得x=200,∴当购买羽毛球200盒时,在甲、乙两店购买一样划算,当y甲<y乙时,此时30x+2800<26.4x+3520,解得x<200,∴当购买羽毛球的数量大于40盒且小于200盒时,在甲店购买比较划算.【考点】方程的定义方程的解【解析】此题暂无解析【解答】解:(1)根据题意得y甲=100×40+30(x−40)=30x+2800;y乙=(100×40+30x)×0.88=26.4x+3520;(2)当y甲>y乙时,此时30x+2800>26.4x+3520,解得x>200∴当购买羽毛球的数量大于200盒时,在乙店购买比较划算;y 甲=y乙时,此时30x+2800=26.4x+3520,解得x=200,∴当购买羽毛球200盒时,在甲、乙两店购买一样划算,当y甲<y乙时,此时30x+2800<26.4x+3520,解得x<200,∴当购买羽毛球的数量大于40盒且小于200盒时,在甲店购买比较划算.30.【答案】解:关于x的方程(m2−4)x2+(m−2)x+3m−1=0的一元一次方程,{m2−4=0m−2≠0,解得m1=−2,m2=2(不符合题意的要舍去)【考点】一元一次方程的定义【解析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:关于x的方程(m2−4)x2+(m−2)x+3m−1=0的一元一次方程,{m2−4=0m−2≠0,解得m1=−2,m2=2(不符合题意的要舍去)31.【答案】5(2)①x+15=0.5,去分母得:x+1=2.5,解得:x=1.5;②x+15=−6,去分母得:x+1=−30,解得:x=−31.【考点】解一元一次方程方程的定义【解析】(1)根据整式列出方程,即可得到结果;(2)找出所有一元一次方程,求出解即可.【解答】解:(1)根据方程的定义,若选择其中两个整式用等号连接,则共能组成5个方程.故答案为:5.(2)①x+15=0.5,去分母得:x+1=2.5,解得:x=1.5;=−6,②x+15去分母得:x+1=−30,解得:x=−31.32.【答案】解:(1)−x+3=x3,不是,因为不是一次方程;(2)2x−9=5y,不是,以为有两个未知数;=2,不是,因为不是整式方程;(3)x−1x(3)x=x−3,是一元一次方程;2(5)6−y=1是一元一次方程.【考点】一元一次方程的定义【解析】一元一次方程必须具备三点:①是整式方程,②只含有一个未知数,③所含未知数的项的次数是1次,根据以上内容判断即可.【解答】解:(1)−x+3=x3,不是,因为不是一次方程;(2)2x−9=5y,不是,以为有两个未知数;=2,不是,因为不是整式方程;(3)x−1x(3)x=x−3,是一元一次方程;2(5)6−y=1是一元一次方程.33.【答案】解:(1)、(5)是一元一次方程,因为它们都是只含有一个未知数,并且未知数的次数是1的方程;(2)、(3)、(4)都不是一元一次方程,因为(2)中含有两个未知数,(3)中未知数的最高次数是2,(4)中分母含有未知数,它不是整式方程.【考点】一元一次方程的定义【解析】根据一元一次方程的定义对各小题进行逐一分析即可.【解答】解:(1)、(5)是一元一次方程,因为它们都是只含有一个未知数,并且未知数的次数是1的方程;(2)、(3)、(4)都不是一元一次方程,因为(2)中含有两个未知数,(3)中未知数的最高次数是2,(4)中分母含有未知数,它不是整式方程.34.【答案】解:(1)不是,因为不含有未知数;(2)是方程;(3)不是,因为不是等式;(4)是方程;(5)不是,因为不是等式.【考点】方程的定义【解析】根据方程的定义对各小题进行逐一分析即可.【解答】解:(1)不是,因为不含有未知数;(2)是方程;(3)不是,因为不是等式;(4)是方程;(5)不是,因为不是等式.35.【答案】解:∵(|m|−1)x2−(m+1)x+8=0是关于x的一元一次方程,∴|m|−1=0,且m+1≠0.解得:m=1.将m=1代入得;−2x+8=0,解得:x=4.将m=1,x=4代入得:199(m+x)(x−2m)+m=199×5×2+1=1991.【考点】一元一次方程的定义【解析】根据一元一次方程的定义可知;|m|−1=0,且m+1≠0,从而可求得m=1,然后可求得方程的解为x=4,然后将m、x的值代入计算即可.【解答】解:∵(|m|−1)x2−(m+1)x+8=0是关于x的一元一次方程,∴|m|−1=0,且m+1≠0.解得:m=1.将m=1代入得;−2x+8=0,解得:x=4.将m=1,x=4代入得:199(m+x)(x−2m)+m=199×5×2+1=1991.36.【答案】解:去括号得:3x−3m+3y−2ym+3y=mx−my,移项得:3x−3m+3y−2my+3y−mx+my=0,即(3−m)x+(6−m)y−3m=0,则3−m≠0,6−m=0,解得:m=6.则方程是:3x+18=0,解得:x=−6.【考点】一元一次方程的定义【解析】把已知的方程去括号、移项、合并同类项,然后根据y的系数是0,即可求得m的值,把m的值代入,然后解方程求得方程的解.【解答】解:去括号得:3x−3m+3y−2ym+3y=mx−my,移项得:3x−3m+3y−2my+3y−mx+my=0,即(3−m)x+(6−m)y−3m=0,则3−m≠0,6−m=0,解得:m=6.则方程是:3x+18=0,解得:x=−6.37.【答案】解:根据题意得:3(m−34×23)+32×23=5m,解得:m=−14.【考点】方程的解【解析】把x=23代入方程,即可得到关于m的方程,即可求得m的值.【解答】解:根据题意得:3(m−34×23)+32×23=5m,解得:m=−14.38.【答案】解:(1)根据题意得:m2=1,m+1≠0,解得:m=1;(2)根据题意得:2m−8=0,3n−2=1,解得:m=4,n=1.【考点】一元一次方程的定义【解析】(1)根据一元一次方程的定义列出关于m的方程,求出方程的解即可得到m的值;(2)根据一元一次方程的定义列出关于m的方程,求出方程的解即可得到m的值.【解答】解:(1)根据题意得:m2=1,m+1≠0,解得:m=1;(2)根据题意得:2m−8=0,3n−2=1,解得:m=4,n=1.39.【答案】解:方程x2+3=4,x2+2x+1=0,x+y=5不是一元一次方程;x2+3=4和x2+2x+1=0是一元二次方程;x+y=5是二元一次方程.【考点】方程的定义【解析】根据一元一次方程的定义,一元二次方程的定义,二元一次方程的定义进行求解.【解答】解:方程x2+3=4,x2+2x+1=0,x+y=5不是一元一次方程;x2+3=4和x2+2x+1=0是一元二次方程;x+y=5是二元一次方程.40.【答案】解:(1)未知数是x,方程的左边是3,方程的右边是2x−1,它是一元一次方程;(2)未知数是x、y,方程的左边是x+2y,方程的右边是7,它不是一元一次方程;(3)未知数是x,方程的左边是x2+5x−1,方程的右边是5,它不是一元一次方程;(4)未知数是x,y,方程的左边是x2,方程的右边是y2+2y,它不是一元一次方程;(5)未知数是x,方程的左边是x−π,方程的右边是3,它是一元一次方程;(6)未知数是m,方程的左边是3m+5,方程的右边是2m7−4,它是一元一次方程;(7)未知数是a,方程的左边是a+12−a−13,方程的右边是1,它是一元一次方程.【考点】方程的定义一元一次方程的定义【解析】依据方程的相关概念和一元一次方程的定义回答即可.【解答】解:(1)未知数是x,方程的左边是3,方程的右边是2x−1,它是一元一次方程;(2)未知数是x、y,方程的左边是x+2y,方程的右边是7,它不是一元一次方程;(3)未知数是x,方程的左边是x2+5x−1,方程的右边是5,它不是一元一次方程;(4)未知数是x,y,方程的左边是x2,方程的右边是y2+2y,它不是一元一次方程;(5)未知数是x,方程的左边是x−π,方程的右边是3,它是一元一次方程;(6)未知数是m,方程的左边是3m+5,方程的右边是2m7−4,它是一元一次方程;(7)未知数是a,方程的左边是a+12−a−13,方程的右边是1,它是一元一次方程.。
一元一次方程同步练习题及答案篇1:一元一次方程同步练习题及答案一元一次方程同步练习题及答案一、选择题1、方程3x+6=2x-8移项后,正确的是( )A.3x+2x=6-8B.3x-2x=-8+6C.3x-2x=-6-8D.3x-2x=8-62、方程7(2x-1)-3(4x-1)=11去括号后,正确的.是A.14x-7-12x+1=11B.14x-1-12x-3=11C.14x-7-12x+3=11D.14x-1-12x+3=113、如果代数式与的值互为相反数,则的值等于()A.B.C.D.4、如果与是同类项,则是()A.2B.1C.D.05、已知矩形周长为20cm,设长为cm,则宽为()A.B.C.D.二、填空题1、方程2x-0.3=1.2+3x移项得.2、方程12-(2x-4)=-(x-7)去括号得.3、若︱a﹣1︱+(b+2)2=0,则ab=.4、若3x+2与﹣2x+1互为相反数,则x-2的值是.5、若2(4a﹣2)﹣6=3(4a﹣2),则代数式a2﹣3a+4=.三、解答题1、解下列方程(1)3(2x+5)=2(4x+3)-3(2)4y﹣3(20﹣y)=6y﹣7(9﹣y)(3)7(2x-1)-3(4x-1)=4(3x+2)-11、观察方程[(x-4)-6]=2x+1的特点,你有好的解法吗?写出你的解法.【知能升级】1、已知a是整数,且a比0大,比10小.请你设法找出a的一些数值,使关于x的方程1―ax=―5的解是偶数,看看你能找出几个.2、解方程(1)|4x-1|=7(2)2|x-3|+5=13答案一、选择题1、C2、C3、D4、A5、B二、填空题1、2x-3x=1.2+0.32、12-2x+4=-x+73、14、-55、8三、解答题1、(1)x=6(2)y=(3)x=2、x=-9【知能升级】1、a=1,2,3,4,62、(1)x=2,(2)x=7,-1篇2:一元一次方程同步练习题一、选择题(每小题3分,共24分)1、下列四个式子中,是一元一次方程的是()A、2x-6B、x-1=0C、2x+y=5D、2、下列方程中,解为x=4的方程是()A.B.C.D.3、解方程3x-2=3-2x时,正确且合理的移项是()A、-2+3x=-2x+3B、-2+2x=3-3xC、3x-2x=3-2D、3x+2x=3+24.已知x=-3是方程k(x+4)-2k-x=5的解,则k的值是( )A.-2B.2C.3D.55.如果与是同类项,则是()A.2B.1C.D.06.某试卷由26道题组成,答对一题得8分,答错一题倒扣5分。
【优编】初中数学华东师范大学七年级下册第六章6.2.1 等式的性质与方程的简单变形课堂练习一、单选题1.若a−bb=34,则ab的值是()A.43B.73C.47D.74 2.方程2x−4=−2x+4的解是()A.x=2B.x=−2C.x=1D.x=0 3.运用等式性质进行的变形,不正确的是()A.如果a=b,那么a+c=b+c B.如果a=b,那么a-c=b-cC.如果a=b,那么ac=bc D.如果a=b,那么ac=b c4.若2a=3b,则ab=()A.52B.53C.23D.325.如果a=b,则下列式子不一定成立的是()A.a+1=b+1B.a3=b3C.a2=b2D.a﹣c=c﹣b6.已知{x=1y=4是方程kx+y=3的一个解,那么k的值是()A.7B.1C.-1D.-7 7.下列说法中,正确的个数有()①若mx=my,则mx-my=0 ②若mx=my,则x=y③若mx=my,则mx+my=2my ④若x=y,则mx=myA.2个B.3个C.4个D.1个8.在解方程x−12﹣2x+23=1时,去分母正确的是()A.3(x﹣1)﹣2(2+3x)=1B.3(x﹣1)+2(2x+3)=1 C.3(x﹣1)+2(2+3x)=6D.3(x﹣1)﹣2(2x+3)=6二、填空题9.方程 2x −6=0 的解是 .10.已知 −a =8 ,则 a = .11.下面的框图表示解方程3x + 20 = 4x -25 的流程:请写出移项的依据: .12.解方程:(1)4x −1=3+2x ;(2)x+12−2=1+2−x 4.13.用一组a ,b ,c 的值说明命题“若ac =bc ,则a =b”是不正确,这组值可以是a = .14.方程x+5=2x -3的解是 .三、计算题参考答案与试题解析1.答案:D2.答案:A3.答案:D4.答案:D5.答案:D6.答案:C7.答案:B8.答案:D9.答案:x=310.答案:-811.答案:等式两边加(或减)同一个数(或式子),结果仍是等式12.答案:(1)解:4x−1=3+2x移项:4x−2x=3+1合并同类项:2x=4系数化1:x=2.(2)解:x+12−2=1+2−x4去分母:2(x+1)−8=4+(2−x)去括号:2x−6=4+2−x移项:2x+x=6+6合并同类项:3x=12系数化1:x=4.13.答案:-114.答案:8。
2021-2022学年鲁教版六年级数学上册《第4章一元一次方程》同步综合练习题(附答案)1.在①2x+1;②1+7=15﹣8+1;③;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个2.下列所给条件,不能列出方程的是()A.某数比它的平方小6B.某数加上3,再乘以2等于14C.某数与它的的差D.某数的3倍与7的和等于293.下列各判断句中,错误的是()A.方程是等式,但等式不一定是方程B.由ax=ay这个条件不能得到x=y一定成立的结论C.在整数范围内,方程6x=3无解D.x5=0不是方程4.若x=1是ax+2x=3方程的解,则a的值是()A.﹣1B.1C.﹣3D.35.下列方程变形正确的是()A.2x﹣5=5x+4变形为2x﹣5=5x+4﹣5x﹣4B.x=2变形为x=2×=1C.4x﹣8=0变形为(4x﹣8+8)=8×D.﹣=1变形为3(x﹣1)﹣2=16.下列方程的变形,符合等式性质的是()A.由x=0,得x=2B.由x﹣3=5,得x=5﹣3C.﹣3x=,得x=﹣D.由x+2=4,得x=4﹣27.若x=0是方程的解,则k值为()A.0B.2C.3D.48.已知k=,则满足k为整数的所有整数x的和是()A.﹣1B.0C.1D.29.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60B.12(x+10)=13x+60C.D.10.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.5x﹣45=7x﹣3B.5x+45=7x+3C.=D.=11.已知关于x的一元一次方程mx﹣1=2(x+)的解是正整数,则整数m的值为.12.已知关于x的方程(m+3)x|m+4|+18=0是一元一次方程,则m的值为.13.方程|x|=ax+2有且仅有一个负数根,则a的取值范围是.14.已知方程的解也是方程|3x﹣2|=b的解,则b=.15.一艘船在水中航行,已知该船在静水中的速度为m(千米/小时),水流速度为n(千米/小时),如果该船从码头A出发,先顺流航行5小时,然后又调头逆流航行了5小时,那么最后船离A码头千米.16.小颖按如图所示的程序输入一个正数x,最后从输出端得到的数为16,求小颖输入的数x的值.17.解下列方程:(1)﹣3x﹣6=9 (2)5﹣4x=﹣6x+7(3)2(x﹣1)+2=4x﹣6 (4)=1.18.解下列方程(1)10x+7=12x﹣5 (2)1﹣=.19.若关于x的方程|x﹣2|+|x+1|=a有四个整数解,求a的取值范围.20.已知关于x的方程4x+2m=3x+1与方程3x+2m=6x+1的解相同;(1)求m的值;(2)求代数式(﹣2m)3﹣(m﹣)4的值.21.某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10个,又知2个大齿轮和3个小齿轮配套,问应安排多少个工人生产大齿轮使生产的产品刚好成套?22.如图,在数轴上,点A在原点O的左侧,点B在原点O的右侧,点A所对应的数a满足|a+1|=0,且AB=12,点D从A出发以1个单位长度/秒的速度沿数轴向右运动,点E从B出发以2个单位长度/秒的速度沿数轴向左运动,当D、E两点相遇时停止运动.(1)直接写出点A表示的数为,点B表示的数为;(2)点P为线段DE的中点,D、E两点同时开始运动,设运动时间为t秒,线段OP的长为d个单位长度,求用含t的整式表示d;(3)在(2)条件下,点C在线段AB上,且AC=2BC,当t为何值时,满足2OP+3CE =CD.23.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?24.据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见表:若2015年5月份,该市居民甲用电100度,交电费60元.一户居民一个月用电量的范围电费价格(单位:元/度)不超过150度a超过150度但不超过300度的部分0.65超过300度的部分0.9(1)表中,a=;若居民乙用电200度,则应交电费元;(2)若某用户某月用电量超过300度,设用电量为x度,请你用含x的代数式表示应交的电费;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少度时,其当月的平均电价每度0.62元?25.某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.探究:设行驶时间为t分.(1)当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过景点C?并直接写出这一段时间内它与2号车相遇过的次数.发现:如图2,游客甲在BC上的一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多?(含候车时间)决策:已知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA 上一点P(不与点D,A重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由:(2)设P A=s(0<s<800)米.若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中.他该如何选择?参考答案1.解:(1)2x+1,含未知数但不是等式,所以不是方程.(2)1+7=15﹣8+1,是等式但不含未知数,所以不是方程.(3),是含有未知数的等式,所以是方程.(4)x+2y=3,是含有未知数的等式,所以是方程.故有所有式子中有2个是方程.故选:B.2.解:设某数为x,A、x2﹣x=6,是方程,故本选项错误;B、2(x+3)=14,是方程,故本选项错误;C、x﹣x,不是方程,故本选项正确;D、3x+7=29,是方程,故本选项错误.故选:C.3.解:A、方程是含有未知数的等式,而等式中不一定含有未知数,所以“方程是等式,但等式不一定是方程”这种说法正确.故本选项不符合题意;B、当a=0时,等式ax=ay恒成立,但是x不一定与y相等,所以“由ax=ay这个条件不能得到x=y一定成立的结论”这种说法正确.故本选项不符合题意;C、方程6x=3的解是x=,不是整数,所以“在整数范围内,方程6x=3无解”这种说法正确.故本选项不符合题意;D、x5=0是含有未知数的等式,所以它是方程.故本选项符合题意.故选:D.4.解:根据题意,将x=1代入方程ax+2x=3,得:a+2=3,得:a=1.故选:B.5.解:A.2x﹣5=5x+4变形为2x﹣5﹣5x﹣4=5x+4﹣5x﹣4,即A项错误,B.变形为x=2=4,即B项错误,C.4x﹣8=0变形为(4x﹣8+8)=8×,即C项正确,D.﹣=1变形为3(x﹣1)﹣2=6,即D项错误,故选:C.6.解:A、等式的两边都乘以2,得x=0,故A不符合题意;B、左边加3,右边减3,故B不符合题意;C、左边除以﹣3,右边乘以﹣3,故C不符合题意;D、左边减去2,右边减去2,故D符合题意;故选:D.7.解:把x=0代入方程,得1﹣=解得k=3.故选:C.8.解:∵k====2+,∴当2x﹣1=1或2x﹣1=﹣1或2x﹣1=5或2x﹣1=﹣5时,k为整数,解得:x=1或x=0或x=3或x=﹣2,则满足k为整数的所有整数x的和为1+0+3﹣2=2,故选:D.9.解:设原计划每小时生产x个零件,则实际每小时生产(x+10)个零件.根据等量关系列方程得:12(x+10)=13x+60.故选:B.10.解:设合伙人数为x人,依题意,得:5x+45=7x+3.故选:B.二.填空题(共6小题)11.解:由mx﹣1=2(x+),得x=,因为关于x的方程mx﹣1=2(x+)的解是正整数,得m﹣2=1,m﹣2=2,或m﹣2=4.解得m=3,m=4,或m=6.故答案为:3或4或6.12.解:由题意可知:|m+4|=1,∴m=﹣3或﹣5,∵m+3≠0,∴m≠﹣3,∴m=﹣5,故答案为:﹣513.解:令y1=|x|,y2=ax+2,观察图象可知,要使方程有且仅有一个负数根,a≥1,故答案为:a≥1.14.解:2(x﹣2)=20﹣5(x+3),2x﹣4=20﹣5x﹣15,7x=9,解得:x=.把x=代入方程|3x﹣2|=b得:|3×﹣2|=b,解得:b=.故答案为:.15.解:由题意,得船离A码头为:5(m+n)﹣5(m﹣n)=10n.故答案是:10n.16.解:若x=1,根据题意得:2x+4=2+4=6,将x=6输入得:2x+4=16,符合题意;根据题意得:2x+4=16,移项合并得:2x=12,解得:x=6,综上,x的值为1或6.故答案为:1或6.17.解:(1)移项得:﹣3x=9+6,合并同类项得:﹣3x=15,系数化为1得:x=﹣5,(2)移项得:﹣4x+6x=7﹣5,合并同类项得:2x=2,系数化为1得:x=1,(3)去括号得:2x﹣2+2=4x﹣6,移项得:2x﹣4x=﹣6﹣2+2,合并同类项得:﹣2x=﹣6,系数化为1得:x=3,(4)去分母得:3(x﹣2)﹣2(2﹣3x)=6,去括号得:3x﹣6﹣4+6x=6,移项得:3x+6x=6+6+4,合并同类项得:9x=16,系数化为1得:x=.18.解:(1)移项,可得:12x﹣10x=7+5,合并同类项,可得:2x=12,解得:x=6.(2)去分母得:12﹣12+9x=10x+6﹣12x,移项,合并同类项,可得:11x=6,解得:x=.19.解:如图:关于x的方程|x﹣2|+|x+1|=a的解可以看成是函数y=|x﹣2|+|x+1|与函数y=a的交点的横坐标,则由方程有四个整数解可得函数y=a的图象必与直线y=3重合,即当a=3时满足题意,所以a的取值范围为a=3.20.解:(1)解第一个方程4x+2m=3x+1,得x=1﹣2m,解第二个方程3x+2m=6x+1,得x=,1﹣2m=解得m=;(2)当m=时,(﹣2m)3﹣(m﹣)4=(﹣2×)3﹣(﹣)4=﹣2.21.解:设安排x人生产大齿轮,根据题意可得:,解得:x=25答:25人生产大齿轮.22.解:(1)∵点A所对应的数a满足|a+1|=0,∴a=﹣4.∵AB=12,且点B在原点O的右侧,∴点B表示的数为8.故答案为:﹣4;8.(2)当运动时间为t秒时(0≤t≤4),点D表示的数为t﹣4,点E表示的数为8﹣2t,∴点P表示的数为t﹣4+=2﹣t,∴d=﹣t+2(0≤t≤4).(3)∵点C在线段AB上,且AC=2BC,∴点C表示的数为4,∴CE=|8﹣2t﹣4|=|4﹣2t|,CD=4﹣(t﹣4)=8﹣t.∵2OP+3CE=CD,即2×(﹣t+2)+3×|4﹣2t|=8﹣t,∴t=或,∴当t为秒或秒时,2OP+3CE=CD.23.解:方案一:最多生产4吨奶片,其余的鲜奶直接销售,则其利润为:4×2000+(8﹣4)×500=10000(元);方案二:设生产x天奶片,则生产(4﹣x)天酸奶,根据题意得:x+3(4﹣x)=8,解得:x=2,2天生产酸奶加工的鲜奶是2×3=6吨,则利润为:2×2000+2×3×1200=4000+7200=11200(元),得到第二种方案可以多得1200元的利润.24.解:(1)a=60÷100=0.6(元/度),居民乙用电200度,则应交电费:150×0.6+50×0.65=122.5(元),故答案是:0.6;122.5;(2)用电超过300度时.设该户居民月用电x度时,则应交的电费=0.6×150+0.65×150+0.9(x﹣300)=0.9x﹣147.5,(3)设该户居民月用电y千瓦时,分三种情况:①若y不超过150,平均电价为0.6<0.62,故不合题意;②若y超过150,但不超过300,则0.62y=0.6×150+0.65(y﹣150),解得y=250;③若y大于300,则0.62y=0.6×150+0.65×150+0.9(y﹣300),解得y=294.此时y<300,不合题意,应舍去.综上所述,y=250.答:该户居民月用电250度.25.解:探究:(1)由题意,得y1=200t,y2=﹣200t+1600当相遇前相距400米时,﹣200t+1600﹣200t=400,t=3,当相遇后相距400米时,200t﹣(﹣200t+1600)=400,t=5.答:当两车相距的路程是400米时t的值为3分钟或5分钟;(2)由题意,得1号车第三次恰好经过景点C行驶的路程为:800×2+800×4×2=8000,∴1号车第三次经过景点C需要的时间为:8000÷200=40分钟,两车第一次相遇的时间为:1600÷400=4.第一次相遇后两车每相遇一次需要的时间为:800×4÷400=8,∴两车相遇的次数为:(40﹣4)÷8+1=5次.∴这一段时间内它与2号车相遇的次数为:5次;发现:由题意,得情况一需要时间为:=16﹣,情况二需要的时间为:=16+∵16﹣<16+∴情况二用时较多.决策:(1)∵游客乙在AD边上与2号车相遇,∴此时1号车在CD边上,∴乘1号车到达A的路程小于2个边长,乘2号车的路程大于3个边长,∴乘1号车的用时比2号车少.(2)若步行比乘1号车的用时少,,∴s<320.∴当0<s<320时,选择步行.同理可得当320<s<800时,选择乘1号车,当s=320时,选择步行或乘1号车一样.。
解一元一次方程的练习题解下列方程:(每题4分)(1)3(x-2)=2-5(x-2) (2) 2(x+3)-5(1-x)=3(x -1)(3) 3(1)2(2)23x x x +-+=+ (4) 3(2)1(21)x x x -+=--(5) 2x -13 =x+22 +1 (6) 12131=--x(7) x x -=+38(8) 12542.13-=-x x(9 ) 310.40.342x x -=+ (10) 3142125x x -+=- (11) 31257243y y +-=-(12) 576132x x -=-+ (13)143321=---m m (14) 52221+-=--y y y(15)12136x x x -+-=- (16) 38123x x ---= (17) 12(x-3)=2-12(x-3) (18)35.012.02=+--x x (19) 301.032.01=+-+x x (20) 223146x x +--= (21)124362x x x -+--=(22) x x 23231423 =⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-(23) 112[(1)](1)223x x x --=- (24)27(3y+7)=2 - 32y(25)设k 为整数,方程kx=4-x 的解x 为自然数,求k 的值。
X - 27 X =432X + 25 = 35 70%X + 20%X = 3.6X ×53=20×41 25% + 10X =54X - 15%X = 68 X +83X =121 5X -3×215=75 32X ÷41=126X +5 =13.4 834143=+X 3X=83X ÷72=167 X +87X=43 4X -6×32=2125 ÷X=310 53 X = 7225 98 X = 61×5116X ÷ 356=4526×2513 4x -3 ×9 = 29 21x + 61x = 4103X -21×32=4 2041=+x x 8)6.2(2=-x6X +5 =13.4 25 X-13 X=310 4χ-6=385X=1915 218X=154 X ÷54=281532X ÷41=12 53X=7225 98X=61×5116X ÷356=4526÷2513 X-0.25=41 4X =30%4+0.7X=102 32X+21X=42 X+41X=105 X-83X=400 X-0.125X=8 X 36 = 43X+37 X=18 X ×( 16 + 38 )=1312 x -0.375x=65 x ×32+21=4×83 X -73X =12 5 X -2.4×5=80.36×5- 34 x = 35 23 (x- 4.5) = 7 12 x- 25%x = 10x- 0.8x = 16+6 20 x – 8.5= 1.5 x- 45 x -4= 21X +25%X=90 X -37 X= 89一、解方程:+-×÷=(1) 3.5X +1.8=12.3 (5) X +52X =21 (6) 54X +52X =21(7) 3.6X ÷2=2.16 (8) X +72X =43(2) 0.8X -4=1.6(3) 5X ÷2=10 (4) X -0.25X =3 (9) X -52X =103(10) X -52=103 (11) 2X +7X =109 (12) 83+X =52(13)107X=2514(14)21X=43(15)95X=10(16) 180+6X=330 (17) 2.2X-1=10 (18) X-0.8X=10(19) 15X÷2=60 (20) 4X+X=3.15 (21)3.4X+1.8=8.6(22) 5X-X=2.4 (23) 1.5X-X=1 (24) 6.6X-6X=1.8练习二1、12-3(9-x)=5(x-4)-7(7-x);2、6x-17=133、9-10x=10-9x4、2(x-1)=4.5、13x-26=136、75-5x=707、2(6x-2)=8 8、25x(12-6)=300 9、24x+12=13210、56=12x+8 11、2x+4=30 12、12x=11x-79 13、13x-12(x+2)=0 14、67-12x=7 15、(x-1)-(3x+2)= - (x-1)16、18x-16x+18×1+50=70 17、14×(60-x)×2=20x 18、4x+9(x+2)=20019、100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=117120、5x+4.5(103-x)=486练习三(1)2x+8=16 (2)x/5=10 (3)x+7x=8(4)9x-3x=6 (5)6x-8=4 (6)5x+x=9(7)x-8=6x (8)4/5x=20 (9)2x-6=12(10)7x+7=14 (11)6x-6=0 (12)5x+6=11(13)2x-8=10 (14)1/2x-8=4 (15)x-5/6=7(16)3x+7=28 (17)3x-7=26 (18)9x-x=16(19)24x+x=50 (20)6/7x-8=4 (30)3x-8=30(31)6x+6=12 (32)3x-3=1 (33)5x-3x=4 (34)2x+16=19 (35)5x+8=19 (36)14-6x=8 (37)15+6x=27 (38)5-8x=4 (39)7x+8=15(40)9-2x=1 (41)4+5x=9 (42)10-x=8 (43)8x+9=17 (44)9+6x=14 (45)x+9x=4+7 (46)2x+9=17 (47)8-4x=6 (48)6x-7=12 (49)7x-9=8 (50)x-56=1 (51)8-7x=1 (52)x-30=12 (53)6x-21=21 (54)6x-3=6 (55)9x=18 (56)4x-18=13 (57)5x+9=11 (58)6-2x=11 (59)x+4+8=23 (60)7x-12=8 (61)X-5.7=2.15 (62)15.5X-2X=18 (62)3X 0.7=5(63)3.5×2= 4.2 x (64)26×1.5= 2x (65)0.5×16―16×0.2=4x(66)9.25-X=0.403 (67)16.9÷X=0. 3 (68)X÷0.5=2.6 (69)x+13=33 (70)3 - 5x=80 (71)1.8- 6x=54 (72)6.7x -60.3=6.7 (73)9 +4x =40 (74)0.2x-0.4+0.5=3.7(75)9.4x-0.4x=16.2 (76)12 -4x=20 (77)1/3 x+5/6 x=1.4(78)12 x+34 x=1 (79)18x-14 x= 12 (80)23 x-5×14 = 14 (81)12 +34 x=56 (82)22-14 x= 12 (83)23 x-14 x= 14 (84)x+14 x= 65 (85)23 x=14 x +14 (86)30 x-12 x -14 x=1第三章一元一次方程习题1姓名: 学号: 分数:一、选择题(36分)1.下列各式是一元一次方程的是( )A. x+2y=1B.-5-3= -8C.x+3D.x=02.方程x x 231=+-的解是( ) A .31- B.31 C. 1 D. –1 3.已知等式3a=2b+5,则下列等式中不一定成立的是( ) A.3a-5=2b B.3a+1=2b+6 C.3ac=2bc+5 D.3532+=b a 4.下列根据等式的性质成立的是()A.由y x 3231=-,得x=2y B. 由3x-2=2x+2,得x=4 C.由2x-3=3x ,得x=3 D. 由3x-5=7,得3x=7-55.解方程16110312=+-+x x 时,去分母后,正确结果是( ) A.4x+1-10x+1=1 B. 4x+2-10x-1=1 C. 4x+2-10x-1=6 D. 4x+2-10x+1=66.方程2x+a-4=0的解是x=-2,则a 等于( )A.-8B.0C.2D.87.下列方程的变形正确的是( )A .方程3x-2=2x+1,移项得3x-2x=-1+2B .方程3-x=2-5(x-1),去括号得3-x=2-5x-1C .方程2332=t ,未知数系数化为1得x=1D .方程15.02.01=--x x ,化成3x=6 8.代数式13x x --的值等于1时,x 的值是( ). A .3 B .1 C .-3 D .-19.已知代数式87x -与62x -的值互为相反数,那么x 的值等于( ).A .-1310B .-16C .1310D .1610.下列说法中正确的是 ( )A .a -一定是负数B .a 一定是负数C .a -一定不是负数D .2a -一定是负数11.当3x =时,代数式23510x ax -+的值为7,则a 等于( ).A .2B .-2C .1D .-112.已知方程(m+1)x ∣m ∣+3=0是关于x 的一元一次方程,则m 的值是 ( )A.±1B.1C.-1D.0或1二、填空题(14分)13.24,x x==则14.在公式中v=v0+at,已知v=15,v0=5,t=4,则a=_____。
《一元一次方程》单元练习题一.选择题1.下列是一元一次方程的是()A.x2﹣x=0 B.2x﹣y=0 C.2x=1 D.x2+y2=12.关于x的方程3(x+1)﹣6m=0的解是﹣2,则m的值是()A.B.C.﹣2 D.23.小明在某月的日历中圈出了三个数,算出它们的和是14,那么这三个数的位置可能是()A.B.C.D.4.小明同学在解方程5x﹣1=mx+3时,把数字m看错了,解得x=﹣,则该同学把m看成了()A.3 B.C.8 D.﹣85.某商品原价为m元,由于供不应求,先提价30%进行销售,后因供应逐步充足,价格又一次性降价30%,售价为n元,则m,n的大小关系为()A.m=n B.n=0.91m C.n=m﹣30% D.n=m+30%m6.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.﹣1,去分母,得4(x+1)=3x﹣1D.方程﹣x=4,未知数系数化为1,得x=﹣107.某超市华山牌水杯原价每个x元,国庆节期间搞促销活动,第一次降价每个减5元,售卖一天后销量不佳,第二天继续降价每个打“八折”出售,打折后的水杯每个售价是60元.根据以上信息,列出方程是()A.(x﹣5)=60 B.0.8(x﹣5)=60C.0.8x﹣5=60 D.(x﹣5)﹣0.8x=608.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是150元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A.不赚不亏B.赚10元C.赔20元D.赚20元9.下面是一个被墨水污染过的方程:3x﹣2=x﹣,答案显示此方程的解是x=2,被墨水遮盖的是一个常数,则这个常数是()A.2 B.﹣2 C.D.10.代数式2ax+5b的值会随x的取值不同而不同,如表是当x取不同值时对应的代数式的值,则关于x的方程2ax+5b=﹣4的解是()x﹣4 ﹣3 ﹣2 ﹣1 02ax+5b12 8 4 0 ﹣4 A.12 B.4 C.﹣2 D.0二.填空题11.若代数式1﹣8x与9x﹣4的值互为相反数,则x=.12.若关于x的方程3x﹣7=5x+2的解与关于y的方程4y+3a=7a﹣8的解互为倒数,则a 的值为.13.从一个内径为12cm的圆柱形茶壶向一个内径为6cm、内高为12cm的圆柱形茶杯中倒水,茶杯中的水满后,茶壶中的水下降了cm.14.当a=时,方程2x+a=x+10的解为x=4.15.甲、乙两人从长度为400m的环形运动场同一起点同向出发,甲跑步速度为200m/min,乙步行,当甲第三次超越乙时,乙正好走完第二圈,再过min,甲、乙之间相距100m.(在甲第四次超越乙前)16.关于x的方程2(x﹣a)=x﹣1的解为4a+b,则关于x的方程2(ax﹣b)﹣1978=﹣bx+4a+44的解为x=.三.解答题17.解方程(1)(x﹣4)﹣=3﹣(2)﹣=118.方程2﹣3(x+1)=0的解与关于x的方程﹣3k﹣2=2x 的解互为相反数,求k的值19.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下:我们称使等式a﹣b=ab+1成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,)都是“共生有理数对”(1)数对(﹣2,1),(3,)中是“共生有理数对”的是(2)若(a,3)是“共生有理数对”,则a的值为(3)若4是“共生有理数对”中的一个有理数,求这个“共生有理数对”20.某市初中组织文艺汇演,甲、乙两所学校共90人准备统一购买服装参加演出(其中乙校参加演出的人数大于50人),下面是某服装厂给出的演出服装的价格表:1~50 51~100 100以上购买服装的数量(套)100 90 80每套服装的价格(元)(1)如果两所学校分别以各自学校为单位单独购买服装一共应付8400元,求甲、乙两所学校有多少人准备参加演出;(2)由于演出效果的需要,甲校人数不变,乙校又增加若干人参加演出,并且两校联合起来作为一个团体购买服装,一共付款8640元,求乙校最终共有多少人参加演出?21.列一元一次方程,解应用题:一辆货车以每小时60千米的速度从甲地出发驶向乙地,经过25分钟,一辆客车以每小时比货车快10千米的速度从乙地出发驶向甲地,若两车刚好在甲、乙两地的中点相遇,求相遇时,客车行驶了多长时间?22.A,B两点在数轴上的位置如图,点A对应的数值为﹣5,点B对应的数值为11.(1)现有两动点M和N,点M从A点出发以2个单位长度/秒的速度向左运动,点N从点B出发以6个单位长度/秒的速度同时向右运动,问:运动多长时间满足MN=56?(2)现有两动点C和D,点C从A点出发以1个单位长度/秒的速度向右运动,点D从点B出发以5个单位长度/秒的速度同时向左运动,问:运动多长时间满足AC+BD=3CD?参考答案一.选择题1.解:A、x2﹣x=0,未知数的最高次数是2,不是一元一次方程;B、2x﹣y=0,含有2个未知数,不是一元一次方程;C、2x=1,是一元一次方程;D、x2+y2=1,含有2个未知数,不是一元一次方程;故选:C.2.解:把x=﹣2代入方程3(x+1)﹣6m=0得:﹣3﹣6m=0,解得:m=﹣,故选:A.3.解:A、设左下角数字为x,其余为x﹣7,x+1,根据题意得:x+x﹣7+x+1=14,解得:x=,不符合题意;B、设左上角数字为x,其余为x+7,x+1,根据题意得:x+x+7+x+1=14,解得:x=2,符合题意;C、设右上角的数字为x,其余为x﹣1,x+7,根据题意得:x+x﹣1+x+7=14,解得:x=,不符合题意;D、设右下角的数字为x,其余为x﹣1,x﹣7,根据题意得:x+x﹣1+x﹣7=14,解得:x=,不符合题意,故选:B.4.解:把x=﹣代入方程得:﹣﹣1=﹣m+3,解得:m=8,故选:C.5.解:根据题意可得:(1+30%)×(1﹣30%)=130%×70%,=91%.即现价是原价的91%.故n=0.91m,故选:B.6.解:A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,不符合题意;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,不符合题意;C、=﹣1,去分母,得4(x+1)=3x﹣12,不符合题意;D、方程﹣x=4,未知数系数化为1,得x=﹣10,符合题意,故选:D.7.解:设华山牌水杯原价为每个x元,依题意,得:0.8(x﹣5)=60.故选:B.8.解:设在这次买卖中原价都是x元,则可列方程:(1+25%)x=150,解得:x=120,比较可知,第一件赚了30元第二件可列方程:(1﹣25%)x=150解得:x=200,比较可知亏了50元,两件相比则一共亏了20元.故选:C.9.解:设这个常数为a,即3x﹣2=x﹣a,把x=2代入方程得:2﹣a=4,解得:a=﹣2,故选:B.10.解:根据题意得:﹣2a+5b=0,5b=﹣4,解得:a=﹣2,b=﹣,代入方程得:﹣4x﹣4=﹣4,解得:x=0,故选:D.二.填空题(共6小题)11.解:根据题意得:1﹣8x+9x﹣4=0,移项合并得:x=3.故答案为:3.12.解:解方程3x﹣7=5x+2得x=﹣,根据题意得,方程4y+3a=7a﹣8的解为y=﹣,所以4×(﹣)+3a=7a﹣8,解得a=.故答案为.13.解:设茶壶中水的高度下降了xcm.9π×12=36π×x,解得x=3,∴茶壶中水的高度下降了3cm.故答案为:3.14.解:∵2x+a=x+10的解为x=4,∴8+a=4+10,则a=6.故答案为:6.15.解:乙步行的速度为400×2÷[400×(2+3)÷200]=80(m/min).设再经过xmin,甲、乙之间相距100m,依题意,得:200x﹣80x=100或200x﹣80x=300,解得:x=或x=.故答案为:或.16.解:把x=4a+b代入2(x﹣a)=x﹣1,可得:2(4a+b﹣a)=4a+b﹣1,可得:2a+b=﹣1,2(ax﹣b)﹣1978=﹣bx+4a+44化简为:(2a+b)x﹣2(2a+b)﹣2022=0,把2a+b=﹣1代入(2a+b)x﹣2(2a+b)﹣2022=0,可得:﹣x+2﹣2022=0,解得:x=﹣2020,故答案为:﹣2020.三.解答题(共6小题)17.解:(1)去分母得:6(x﹣4)﹣3(x﹣5)=18﹣2(x﹣2),去括号得:6x﹣24﹣3x+15=18﹣2x+4,移项合并得:5x=31,解得:x=6.2;(2)方程整理得:﹣=1,去分母得:50x﹣10﹣37x﹣100=20,移项合并得:13x=130,解得:x=10.18.解:∵2﹣3(x+1)=0,∴解得:x=﹣,∵方程2﹣3(x+1)=0的解与关于x的方程﹣3k﹣2=2x的解互为相反数,∴关于x的方程﹣3k﹣2=2x的解x=,∴﹣3k﹣2=,解得:k=﹣1.19.解:(1)∵﹣2﹣1=﹣3,﹣2×1+1=﹣1,∴﹣2﹣1≠﹣2×1+1,∴(﹣2,1)不是“共生有理数对”;∵3﹣=2.5,3×+1=2.5,∴3﹣=3×+1,∴(3,)是“共生有理数对”.故答案为:(3,);(2)∵(a,3)是“共生有理数对”,∴a﹣3=3a+1,解得a=﹣2,故答案为:﹣2;(3)∵4是“共生有理数对”中的一个有理数,∴①当“共生有理数对”是(x,4)时,则有:x﹣4=4x+1,解得:x=﹣,∴“共生有理数对”是(﹣,4);②当“共生有理数对”是(4,y)时,则有:4﹣y=4y+1,解得:y=,∴“共生有理数对”是(4,).20.解:(1)设甲校有x人参加演出,则乙校有(90﹣x)人参加演出,依题意,得:100x+90(90﹣x)=8400,解得:x=30,∴90﹣x=60.答:甲校有30人参加演出,乙校有60人参加演出.(2)设乙校又增加y人参加演出.当0<y≤10时,90(30+60+y)=8640,解得:y=6,∴60+y=66;当y>10时,80(30+60+y)=8640,解得:y=18,∴60+y=78.答:乙校最终共有66人或78人参加演出.21.解:设相遇时,客车行驶了x小时,根据题意,得解这个方程,得x=2.5.因此,相遇时,客车行驶了2.5小时.22.解:(1)设运动时间为x秒时,MN=56.依题意,得:(6x+11)﹣(﹣2x﹣5)=56,解得:x=5.答:运动时间为5秒时,MN=56.(2)当运动时间为t秒时,点C对应的数为t﹣5,点D对应的数为﹣5t+11,∴AC=t,BD=5t,CD=|t﹣5﹣(﹣5t+11)|=|6t﹣16|.∵AC+BD=3CD,∴t+5t=3|6t﹣16|,即t+5t=3(6t﹣16)或t+5t=3(16﹣6t),解得:t=4或t=2.答:运动时间为2秒或4秒时,AC+BD=3CD.。
一元一次方程练习题及答案一元一次方程同步达纲练】1.判断题:1) 判断下列方程是否是一元一次方程:① -3x-6x²=7;② 1/x+x=3;③ 5x+1-2x=3x-2;④ 3y-4=2y+1.2) 判断下列方程的解法是否正确:①解方程3y-4=y+3;②解方程:0.4x-3=0.1x+2解:3y-y=3+4,2y=7,y=7/2;解:0.4x+0.1x=2-3;0.5x=-1,x=-2;③解方程(x+3)/2-(x-1)/5=1;④解方程x-2/1.5+0.2=-1;解:5x+15-2x-2=10,3x=-3,x=-1;解:2x-4+5-5x=-1,-3x=-2,x=2/3.2.填空题:1) 若2(3-a)x-4=5是关于x的一元一次方程,则a≠6;2) 关于x的方程ax=3的解是自然数,则整数a的值为:1或-1;3) 方程5x-2(x-1)=17的解是4;4) x=2是方程2x-3=m-(1/2)x的解,则m=1;5) 若-2x²-5m+1=0是关于x的一元一次方程,则m=(2/5)x²-1;6) 当y=-2时,代数式5y+6与3y-2互为相反数;7) 当m=-36/7时,方程5x-12x²/2-m=3/5的解为0;8) 已知a≠0,则关于x的方程3ab-(a+b)x=(a-b)x的解为(2ab)/(a+b).3.选择题:1) 方程ax=b的解是().A。
有一个解x=b/a;B。
有无数个解;C。
没有解;D。
当a≠0时,x=b/a.2) 解方程3/4(4/3x-1)=3,下列变形中,较简捷的是()A。
方程两边都乘以4,得3(4/3x-1)=12;B。
去括号,得x-3/4=3;C。
两边同除以4/3,得3x-1=4;D。
整理,得x=13/3.3) 方程2-2x/3=-x/6-7/6去分母得()A。
2-2(2x-4)=-(x-7);B。
12-2(2x-4)=-x-7;C。
10道解一元一次方程的练习题及答案一.解答题 1.解方程:2x+1=.3.解方程:4﹣x=3;解方程:.4.解方程:.5.解方程4﹣3=5;x﹣=2﹣.6.解方程:3=2x+3;解方程:=x﹣.7.﹣=8.解方程:5﹣2=3+x+1;.9.解方程:.110.解方程:4x﹣3=2; =2﹣.11.计算:计算:解方程:12.解方程:13.解方程:14.解方程:5﹣2=+2[3+]=5x﹣115.解方程:5x﹣2=7x+8;解方程:﹣=﹣;解方程:.16.解方程3=9﹣5217.解方程:解方程:4x﹣3=13解方程:x﹣﹣318.计算:﹣42×+|﹣2|3×3计算:﹣12﹣|0.5﹣|÷×[﹣2﹣2]解方程:4x﹣3=2;解方程:.19.计算:×;计算:;3解方程:3x+3=2x+7;解方程:.20.解方程﹣0.2=1;.21.解方程:﹣2=9﹣3x. 22.8x﹣3=9+5x.5x+2=9﹣4...23.解下列方程:0.5x﹣0.7=5.2﹣1.3;=﹣2.24.解方程:﹣0.5+3x=10;43x+8=2x+6;2x+3=5﹣4;..解方程:.26.解方程:10x﹣12=5x+15;27.解方程:8y﹣3=7.28.当k为什么数时,式子比的值少3.29.解下列方程: 12y﹣2.5y=7.5y+.30.解方程:.5解一元一次方程50道练习题1、解方程:=7;x-2=8;x+3=2x+7; x+5=3x-7;x+1 14x-9;x-9=4x+27;11x-2=1.1、解方程: 113x=-x+3; x=x+16.2235x=3x+;221x4x-2=3-x;-7x+2=2x-4;-x=-x+1;x-=-+2.5332x+6=1;10x-3=9; x-2=7x+8; 1-2、解方程:=1;+x=7;-2=4;-x)=-2;11x+=3. -4x-2.1、解方程:-5=0;=9;-3=24;=4x+4;-=12; 123x+)=;-232x+1)=12.200-15x)=70+25x;=1)=2x-3);x+;542337112x-1x+211)=x-1)=-1;x-1)=2-x+2)x+1; .334251111114)=x+20)x+; x+15)=-x-7).452 3.1、解方程:23231137x-532x-15x+119x-2x-=;=;=;x -7=;24486826112x+15x-11-=1;x+14)=4-2x; x-3-2x)=1;52367329200+x)-300-x)=300?. 1010254、解方程:83x-1)--=30;-=12. 0.20.30.30.5 第1页1、 x=3; x=2; x=4; x=6;x=; x=-12; x=4; x=-32.561; x=; x=-5; x=-;53251; x=; x=-; x=1. x=331.1、 x=- 1; x=-1; x=2、 x=2.1、x=-7; x=-6; x=-3; x=4; x=9.3110;x=-11; x=-4; x=; x=;29x=6; x=.23、 x=8;x=;x=-16; x=7; x=-152;x=3; x=-28; x=-3.1、 x=5; x=5. 16132025;x=-1; x=-;x=; 14312x=-3; x=; x=216.4、 x=3; x=-78326429; x=; x=. 15132第2页解一元一次方程一、慧眼识金 1.某数的15等于4与这个数的的差,那么这个数是.4-45-52.若3?2x?11?3x,则x?4的值为.8-8-443.若a?b,则①a?13?b?13;②13a?14b;③?34a??34b;④3a?1?3b?1中,正确的有.1个2个3个4个4.下列方程中,解是x??1的是. ?2?12?2?411x?1?525.下列方程中,变形正确的是.由x?3?4得x?4? 由3=x?2得x?3? 由2-x?5得x?5? 由5?x?2得x?5?26.对于“x?y?a?b”,下列移项正确的是. x?b?y?ax?a?y?ba?x?y?ba?x?b?y .某同学在解关于x 的方程5a?x?13时,误将?x看作?x,得到方程的解为x??2,则原方程的解为. x??3x?0x?2x?18.小丽的年龄乘以3再减去3是18,那么小丽现在的年龄为. 7岁8岁16岁32岁二、画龙点睛1.在x?3,x?5,x?10中,是方程x?x?42?3的解.2.若m是3x?2?2x?1的解,则30m?10的值是.3.当x? 时,代数式12与13的差为10.4.如果5m?14与m?14互为相反数,则m的值为.?6?0是关于x的一元一次方程,则a? .5.已知方程x6.如果3x?1?2x?3成立,则x的正数解为.7.已知3x?8?x4?a的解满足x?2?0,则1a? .8.若2x3?2k?2k?4是关于x的一元一次方程,则k?,x?.三、考考你的基本功1.解下列方程?7x?6?22?6x; ?4x?3??5x?2;4x?5?3x;y?7??3y?5.2.x?2是方程ax?4?0的解,检验x?3是不是方程2ax?5?3x?4a的解.3.已知x4.如果?四、同步大闯关方程4x?2m?3x?1和方程3x?2m?4x?1的解相同,求m 的值和方程的解.关于x的方程mx?n?2x?3中,m、n是常数,请你给m、n赋值,并解此时关于x的方程.x3?y4?z6?3,求3x?4y?6z的值.?6?m是关于x的一元一次方程,试求代数式2008的值.解一元一次方程一、相信你都能选对 1、下列方程中是一元一次方程的是x?12A、x-y=200B、3x-200C、x+x=1D、2x?2=32、下列四组变形中,属于去括号的是1A.5x+3=0,则5x=-B.2x =,则x = 12C.3x-=5,则3x+4x-2=D.5x=1+4,则5x=53、某同学在方程5x-1=□x+3时,把□处的数字看错了,解得x=-4/3,该同学把□看成了A.3B.-C.D. -314、方程x - = +x的解是11A.-2;B.2;C.-2;D.25、下列解方程去分母正确的是 x?1?1?x2A.由3,得2x - 1 = -x;x?2B.由2y?1?3x?24y3??1,得2 -x - = -3y?16?yC.由24x??,得3y + =y -y + 1 -y;D.由5?1?y?43,得12x - 1 =y +06、某件商品连续两次9折降价销售,降价后每件商品售价为a元,则该商品每件原价为aaA.0.92aB.1.12aC.1.1D.0.817、一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为 A.5B.2C.7D.458、一个长方形的周长为2cm,这个长方形的长减少1 cm,宽增加cm,就可成为一个正方形,设长方形的长为xcm,可列方程A.x?1?? B.x?1??2C.x?1??2D.x?1??二、相信你填得又快又准、去括号且合并含有相同字母的项:3x+2=8y-6= 10、x =和x = -中,________是方程x - =的解.2?k?111、若代数式3的值是1,则k = _________.3?2x2?x12、当x=________时,式子2与3互为相反数.13、小明买了20本练习本,店主给他八折优惠,结果便宜1.6元,每本练习本的标价是元。
《解一元一次方程(二)》同步练习一、选择题1.解方程1443312=---x x 时,去分母正确的是( ) A .1129)12(4=---x x B .12)43(348=---x xC .1129)12(4=+--x xD .12)43(348=-+-x x2.将方程5)24(32=--x x 去括号正确的是( )A .52122=--x xB .56122=--x xC .56122=+-x xD .5632=+-x x3.将方程131212=--+x x 去分母正确的是( ) A .62216=+-+x x B .62236=--+x xC .12236=+-+x xD .62236=+-+x x4.解方程256133x x x -=--+,去分母所得结果正确的是( ) A .x x x -=+-+15132 B .x x x 315162-=+-+C .x x x -=--+15162D .x x x 315132-=+-+5.下列解方程的过程中正确的是( )A .将5174732+-=--x x 去分母得)17(4)75(52+-=--x x B .由102.07.015.03.0=--x x 得10027015310=--x x C .)28(2)73(540+=--x x 去括号得41671540+=--x xD .552=-x ,得225-=x 6.下列方程,解是0=x 的是( )A .8.034.057x x =- B .13423--=-x x C .()[]{}98765432=---x D .x x 322)73(72-=+ 7.方程)1(332+=-y y 的解是( )A .-6B .6C .54 D .0 8.式子33+x 的值比式子512-x 的值大1,则x 为( ) A .3 B .4 C .5 D .6 9.若代数式23-y 的值比312-y 的值大1,则y 的值是( ) A .15 B .13 C .-13 D .-1510.方程60)1(4)2(4=+--x x 的解是( )A .7=xB .76=x C .76-=x D .7-=x 11.若213+x 比322-x 小1,则x 的值为( ) A .513 B .-135 C .-513 D .135 12.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做一天,然后甲、乙合作完成此项工作,若甲乙共做了x 天,所列方程为( )A .1641=++x x B .1614=++x x C .1614=-+x x D .161414=+++x x 13.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①1431040-=+m m ②4314010+=+n n ③4314010-=-n n ④1431040+=+m m 其中符合题意的是( ) (A )①② (B )③④ (C )①③ (D )②④14.若方程)23()12(3+-=++a x a x 的解是0,则a 的值等于( )A .51B .53C .-51D .-53 15.甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5千米,则乙的时速是( )A .12.5千米/时B .15千米/时C .17.5千米/时D .20千米/时二、填空题1.____=m 时,式子212-m 的值是3; 2.如果4是关于x 的方程a a x x a 2)(353++=-的解,则____=a ;3.若x y x y -=+=8,3521,当1y 比2y 大于1时,____=x ;4.关于x 的方程054)2(2=-++k kx x k 是一元一次方程,则____=k5.若)9(312y --与)4(5-y 的值相等,则____=y6.当____=x 时,31-x 的值比21+x 的值大-3 7.当____=m 时,方程3445-=+x x 和方程)2(2)1(2-=-+m m x 的解相同.8.要使21+m 与23-m 不相等,则m 不能取的值是_______ 9.方程332=-x 与方程0331=--x a 有相同的解,则____=a . 10.某数x 的21倍比另一数y 的23倍多5,则____=y . 11.一个两位数,两个数位上的数字之和为12,且个位数字比十位数字大2,则这个两位数为________________;12.某商品先按批发价a 元提高10%零售,后又按零售价降低10%出售,则它最后的单价是___________.13.甲能在11天内完成此项工作,乙的工作效率比甲高10%,那么乙完成这项工作的天数为_______天.14.某超市规定,如果购买不超过50元的商品时,按全额收费,购买超过50元的商品时,超过部分按九折消费,某顾客在一次消费中向售货员交纳了212元,那么在此消费中该顾客购买的是价值________________元的商品.15.下面是甲商场电脑产品的进货单,其中进价一栏被墨迹污染.读了进货单后,请你求出这台电脑的进价,是__________元.元三、计算题1.解下列方程(1)521215++=--y y y (2)13.02.18.12.06.02.1=-+-x x (3)5162.15.032.08+-=--+x x x (4)23241233431=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x 2.解下列方程(1)250)104(2)3010(5-=--+x x(2)2233)5(54--+=--+x x x x (3)1612213-+=-x x (4)⎥⎦⎤⎢⎣⎡+-=⎪⎭⎫ ⎝⎛---4)3(551014224123x x x x (5)5:63:2=m(6)7:23:4t =(7))1(27)1(4)1(31)1(3+--=--+x x x x (8))1(32)1(2121-=⎥⎦⎤⎢⎣⎡--x x x 3.利用等式的性质解方程:(1))1(9)14(3)2(2x x x -=--- (2)37615=-y(3)14126110312-+=+--x x x (4)x x 5.12)73(72-=+ (5)103.02.017.07.0+-=x x (6)y y 535.244.2=-- 4.列方程求解:(1)已知6--x 的值与71互为倒数,求x ; (2)x 等于什么数时,133-+x 等于1752++x 的值? (3)x 取何值时,235x -和[])53(521--x x 互为相反数? (4)a 为何值时,关于x 的方程03=+a x 的解比方程0432=--x 的解大2? 5.已知2021at t v S +=,如果81,4,13===a t S ,求0v . 6.若4=y 是方程)(532m y m y -=-+的解,求13-m 的值. 四、应用题1.小王在超市中买了单价是2.8元的某品牌鲜奶若干袋,过了一段时间再去超市,发现这种鲜奶正进行让利销售,每袋让利0.3元,于是他比上次多买了2袋,却只比上次多花了2元钱,问上次买了多少袋这样的鲜奶?2.冷饮厅中A 种冰激凌比B 种冰激凌贵1元,小明和同学要了3个B 种冰激凌、2个A 种冰激凌,一共花了16元.两种冰激凌每个多少钱?3.班级的书架宽88厘米,某一层上摆满一种历史书和一种文学书,共90本.小明量得一本历史书厚0.8厘米,一本文学书厚1.2厘米.你知道这层书架上历史书和文学书各有多少本吗?4.一个两位数,十位上的数比个位上的数小1,十位与个位上的数的和是这个两位数的51,求这个两位数. 5.元旦期间,某商场搞优惠促销,决定由顾客抽奖确定折扣.某顾客购买甲、乙两种商品,分别抽到7折和9折,共付款386元,这两种商品的原销售价之和为500元.问,这两种商品的原销售价分别为多少钱?6.一个蓄水池装有甲、乙、丙三个进水管.单独开放甲管,45分钟可以注满全池;单独开放乙管,60分钟可以注满全池;单独开放丙管,90分钟可以注满全池.现将三管一齐开放,多少分钟可以注满水池?7.某中学开展校外植树活动,六年级学生单独种植,需要7.5小时完成;七年级学生单独种植,需要5小时完成.现在六年级、七年级学生先一起种植1小时,再由七年级学生单独完成剩余部分.共需多少时间完成?8.朝阳中学在预防“非典”的活动中,初二(2)班45名同学被平均分配到甲、乙、丙三处打扫环境卫生.甲处的同学最先完成打扫任务,班卫生委员根据实际情况及时把甲处的同学全部调到乙、丙两处支援,调动后乙处的人数恰好为丙处人数的1.5倍.问从甲处调往乙、丙两处各多少人?9.国家从多方面保障农民的根本利益,重视农业的发展.王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,共用去了44 000元.其中种茄子每亩用了1700元,获纯利2 400元;种西红柿每亩用了1800元,获纯利2 600元.你知道王大伯今年一共获纯利多少元吗?10.我国古代数学问题:有大小两种盛米的桶,已经知道5个大桶加上1个小桶可以盛3斛米,1个大桶加上5个小桶可以盛2斛米.问1个大桶、1个小桶分别可以盛多少斛米?选自《九章算术》卷七“盈不足”.“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”11.我国古代数学问题:好马每天走240里,劣马每天走150里.劣马先走12天,好马几天可以追上劣马?选自《算学启蒙》.“良马日行二百四十里,劣马日行一百五十里.努马先行一十二日,问良马几何日追及之.”12.在城市中公交车的发车间隔时间是一定的.小明放学后走在回家的路上,他发现每隔6分钟从后面开来一辆公交车,每隔2分钟从前面开来一辆公交车,他想,公交车到底是几分钟发车一辆呢?你能帮他计算一下吗?13.某工程队每天安排120个劳力修建水库,平均每天每个劳力能挖土5方或运土3方,为了使挖出的土及时运走,问应如何安排挖土和运土的劳力?14.一个两位数,十位数字比个位数字的4倍多1,将两个数字调换顺序后所得数比原数小63,求原数.15.某商店为了促销G牌空调机,2000年元旦那天购买该机可分期付款,在购买时先付一笔款,余下部分及它的利息(年利率为5.6%)在2001年元旦付清,该空调机售价每台8224元.若两次付款数相同,问每次应付款多少元?16.某商场出售某种文具,每件可盈利2元,为了支援贫困山区,现在按原售价的7折出售给一山区学校,结果每件盈利0.2元.问该文具每件的进货价是多少元?17.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.在安全检查中,对4道门进行了测试.当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,1分钟内可以通过200名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤(尽管有老师组织),出门的效率将降低10%;安全检查规定,在紧急情况下全大楼的师生应在5分钟内通过这4道门安全撤离.假设每间教室可容纳50名学生,此校教师是学生数的10%,教师通过门的速度快于学生,问:建造的这4道门是否符合安全规定?参考答案一、选择题1.B 2.C 3.D 4.B 5.D 6.D 7.A 8.A 9.C10.D 11.C 12. A 13.B 14.D 15.B二、填空题1.27 2.-16 3.1 4.-2 5.25 6.413 7.38- 8.1 9.2 10.310-x 11.57 12.0.99a 13.10 14.答案:230.利用等量关系50元+九折消费=212元.设购买的是价值x 元的商品,则212%90)50(50=⨯-+x去括号整理得2079.0=x ,解得230=x (元).15.4470(设进价为x 元,则2101085850+=⨯x ,解得4470=x 三、计算题1.(1)两边乘以10得)2(210)1(52++=--y y y去括号,得95-=y 所以,59-=y(2)转化为1312182612=-+-x x 简化为14636=-+-x x 解得32=x (3)转化为5162.153********+-=--+x x x 去分母,得)16(212)3010(2)8010(5+-=--+x x x去括号整理得48032-=x ,解得15-=x(4)两边同乘以3,去掉中括号得632412334=-⎪⎭⎫ ⎝⎛-x 32-移到右边再乘以43,去掉小括号得 54123=-x 解得27=x 2.(1)10-=x (2)6=x (3)72-=x (4)4=x (5)8.1=m (6)314=t (7)5-=x (8)511=x 3.(1)10-=x (2)3=y (3)61=x (4)0=x (5)1714=x (6)4=y 4.(1)13,1)6(71-==--x x (2)36,1752133=++=-+x x x (3)10,0)]53(5[21235==--+-x x x x (4)解03=+a x 得,3a x -=,解0432=--x 得,6-=x ,依题意得2)6(3=---a ,∴12=a 5.3,48121413020=⨯⨯+=v v 6.将4=y 代入方程得)4(5324m m -=-+ 整理得m m 5202-=-,所以,29=m , 则22513=-m 四、应用题1.设上次买了x 袋鲜奶,则128.2)2)(3.08.2(=+=+-x x x2.设A 种冰激凌每个x 元,则8.3=x3.设书有x 本,则5088)90(2.18.0==-+x x x4.设个位数字为x ,则5])1(10[511=+-=-+x x x x x ,此数为45 5.设甲种商品的原售价为x 元,则320%38)500%(90%70==-+x x x6.设x 分可以注满水池,则201904560==++x x x x 7.设共需x 小时完成,则313)1(51515.711=-=⎪⎭⎫ ⎝⎛+-x x 8.设甲种调往乙处x 人,则12)1515(5.115=-+=+x x x9.设种茄子x 亩,则1044000)5(18001700==-+x x x ,总获利为:630002600)1025(240010=⨯-+⨯10.设1个小桶盛y 斛米,则247,3)52(5==+-y y y ,大桶可盛米:241352=-y 11.设好马x 天可以追上劣马,则1.20240)12(150==+⨯x x x12.设公交车x 分钟发车一辆,则32266=-=-x x x13.设安排x 人挖土,则安排)120(x -人运土,则75120,45),120(35=-=-=x x x x (人)14.设个位数字为x ,则十位数字为14+x .2,63])14(10[1410=-=++-++x x x x x ,所以原数是92.15.分析:设第一次付款x 元,则第二次付款%)6.51)(8224(+-x 元,由两次付款数相同,可得 %)6.51)(8224(+-=x x .解:设第一次付款x 元,则%)6.51)(8224(+-=x x解得4224=x答:每次应付款4224元.说明:本题是分期付款问题,是一道紧扣生活实际和社会热点的好题.16.分析:利用等量关系盈利=售价-进价.解:设每件文具进货价为x 元,则标价为)2(+x 元,则x x -⨯+=%70)2(2.0, 整理后,2.13.0=x ,所以,4=x (元).因此,该文具每件的进价为4元.17.(1)设平均每分钟一道正门可以通过x 名学生,则一道侧门可以通过)200(x -名学生,则560)]200(2[2=-+x x解得120=x (名) 80200=-x 名所以,平均每分钟一道正门可以通过120名学生,一道侧门可以通过80名学生(2)这栋楼可容纳50×8×4=1 600(名)师生总和为1 600+1 600×10%=1 760(名)5分钟4道门能通过(120+80)×2×5=2 000(名)拥护时可通过2 000×(1-10%)=1 800(名)而17601800>且教师出门又快于学生所以,建造的4道门符合规定.。
第三章 一元一次方程周周测3一、选择题〔每题3分,共30分〕1.假设2=x 是关于x 的方程092=-+a x 的解,那么a 的值是〔 〕A.2B.3C.4D.52.以下方程中,解为2=x 的方程是〔 〕A.323=-xB.x x 26=+-C.1)1(24=--xD.0121=+x 3.m n n m 23123+=-+,那么n m -的值是〔 〕4.一个三角形的三边之比为3:4:5,最长边为10,那么这个三角形的周长为〔 〕A.12B.24C.255.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元,如果设水性笔的单价为x 元,那么以下方程正确的选项是〔 〕A.143)2(5=+-x xB.143)2(5=++x xC.14)2(35=++x xD.14)2(35=-+x x6.某班分两组去两处植树,第一组22人,第二组26人,现在第一组植树遇到困难,需要第二组支援,问从第二组高多少人去第一组才能使第一组人数是第二组的2倍,设抽调x 人,那么可列方程〔 〕A.26222⨯=+xB.)26(222x x -⨯=+C.x x -=+⨯26)22(2D.)26(222x -⨯=7.数学竞赛共有20道题,答对一题得5分,不答或答错一题扣3分,问要得到84分需答对几道题?设答对x 道题,可得〔 〕A.84)20(35=--x xB.84)20(3100=--xC.84)20(65=--x xD.84)20(35100=--+x x8.一根竹竿插入到池塘中,插入池塘淤泥中的局部占全长的51,水中局部是淤泥中局部的2倍多2米,露出水面的竹竿长1米。
设竹竿的长度为x 米,那么可列出方程〔 〕A.x x x =++15251 B.x x x =+++115251 C.x x x =-++115251 D.15251=+x x9.整理一批图书,由一个人做要40h 完成,现方案由一局部人先做4h ,然后增加2人与他们一起做8h ,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?如果设安排x 人先做4h ,以下四个方程中正确的选项是〔 〕A.140840)2(4=++x xB.140)2(8404=++x xC.140)2(8404=-+x xD.1408404=+x x 10.某种商品的进价为250元,按标价的九折出售时利润为10%,那么以下结论:①商品的利润为%10250⨯元;②商品的实际售价为%)101(250+⨯元;③该商品的标价为10090%)101(250⨯+⨯元;④该商品的标价为10090%)101(250÷+⨯元。
一元一次方程练习题及答案篇1:一元一次方程练习题及答案一元一次方程练习题及答案一、选择题(每小题3分,共30分)1.下列方程是一元一次方程的是 ( )A.x+2y=5B. =2C.x2=8x-3D.y=12.下列方程中,解是x=2的是 ( )A.2x-2=0B. x=4C.4x=2D. -1=3.将方程5x-1=4x变形为5x-4x=1,这个过程利用的性质是( )A.等式性质1B.等式性质2C.移项D.以上说法都不对4.方程3- =1变形如下,正确的是 ( )A.6-x+1=2B.3-x+1=2C.6-x+1=1D.6-x-1=25.如果x=-8是方程3x+8= -a的解,则a的值为 ( )A.-14B.14C.30D.-306.某工作,甲单独完成需4天,乙单独完成需8天,现甲先工作1天后和乙共同完成余下的工作,甲一共做了 ( )A.2天B.3天C.4天D.5天7.小明存入100元人民币,存期一年,年利率为2%,到期应缴纳所获利息的20%的利息税,那么小明存款到期交利息税后共得款 ( )A.106元B.102元C.111.6元D.101.6元8.某种商品的标价为132元.若以标价的9折出售,仍可获利10%,则该商品的进价为 ( )A.105元B.100元C.108元D.118元9.某工地调来72人挖土和运土,已知3人挖的±1人恰好能全部运走,怎样调配劳动力才能使挖出来的土能够及时运走且不窝工,解决此问题可设x人挖土,其他人运土,列方程(1) =3;(2)72-x= ;(3) =3;(4)x+3x=72,上述所列方程正确的是( )A.1个B.2个C.3个D.4个10.某轮船在两个码头之间航行,顺水航行需4h,逆水航行需6h,水流速度是2km/h,求两个码头之间的距离,我们可以设两个码头之间的距离为xkm,得到方程 ( )A. =B. -2= +2C. - =2D. = -2二、填空题(每小题4分,共24分)11.若2的2倍与3的差等于2的一半,则可列方程为 .12.写出一个以x=- 为解的一元一次方程13.已知5x+3=8x-3和 = 这两个方程的解是互为相反数,则a= .14.小强的速度为5千米/时,小刚的速度为4千米/时.两人同时出发,相向而行.经过x小时相遇,则两地相距千米.15.某酒店为招揽生意,对消费者实施如下优惠:凡订餐5桌以上,多于5桌的部分按定价的`7折收费.小叶集团公司组织工会活动,预定了10桌,缴纳现金2550元,那么每桌定价是元.16.国家规定个人发表文章、出版图书获得稿费的纳税计算办法是:(1)稿费低于800元的不纳税;(2)稿费高于800元,又不高于4000元,应纳超过800元的那一部分稿费的14%的税;(3)稿费高于4000元,应缴纳全部稿费的11%的税.某作家缴纳了280元税,那么他获得的稿费是元.三、解答题(共66分)17.(6分)解下列方程:(1)4x-2(x-3)=x; (2)x- -1.18.(6分)当x取何值时,代数式和x-2是互为相反数?19.(6分)若代数式3a3b4-5n“与-6a6-(m+1)bm-1是同类项,求m2-5mn的值.20.(8分)如图,小明将一个正方形纸片剪去一个宽为4厘米的长条后,再从剩下的长方形纸片上剪去一个宽为5厘米的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为多少?21.(8分)一项工程,由甲队独做需12个月完工,由乙队独做需15个月完工.现决定由两队合作,且为了加快进度,甲、乙两队都将提高工作效率.若甲队的工作效率提高40%,乙队的工作效率提高25%,则两队合作,几个月可以完工?22.(10分)某市按以下规定收取每月水费:若每月每户用水不超过20立方米,则每立方米水价按1.2元收费;若超过20立方米,则超过部分每立方米按2元收费.如果某居民在某月所交水费的平均水价为每立方米1.5元,那么这个月他共用了多少立方米水?23.(10分)小强、小芳、小亮在郊游,看到远处一列火车匀速通过一个隧道后,产生了以下对话.各位同学,请根据他们的对话求出这列火车的长.24.(12分)温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台.现在决定给武汉8台,南昌6台.每台机器的运费如下表.设杭州运往南昌的机器为x台.(1)用x的代数式来表示总运费(单位:百元);(2)若总运费为8400元,则杭州运往南昌的机器应为多少台?终点起点南昌武汉温州厂 4 8杭州厂 3 5(3)试问有无可能使总运费是7400元?若有可能,请写出相应的调运方案;若无可能,请说明理由.参考答案:1.D2.D3.A4.A5.B6.B7.D8.C9.B 10.B 11.2x-3= x 12.略 13.24 14.9x 15.30016.2800 17.(1)x=-6 (2)x=- 18.解:由题意,得 +x-2=0 解得x=219.解:由题意解得:m=2,n= . 把m=2,n= 代入m2-5mn得原式=22-5×2× =-2.20.解:设了正方形边长为x厘米,由题意,得4x=5(x-4) 解得x=20所以4×20=80答:每一个长条的面积为80平方厘米.21.解:设两队合作2个月完成,由题意,得x=1解得x=5答:两队合作,5个月可以完工.22.解:(1)∵1.5>1.2 ∴用水量超过20立方米. 设超过了x立方米1.2×20+2x=1.5(20+x) 解得x=12. ∴1.2×10+20=32. 答:这个月他共用了32立方米水.23.解:设火车的长为x米,由题意,得 = 解得x=100.答:这列火车长100米.24.解:(1)总运费为4(6-x)+8.(4+x)+3x+5(4-x)=2x+76.(2)2x+76=84. x=4.答:运往南昌的机器应为4台.(3)若2x+76=74,解得x=-1.∵x不能为负数,∴不存在.答:略.篇2:一元一次方程的练习题及答案一元一次方程的练习题及答案一、填空题.1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式 x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).A.0B.1C.-2D.-10.方程│3x│=18的解的情况是( ).A.有一个解是6B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足( ).A.a≠ ,b≠3B.a= ,b=-3C.a≠ ,b=-3D.a= ,b≠-312.把方程的分母化为整数后的方程是( ).13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于( ).A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).A.增加10%B.减少10%C.不增也不减D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( •)厘米.A.1B.5C.3D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.A.3B.4C.5D.6三、解答题20.解方程: (x-1)- (3x+2)= - (x-1).21.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的`三位数与原三位数的和是1171,求这个三位数.23.某公园的门票价格规定如下表:购票人数 1~50人 51~100人 100人以上票价 5元 4.5元 4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)24.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米) 1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员: “我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).参考答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3. (点拨:解方程 x-1=- ,得x= )4. x+3x=2x-65.y= - x6.525 (点拨:设标价为x元,则 =5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x( + )=1,解得x=4]二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=321.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.22.解:(1)由已知可得 =0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元) (2)设王大妈实际乘车里程数为x千米,根据题意,得 =66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.篇3:一元一次方程同步练习题及答案一元一次方程同步练习题及答案一、选择题1、方程3x+6=2x-8移项后,正确的是( )A.3x+2x=6-8B.3x-2x=-8+6C.3x-2x=-6-8D.3x-2x=8-62、方程7(2x-1)-3(4x-1)=11去括号后,正确的.是A.14x-7-12x+1=11B.14x-1-12x-3=11C.14x-7-12x+3=11D.14x-1-12x+3=113、如果代数式与的值互为相反数,则的值等于()A.B.C.D.4、如果与是同类项,则是()A.2B.1C.D.05、已知矩形周长为20cm,设长为cm,则宽为()A.B.C.D.二、填空题1、方程2x-0.3=1.2+3x移项得.2、方程12-(2x-4)=-(x-7)去括号得.3、若︱a﹣1︱+(b+2)2=0,则ab=.4、若3x+2与﹣2x+1互为相反数,则x-2的值是.5、若2(4a﹣2)﹣6=3(4a﹣2),则代数式a2﹣3a+4=.三、解答题1、解下列方程(1)3(2x+5)=2(4x+3)-3(2)4y﹣3(20﹣y)=6y﹣7(9﹣y)(3)7(2x-1)-3(4x-1)=4(3x+2)-11、观察方程[(x-4)-6]=2x+1的特点,你有好的解法吗?写出你的解法.【知能升级】1、已知a是整数,且a比0大,比10小.请你设法找出a的一些数值,使关于x的方程1―ax=―5的解是偶数,看看你能找出几个.2、解方程(1)|4x-1|=7(2)2|x-3|+5=13答案一、选择题1、C2、C3、D4、A5、B二、填空题1、2x-3x=1.2+0.32、12-2x+4=-x+73、14、-55、8三、解答题1、(1)x=6(2)y=(3)x=2、x=-9【知能升级】1、a=1,2,3,4,62、(1)x=2,(2)x=7,-1。
第3章《一元一次方程实际应用》同步练习1.“元旦”期间,某批发商对在售的微波炉和电磁炉进行促销活动.已知,微波炉每台定价800元,电磁炉每台定价200元.促销活动中,向客户提供两种优惠方案(购买时,客户只能从中选择一种优惠方案):方案1:买一送一(即:买1台微波炉送1台电磁炉,买2台微波炉送2台电磁炉,…).方案2:微波炉和电磁炉都按定价的90%销售.现某客户要到该卖场购买微波炉和电磁炉,请你帮他算一算.(1)若购买微波炉10台,电磁炉20台,请你帮他选择一种省钱的购买方案.(2)若购买微波炉10台,电磁炉x台(已知x>10),请你通过计算说明购买电磁炉多少台时两种方案的费用一样?2.列方程解应用题:冬季来临,某电器商城试销A,B两种型号的电暖器,两周内共销售50台,销售收入14400元,A型号电暖器每台300元,B型号电暖器每台280元.试销期间A,B两种型号的电暖器各销售了多少台?3.某中学到商店购买足球和排球,购买足球40个,排球30个共花费4000元,已知购买一个足球比购买一个排球多花30元.(1)求购买一个足球和一个排球各需多少元?(2)学校决定第二次购买足球和排球共50个,正好赶上商场对商品价格进行调整,一个足球售价比第一次购买时提高了10%,一个排球按第一次购买时售价的九折出售,如果学校第二次购买足球和排球的总费用是第一次购买总费用的86%,求学校第二次购买排球多少个?4.在数轴上,若A、B、C三点满足AC=2CB,则称C是线段AB的相关点.当点C在线段AB 上时,称C为线段AB的内相关点,当点C在线段AB延长线上时,称C为线段AB的外相关点.如图1,当A对应的数为5,B对应的数为2时,则表示数3的点C是线段AB的内相关点,表示数﹣1的点D是线段AB的外相关点.(1)如图2,A、B表示的数分别为5和﹣1,则线段AB的内相关点表示的数为,线段AB的外相关点表示的数为.(2)在(1)的条件下,点P、点Q分别从A点、B点同时出发,点P、点Q分别以3个单位/秒和2个单位/秒的速度向右运动,运动时间为t秒.①当PQ=7时,求t值.②设线段PQ的内相关点为M,外相关点为N.直接写出M、N所对应的数为相反数时t的取值.5.某商店购进A、B两种商品共100件,花费3100元,其进价和售价如表:进价(元/件)售价(元/件)A25 30B35 45(1)A、B两种商品分别购进多少件?(2)两种商品售完后共获取利润多少元?6.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?7.甲、乙两工程队开挖一条水渠各需10天、15天,两队合作2天后,甲有其他任务,剩下的工作由乙队单独做,还需多少天能完成任务?8.2020年5月份,省城太原开展了“活力太原•乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.9.小明和父母打算去某火锅店吃火锅,该店在网上出售“25元抵50元的全场通用代金券”(即面值50元的代金券实付25元就能获得),店家规定代金券等同现金使用,一次消费最多可用3张代金券,而且使用代金券的金额不能超过应付总金额.(1)如果小明一家应付总金额为145元,那么用代金券方式买单,他们最多可以优惠多少元;(2)小明一家来到火锅店后,发现店家现场还有一个优惠方式:除锅底不打折外,其余菜品全部6折.小明一家点了一份50元的锅底和其他菜品,用餐完毕后,聪明的小明对比两种优惠,选择了现场优惠方式买单,这样比用代金券方式买单还能少付15元.问小明一家实际付了多少元?10.甲、乙两辆车在一条公路上匀速行驶,为了确定汽车的位置.我们用OX表示这条公路,原点O为零千米路标,并作如下约定:速度为正,表示汽车向数轴的正方向行驶;速度为负,表示汽车向数轴的负方向行驶;速度为零,表示汽车静止.行程为正,表示汽车位于零千米的右侧;行程为负,表示汽车位于零千米的左侧:行程为零,表示汽车位于零千米处.(1)根据题意,填写下列表格;时间(h)0 5 7 x甲车位置(km)190 ﹣10乙车位置(km)170 270(2)甲、乙两车能否相遇,如果相遇,求相遇时的时刻及在公路上的位置;如果不能相遇,请说明理由;(3)甲、乙汽车能否相距180km?如果能,求相距180km的时刻及其位置;如不能,请说明理由.11.如图是2019年8月份的月历,请解决下列问题:(1)竖排相邻各数间有什么关系?横排相邻各数间有什么关系?(2)从左上到右下的对角线上相邻各数间有什么关系?从右上到左下的对角线上相邻各数间有什么关系?(3)暑假期间小明和家人外出游玩5天,这5天的日期之和是25,小明是几号出去玩的?星期天星期一星期二星期三星期四星期五星期六1 2 34 5 6 7 8 9 1011 12 13 14 15 16 1718 19 20 21 22 23 2425 26 27 28 29 30 31 12.某人乘船由A地顺流而下到达B地,然后又逆流而上到C地,共用了3小时.已知船在静水中速度为每小时8千米,水流速度是每小时2千米.已知A、B、C三地在一条直线上,若AC两地距离是2千米,则AB两地距离多少千米?(C在A、B之间)13.如图,在数轴上每相邻两点间的距离为一个单位长度,点A、B、C、D对应的数分别是a、b、c、d,且d﹣2a=14.(1)a=,b=;(2)点A以2个单位/秒的速度沿着数轴的正方向运动,1秒后点B以4个单位/秒的速度也沿着数轴的正方向运动,当点B到达D点处立刻返回.当点A与点B在数轴的某点处相遇时,求这个点对应的数.(3)如果A、C两点分别以2个单位/秒和3个单位/秒的速度同时向数轴的负方向运动,同时,点B从图上的位置出发向数轴的正方向以1个单位/秒的速度运动,当满足AB+AC =AD时,点A对应的数是多少?14.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.90 超过17吨但不超过30吨的部分b0.90超过30吨的部分 6.00 0.90 (说明:①每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)已知小王家2018年7月用水16吨,交水费43.2元.8月份用水25吨,交水费75.5元.(1)求a、b的值;(2)如果小王家9月份上交水费156.1元,则小王家这个月用水多少吨?(3)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水50吨,其中10月份用水超过30吨,一共交水费215.8元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)15.十一期间,各大商场掀起购物狂潮,现有甲、乙、丙三个商场开展的促销活动如表所示:商场优惠活动甲全场按标价的6折销售乙实行“满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(如:顾客购衣服220元,赠券200元,再购买裤子时可冲抵现金,不再送券)丙实行“满100元减50元的优惠”(比如:某顾客购物220元,他只需付款120元)根据以上活动信息,解决以下问题:(1)三个商场同时出售一件标价290元的上衣和一条标价270元的裤子,王阿姨想买这一套衣服,她应该选择哪家商场?(2)黄先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款额也一样,请问这条裤子的标价是多少元?(3)丙商场又推出“先打折”,“再满100减50元”的活动.张先生买了一件标价为630元的上衣,张先生发现竟然比没打折前多付了18.5元钱,问丙商场先打了多少折后再参加活动?16.为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?17.一件商品按进价提高40%后标价,然后打八折卖出,结果仍能获利18元,问这件商品的进价是多少元?18.李老师准备购买若干个某种笔记本奖励学生,甲、乙两家商店都有足够数量的这种笔记本,其标价都是每个6元,甲商店的促销方案是:购买这种笔记本数量不超过5个时,原价销售;超过5个时,超过部分按原价的7折销售.乙商店的销售方案是:一律按标价的8折销售.(1)若李老师要购买x(x>5)个这种笔记本,请用含x的式子分别表示李老师到甲商店和乙商店购买全部这种笔记本所需的费用.(2)李老师购买多少个这种笔记本时,到甲、乙两家商店购买所需费用相同?(3)若李老师需要20个这种笔记本,则到甲、乙哪家商店购买更优惠?19.已知高铁的速度比动车的速度快50km/h,小路同学从苏州去北京游玩,本打算乘坐动车,需要6h才能到达;由于得知开通了高铁,决定乘坐高铁,她发现乘坐高铁比乘坐动车节约72min.求高铁的速度和苏州与北京之间的距离.20.重百超市对出售A、B两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)商品A B标价(单位:元)120 150 方案一每件商品出售价格按标价降价30% 按标价降价a% 方案二若所购商品达到或超过101件(不同商品可累计)时,每件商品按标价降价20%后出售(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.参考答案1.解:(1)选择方案1所需费用为800×10+200×(20﹣10)=10000(元),选择方案2所需费用为(800×10+200×20)×0.9=10800(元).∵10000<10800,∴选择方案1比较省钱.(2)依题意,得:800×10+200×(x﹣10)=(800×10+200x)×0.9,解得:x=60.答:购买电磁炉60台时两种方案的费用一样.2.解:设A型号的电暖器销售了x台,则B型号的电暖器销售了(50﹣x)台,依题意有300x+280(50﹣x)=14400,解得x=20,50﹣x=50﹣20=30.故A型号的电暖器销售了20台,B型号的电暖器销售了30台.3.解:(1)设购买一个排球需x元,则购买一个足球需(x+30)元,依题意得:40(x+30)+30x=4000,解得:x=40,则x+30=70.答:购买一个足球需要70元,购买一个排球需要40元;(2)设学校第二次购买排球m个,则购买足球(50﹣m)个,依题意得:70(1+10%)(50﹣m)+40×0.9m=4000×86%,解得m=10.答:学校第二次购买排球10个.4.解:(1)设点C所表示的数为x,①当点C是线段AB的内相关点时,有5﹣x=2(x+1),解得,x=1,②当点C是线段AB的外相关点时,有5﹣x=2(﹣1﹣x),解得,x=﹣7,故答案为:1,﹣7;(2)由题意,运动时间为t秒时,P点对应的数为5+3t,Q对应的数为﹣1+2t,且P点在Q点右侧.所以PQ=5+3t﹣(﹣1+2t)=t+6.①当PQ=7时,t+6=7,解得t=1;②设M、N所对应的数分别为a、b.∵线段PQ的内相关点为M,PM=2MQ,∴5+3t﹣a=2[a﹣(﹣1+2t)],解得a=,∵线段PQ的外相关点为N,PN=2QN,∴5+3t﹣b=2(﹣1+2t﹣b),解得b=t﹣7,∵M、N所对应的数为相反数,∴+t﹣7=0,解得t=1.8.5.解:(1)设购进A种商品a件,则购进B种商品(100﹣a)件,25a+35(100﹣a)=3100解得,a=40则100﹣a=60答:A、B两种商品分别购进40件、60件;(2)(30﹣25)×40+(45﹣35)×60=5×40+10×60=200+600=800(元)答:两种商品售完后共获取利润800元.6.解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.7.解:设还需x天能完成任务,根据题意可得方程:×2+=1.解得x=10.答:还需10天能完成任务.8.解:设该电饭煲的进价为x元,则标价为(1+50%)x元,售价为80%×(1+50%)x元,根据题意,得80%×(1+50%)x﹣128=568,解得x=580.答:该电饭煲的进价为580元.9.解:(1)∵145<150.最多购买并使用两张代金券,∴最多优惠50元.(2)设小明一家应付总金额为x元,当50≤x<100时,由题意得,x﹣25﹣[50+(x﹣50)×0.6]=15.解得:x=150(舍去).当100≤x<150时,由题意得,x﹣50﹣[50+(x﹣50)×0.6]=15.解得:x=212.5(舍去).当x≥150时,由题意得,x﹣75﹣[50+(x﹣50)×0.6]=15.解得:x=275,275﹣75﹣15=185(元).答:小明一家实际付了185元.10.解:(1)时间(h)0 5 7 x甲车位置(km)190 ﹣10 ﹣90 190﹣40x乙车位置(km)﹣80 170 270 ﹣80+50x(2)由题意得:190﹣40x=﹣80+50x,解得:x=3,190﹣40×3=70,答:相遇时刻为3小时,且位于零千米右侧70km处;(3)①190﹣40x+180=﹣80+50x,解得:x=5,190﹣40×5=﹣10,﹣80+50×5=170,②190﹣40x=﹣80+50x+180,解得x=1,190﹣40×1=150,﹣80+50×1=﹣30,答:相距180km的时刻为5小时或1小时,甲乙两车分别位于零千米左侧10km、右侧170km 处,或者甲乙两车分别位于零千米右侧150km、左侧30km处.11.解:(1)竖排相邻各数间相差7,横排相邻各数间相差1.(2)从左上到右下的对角线上相邻各数间相差8,从右上到左下的对角线上相邻各数间相差6.(3)设小明出发日期为x号.根据题意,得:x+x+1+x+2+x+3+x+4=25,解得x=3.答:小明是3号出去玩的.12.解:设AB两地距离为x千米,则CB两地距离为(x﹣2)千米.根据题意,得+=3解得x=.答:AB两地距离为千米.13.解:(1)依题意有d=a+8,∵d﹣2a=14,∴a+8﹣2a=14,解得a=﹣6,∴b=﹣6﹣2=﹣8;(2)1秒后点A对应﹣4,设点B出发x秒与点A相遇,①0<时,﹣8+4x=﹣4+2x,解得x=2,此时相遇点对应的数为0;②x>时,,解得,此时相遇点对应的数为.综上:相遇点对应的数为0或;(3)设运动时间为t秒,A点对应数﹣6﹣2t,B点对应数﹣8+t,C点对应数﹣3﹣3t,D点对应数 2,AB=|2﹣3t|AC=|t﹣3|AD=2t+8,∵AB+AC=AD,∴|2﹣3t|+|t﹣3|=(2t+8),①0<时,2﹣3t+3﹣t=t+4,解得t=,此时A点对应的数为﹣6;②<t≤3时,3t﹣2+3﹣t=t+4,解得t=3,此时A点对应的数为﹣12;③t>3时,3t﹣2+t﹣3=t+4,解得t=3(舍去).综上,A点对应的数是﹣6或﹣12.故答案为:﹣6,﹣8.14.解:(1)由题意得:解①,得a=1.8,将a=1.8代入②,解得b=2.8∴a=1.8,b=2.8.(2)1.8+0.9=2.7,2.8+0.9=3.7,6.00+0.9=6.9设小王家这个月用水x吨,由题意得:2.7×17+3.7×13+(x﹣30)×6.9=156.1解得:x=39∴小王家这个月用水39吨.(3)设小王家11月份用水y吨,当y≤17时,2.7y+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30当17<y<20时,17×2.7+(y﹣17)×3.7+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=9.125(舍去)∴小王家11月份用水11吨.15.解:(1)选甲商城需付费用为(290+270)×0.6=336(元);选乙商城需付费用为290+(270﹣200)=360(元);选丙商城需付费用为290+270﹣5×50=310(元).∵310<336<360,∴选择丙商城最实惠.(2)设这条裤子的标价为x元,根据题意得:(380+x)×0.6=380+x﹣100×3,解得:x=370,答:这条裤子的标价为370元.(3)设丙商场先打了x折后再参加活动,折后减50n(0≤n<6且n为整数),根据题意得:(630×﹣50n)﹣(630﹣6×50)=18.5,整理得63x﹣50n=348.5,当n=0时,63x=348.5,可再优惠3×50=150元,与n=0矛盾,舍去当n=1时,63x=398.5,可再优惠3×50=150元,与n=1矛盾,舍去当n=2时,63x=448.5,可再优惠4×50=200元,与n=2矛盾,舍去当n=3时,63x=498.5,可再优惠4×50=200元,与n=3矛盾,舍去当n=4时,63x=548.5,可再优惠5×50=250元,与n=4矛盾,舍去当n=5时,63x=598.5,满足题意,此时x=9.5答:丙商场先打了9.5折后再参加活动.16.解:设乙工程队再单独需x个月能完成,由题意,得2×++x=1.答:乙工程队再单独需1个月能完成.17.解:设这件商品的进价是x元,由题意得:(1+40%)x×80%=x+18,解得:x=150,答:这件商品的进价是150元.18.解:(1)李老师到甲商店购买全部这种笔记本应付费:6×5+0.7×6(x﹣5)=4.2x+9(元);李老师到乙商店购买全部这种笔记本应付费:0.8×6x=4.8x(元).(2)设李老师要购买x(由题可知x>5)个这种笔记本时,到甲、乙两家商店购买所需费用相同.由题意,得4.2x+9=4.8x.解得x=15.答:李老师购买15个这种笔记本时,到甲、乙两家商店购买所需费用相同.(3)李老师购买20个这种笔记本到甲商店应付费:4.2×20+9=93(元);李老师购买20个这种笔记本到乙商店应付费:4.8×20=96(元).因为93元<96元,所以李老师到甲商店购买更优惠.19.解:72min=h,设高铁的速度为xkm/h,则动车的速度为(x﹣50)km/h,依题意有6(x﹣50)=x,解得x=250,6(x﹣50)=6×(250﹣50)=1200.答:高铁的速度为250km/h,苏州与北京之间的距离为1200km.20.解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即,只能选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当时,只能选择方案一最大优惠方式;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)。
一元一次方程同步练习题
七年级数学一元一次方程同步练习题:
一、选择题(每小题3分,共24分)
1、下列四个式子中,是一元一次方程的是()
A、2x-6
B、x-1=0
C、2x+y=5
D、
2、下列方程中,解为x=4的方程是()
A、
B、
C、
D、
3、解方程3x-2=3-2x时,正确且合理的移项是()
A、-2+3x=-2x+3
B、-2+2x=3-3x
C、3x-2x=3-2
D、3x+2x=3+2
4、已知x=-3是方程k(x+4)-2k-x=5的解,则k的值是( )
A、-2
B、2
C、3
D、5
5、如果与是同类项,则是()
A、2
B、1
C、
D、0
6、某试卷由26道题组成,答对一题得8分,答错一题倒扣5分。
今有一考生虽然做了全部的26道题,但所得总分为零,他做对的题有()、
A、10道
B、15道
C、20道
D、8道
7、甲、乙两工程队开挖一条水渠各需10天、15天,两队合作2天后,甲有其他任务,剩下的工作由乙队单独做,还需多少天能完成任务?设还需x天,可得方程()
8、某商贩在一次买卖中,同时卖出两件上衣,每件都以135元出售,若按成本计算,其中一件赢利25%,另一件亏本25%,在这次买卖中,该商贩()、
A、不赚不赔
B、赚9元
C、亏18元
D、赚18元二、填空题(每小题3分,共24分)
9、若是关于的一元一次方程,则的值可为______、
10、当=______时,式子的值是-
3、
11、关于x的两个方程5x-3=4x与ax-12=0的解相同,则
a=_______、
12、某商店将彩电按成本价提高50%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电成本价是___________、
13、当______时,的值等于-的倒数、
14、如果代数式与的值互为相反数,则=
15、如果方程的解是,则的值是_____________。
16、某幼儿园阿姨给小朋友分苹果,每人分3个则剩1个;每人分4个则差2个;问有多少个苹果?设有x个苹果,则可列方程为、三、解下列方程、(每题4分,共16分)
①② ③④3x-
1、
50、2+8x=0、2x-0、
10、09+4
四、解答题。
(共36分)
1、(6分)xx年广州亚运会,中国运动员获得金、银、铜牌共413枚,金牌数位列亚洲第一。
其中金牌、银牌、铜牌的比为
4:2:1,问得金牌多少枚?
2、(6分)一艘船从甲码头到乙码头顺流行驶用
2、4小时,从乙码头返回甲码头逆流行驶,用了
3、2小时,已知水流的速度为3千米/小时,求船在静水中的速度?
3、(7分)雅丽服装厂童装车间有40名工人,缝制一种儿童套装(一件上衣和两条裤子配成一套)。
已知1名工人一天可缝制童装上衣3件或裤子4件,问怎样分配工人才能使缝制出来的上衣和裤子恰好配套?
4、(7分)某自来水公司按如下规定收取水费:每月用水不超过10吨,按每吨
1、5元收费;每月用水超过10吨,超过部分按每吨2元收费。
小明家9月份的水费是
22、8元,小明家9月份用水多少?
5、(10分)周末小明爸爸去陶瓷商城购买一些茶壶和茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同:茶壶每把定价30元,茶杯每只定价5元,且两家都有优惠:甲店买一把茶壶赠送茶杯一只;乙店全场9折优惠。
小明爸爸需茶壶5把,茶杯若干只(不少于5只)。
(1)设购买茶杯x只,若在甲店购买则需付多少元?若在乙店购买则需付元?(用含x的代数式表示并化简。
)
(2)当购买15只茶杯时,请你去办这件事,你打算去哪家商店购买?为什么? (3)当购买茶杯多少只时,两种优惠办法付款一样?xx。