遥感影像计算机专题分类
- 格式:pdf
- 大小:409.36 KB
- 文档页数:9
遥感影像分类精度评价在ENVI中,选择主菜单->Classification->Post Classification->Confusion Matrix->Using Ground Truth ROIs。
将分类结果和ROI输入,软件会根据区域自动匹配,如不正确可以手动更改。
点击ok后选择报表的表示方法(像素和百分比),就可以得到精度报表。
对分类结果进行评价,确定分类的精度和可靠性。
有两种方式用于精度验证:一是混淆矩阵,二是ROC曲线,比较常用的为混淆矩阵,ROC曲线可以用图形的方式表达分类精度,比较形象。
对一帧遥感影像进行专题分类后需要进行分类精度的评价,而进行评价精度的因子有混淆矩阵、总体分类精度、Kappa系数、错分误差、漏分误差、每一类的制图精度和拥护精度。
1、混淆矩阵(Confusion Matrix): 主要用于比较分类结果和地表真实信息,可以把分类结果的精度显示在一个混淆矩阵里面。
混淆矩阵是通过将每个地表真实像元的位置和分类与分类图象中的相应位置和分类像比较计算的。
混淆矩阵的每一列代表了一个地表真实分类,每一列中的数值等于地表真实像元在分类图象中对应于相应类别的数量,有像元数和百分比表示两种。
2、总体分类精度(Overall Accuracy): 等于被正确分类的像元总和除以总像元数,地表真实图像或地表真实感兴趣区限定了像元的真实分类。
被正确分类的像元沿着混淆矩阵的对角线分布,它显示出被分类到正确地表真实分类中的像元数。
像元总数等于所有地表真实分类中的像元总和。
3、Kappa系数:是另外一种计算分类精度的方法。
它是通过把所有地表真实分类中的像元总数(N)乘以混淆矩阵对角线(Xkk)的和,再减去某一类中地表真实像元总数与该类中被分类像元总数之积对所有类别求和的结果,再除以总像元数的平方差减去某一类中地表真实像元总数与该类中被分类像元总数之积对所有类别求和的结果所得到的。
遥感是以航空摄影技术为基础,在20世纪60年代初发展起来的一门新兴技术。
开始为航空遥感,自1972年美国发射了第一颗陆地卫星后,这就标志着航天遥感时代的开始。
经过几十年的迅速发展,目前遥感技术已广泛应用于资源环境、水文、气象,地质地理等领域,成为一门实用的,先进的空间探测技术。
萌芽时期1608年制造了世界第一架望远镜1609年伽利略制作了放大三倍的科学望远镜并首次观测月球1794年气球首次升空侦察1839年第一张摄影像片初期发展1858年用系留气球拍摄了法国巴黎的鸟瞰像片1903年飞机的发明1909年第一张航空像片一战期间(1914-1918):形成独立的航空摄影测量学的学科体系二战期间(1931-1945):彩色摄影、红外摄影、雷达技术、多光谱摄影、扫描技术以及运载工具和判读成图设备现代遥感1957年:前苏联发射了人类第一颗人造地球卫星20世纪60年代:美国发射了TIROS、ATS、ESSA等气象卫星和载人宇宙飞船1972年:发射了地球资源技术卫星ERTS-1(后改名为Landsat Landsat-1),装有MSS感器,分辨率79米1982年Landsat-4发射,装有TM传感器,分辨率提高到30米1986年法国发射SPOT-1,装有PAN和XS遥感器,分辨率提10米1999年美国发射 IKNOS,空间分辨率提高到1米中国遥感事业1950年代组建专业飞行队伍,开展航摄和应用1970年4月24日,第一颗人造地球卫星1975年11月26日,返回式卫星,得到卫星像片80年代空前活跃,六五计划遥感列入国家重点科技攻关项目1988年9月7日中国发射第一颗“风云1号”气象卫星1999年10月14日中国成功发射资源卫星1空间分辨率空间分辨率(Spatial Resolution)?又称地面分辨率。
后者是针对地面而言,指可以识别的最小地面距离或最小目标物的大小。
前者是针对遥感器或图像而言的,指图像上能够详细区分的最小单元的尺寸或大小,或指遥感器区分两个目标的最小角度或线性距离的度量。
遥感图像分类常见方法一、前言遥感分类算法大致有三个阶段(1)基于传统数学统计的方法;(2)经典机器学习;(3)深度学习。
按是否有样本可以分为监督分类和非监督分类两种。
实现分类的流程是:特征+算法二、分类之特征工程分类本来就是计算机领域的问题,遥感分类的本质也是图像处理。
遥感分类属于CV领域的一个子集。
不论是监督还是非监督,分类的前提是特征工程。
构建特征工程的目的是突出关注目标和其他目标之间的差异,从而使得分类具有更好的效果。
遥感的特征工程可以大致分为三类:(1)纹理特征,(2)光谱特征,(3)时序特征。
当然,由上述特征还可延伸出LAI等生物量信息,但其本质上是由光谱特征反演出来的。
(1)纹理特征纹理特征一般从高空间分辨率的遥感影像提取才有效果,纹理特征又可以分为以下三种:统计方法:灰度共生矩阵、灰度游程长度法等模型方法:自相关模型、Markov随机场模型、分形模型等数学变换方法:空间域滤波、傅里叶滤波, Gabor和小波模型等。
(2)光谱特征光谱特征包括地物原始光谱反射率和衍生植被指数两种。
光谱特征较纹理特征容易获得,缺点是反射光谱容易受到“同物异谱”和“异物同谱”的影响。
光谱特征:R,G,B,NIR等衍生植被指数:NDVI,EVI等(3)时序特征由多时相遥感数据提取的特征成为时序特征,包括光谱时序和纹理时序。
时序特征可以描述作物在生育进程中动态的生长变化,已成为遥感农作物分类的重要特征支撑。
大量研究表明,生育期内高频次的时间特征会显著提升分类效果;多特征时间序列比单特征时间序列更能表征不同作物之间的差异特征比较特征的计算是基于数学方法计算的。
(1)光谱植被指数就是加、减、乘,除;(2)纹理特征一般通过滤波模板计算;(3)但数学中更高级,更有用的特征应该是偏导,在矩阵中,偏导及其重要。
因为偏导能够综合多个变量,因此个人认为,偏导特征会更具优势。
传统的统计学方法偏导较少,机器学习次之,深度学习偏导参数最多。