电解质分析仪原理及临床应用ppt课件
- 格式:ppt
- 大小:2.33 MB
- 文档页数:12
电解质分析仪原理电解质分析仪是一种用于检测溶液中电解质浓度的仪器,它在医学、环境监测、化工等领域有着重要的应用价值。
电解质分析仪的原理主要基于电化学方法,通过测量电解质在溶液中的电导率或电动力学行为来确定其浓度。
本文将介绍电解质分析仪的原理及其相关知识。
首先,电解质分析仪的原理基于电解质在溶液中的电导率。
电解质是能够在溶液中产生离子的化合物,它们在电场作用下会导致溶液的电导率增加。
电解质分析仪利用电极将电解质溶液与外部电路相连,施加电压后测量电解质溶液的电导率,从而推算出其浓度。
其次,电解质分析仪还可以基于电解质在溶液中的电动力学行为来进行浓度分析。
当电解质溶液中存在浓度梯度时,会产生电动力学效应,即离子在电场中的迁移。
电解质分析仪利用电极和电动力学传感器来测量电解质溶液中的电动力学行为,通过分析离子的迁移速度和方向来确定电解质的浓度。
另外,电解质分析仪的原理还涉及到离子选择电极和参比电极的作用。
离子选择电极是一种特殊的电极,它具有对特定离子选择性的特点,可以将特定离子与其他离子区分开来。
参比电极则是用于提供稳定电位的电极,通过与离子选择电极组成电池,可以测量电解质溶液中的电势差,从而推算出电解质的浓度。
总的来说,电解质分析仪的原理是基于电化学方法来进行浓度分析的。
它通过测量电解质溶液的电导率、电动力学行为以及电势差来确定电解质的浓度,具有快速、准确、灵敏的特点。
在实际应用中,电解质分析仪可以用于临床检验、环境监测、工业生产等领域,为相关行业的研究和生产提供重要的技术支持。
综上所述,电解质分析仪的原理是基于电化学方法的浓度分析技术,具有广泛的应用前景。
随着科学技术的不断进步,电解质分析仪将会在各个领域发挥更加重要的作用,为人类社会的发展做出更大的贡献。
第九章电解质分析仪概述电解质分析仪又叫离子计。
是采用离子选择性电极来测量溶液中离子浓度的仪器。
在生化检验中,电解质分析仪表主要用于测量体液中内钾、钠、氯、钙、锂等离子浓度。
人体内电解质的紊乱,会引起各器官、脏器生理功能失调,特别对心脏和神经系统影响最大。
因此,电解质分析仪表在临床上应用十分广泛,已成为评价人体内环境的主要工具之一。
按测定项目来分,电解质分析仪表可分为三项、四项及五项等。
有的公司采用模块式设计,可根据需要,自动组合测定项目。
第一节电解质分析仪的原理及结构一、工作原理电解质分析仪表的工作原理可借助于图2-1-1来说明。
在蠕动泵的抽吸下,被测液通过吸样口抽进电极之中。
当所有电极都感测到被测液后,管路系统停止抽吸。
这样,样品中不同的离子分别被钾、钠、氯(钙)、及参比电极所感测。
参比电极的作用是给其他电极提供一个共同的参考点。
即其他电极(均叫指示电极)的电位均是以参考电极的电位为基准的。
各指示电极将它们感测到的离子浓度分别转换成不同的电信号。
这些电信号被放大处理,再经过时分多路开关后,顺序地被转换成数字信号,然后,被送到微机单元。
微机单元将信号处理、运算后,再将测量结果送到显示器显示,并让打印机打印出测量结果。
图2-1-1 电解质分析仪表方框图为了完成对样品的自动定标、自动测量和自动冲洗等功能,一般的电解质分析仪表均设有一套管路系统以及配合管路工作的蠕动泵和电磁阀。
泵和电磁阀的转、停、开、闭,清洗液、定标液的供、停等等,均由微机单元来进行控制或监测。
电解质分析方法也是一种相对测量方法。
所以,在进行测量之前,先要用标准液来确定电极的工作曲线。
通常把确定电极系统工作曲线的过程叫做定标或校准(Calibration)。
电极要有A、B两种液体来进行定标,以便确定建立工作曲线最少所需要的两个工作点。
清洗液是清洁管路用的。
为了防止交叉污染,每测量一次,都要用清洗液将管路清洗一次。
由此可知,无论何种型号的电解质分析仪表,都需要先对电极进行两点定标,建立了工作曲线之后,才能进行测量工作。
电解质分析仪电解质分析仪是一种用来测定溶液中电解质浓度的仪器。
它通过测量溶液的电导率来确定其中电解质的浓度,从而提供了关于溶液化学性质的有用信息。
电解质分析仪在医学、环境科学、食品工业等领域都有广泛的应用。
电解质是指能在溶液中产生离子的化合物,常见的有酸、碱和盐。
电解质的浓度对于维持生理平衡至关重要,因为它们参与了多种生物化学反应和生理过程。
例如,在医学领域,电解质的浓度可以体现人体的健康状况,判断患者是否存在电解质紊乱的风险。
电解质分析仪通过测量溶液的电导率来间接地确定其中电解质的浓度。
电导率是电流通过物质时的导电能力,它与溶液中的离子浓度成正比。
电解质分析仪通过传感器测量电导率,并根据电导率值推算出溶液中电解质的浓度。
电解质分析仪通常由电极、传感器、闪烁器和数据显示器等部件组成。
电极是用于测量电解质浓度的关键部件,它通常由金属或半导体材料制成。
传感器是将测得的电导率转化为电信号的装置,它可以将信号传送给其他部件进行进一步处理。
闪烁器用于控制仪器的亮度和闪烁频率,以便更好地显示数据。
数据显示器可以显示测得的电解质浓度值,提供给用户参考。
电解质分析仪的使用方法相对简便,但在使用时仍需注意一些要点。
首先,操作人员需要充分了解仪器的使用说明书,掌握正确的使用方法。
其次,溶液样品的准备非常重要,应保证样品的纯净度和浓度准确。
另外,仪器的保养和日常维护也是至关重要的,可以延长仪器的使用寿命并保持稳定的测量结果。
电解质分析仪的应用非常广泛。
在医学领域,它可以用于测定血液中的电解质浓度,帮助医生进行诊断和治疗。
在环境科学研究中,电解质分析仪可以用来监测水体的污染程度,评估水质安全性。
在食品工业中,电解质分析仪可以用来检测食品中的盐分含量,确保产品质量和安全。
总之,电解质分析仪是一种十分重要且有广泛应用的仪器。
它通过测量溶液的电导率来确定其中电解质的浓度,为医学、环境科学和食品工业等领域提供了重要的数据支撑。
电解质分析仪介绍一、电解质分析仪的用途电解质分析仪是用来从样本中检测钾离子、钠离子、氯离子、离子钙(PH)的仪器。
样本可以是全血、血清、血浆、尿液、透析液和水化液。
电解质分析仪在临床检验中是必不可缺的,在临床中它主要测试维持人体血液、体液中渗透压的平衡,在手术,烧伤,腹泻,急性心梗等需要大量均衡补液的病人中,离子的测试和检测很重要。
二、电解质分析仪的原理溶液中被测离子接触电极时,在离子选择电极基质的含水层内发生离子迁移。
迁移的离子的电荷改变存在着电势,因而是膜面间的电位发生变化,在测量电极与参比电极间产生一个电位差。
样本中离子浓度不同,产生的电位信号的大小也不同,通过测量点位信号大小就可以测知样本中离子的浓度。
三、血清电解质分析仪的临床意义1、血清钾(K+)测定及意义血清钾浓度虽然在一定程度上能反应总体钾的平衡情况,但并不完全一致,有时血清钾浓度较高,而细胞内可能低钾;反之,慢性体内低钾时,血清钾却可在正常范围内。
故判断结果时应结合病人具体情况及其他资料(如心电图)。
(1)血清钾减少①钾供应不足,如长期禁食、幽门梗阻、厌食等,钾摄入量不足,而肾脏对钾的保留作用差,尿中几乎仍照常排钾,致使血钾降低。
②钾的不正常丢失,如频繁呕吐、腹泻、消化道瘘管、胃肠道引流等丧失大量消化液,使钾丢失;又如长期使用利尿剂,钾自尿中大量排泄而致血清钾降低。
③激素影响,如原发性和继发性醛固酮增多症、柯兴综合症,或应用大剂量肾上腺皮质类固醇或粗肾上腺皮质激素,促使肾脏滞、排钾,使钾排泄增多,血钾降低。
④酸碱平衡失调⑤周期性麻痹,发作期间血清K+明显降低。
⑥血液透析,也可能引起低钾血症。
(2)血清钾增加①肾功能不全,尤其在少尿或无尿情况下,排钾功能障碍可导致血钾增高,若同时又未限制钾的摄入量更易出现高钾血症,这种情况在急性肾功能不全尤易发生。
②肾上腺皮质功能不全,可发生高血钾,但很少增高至钾中毒的情况;醛固酮缺乏或应用抗醛固酮药物时,因排钠滞钾而致血钾增高的趋势。