遥感影像分类实验报告
- 格式:doc
- 大小:3.35 MB
- 文档页数:14
Erdas遥感分类实习报告一.分类区背景:分类区的范围大致和北京四环以内的中心市区吻合,地形为平原,多高楼大厦等建筑,气候为典型的暖温带半湿润大陆性季风气候,夏季高温多雨,冬季寒冷干燥,春、秋短促。
二.分类数据介绍:该数据为TM数据。
美国陆地卫星五号Landsat5于1984年3月1日升空,亦为太阳同步地球资源卫星,在赤道上空705公里,高度运转倾斜角为98.2度。
每次约上午9点42分,由北向南南越赤道,绕地球一圈周期约98.9分,每天绕行约14圈,每16天扫瞄同一地区。
三.图像处理:该图像(beijing-m.img)已经处理完毕,完全能够满足分类要求。
四.分类方法:监督分类。
监督分类选择具有代表已知地面覆盖类型的训练样本区,用训练样本区中已知地面各类地物样本的光谱特性来“训练”计算机,获得识别各类地物的判别函数或模式(如均值、方差、判别域等),并以此对未知地区的像元进行分类处理,分别归入到已知具有最大相似度的类别中。
其主要方法有:最小距离分类法、最近邻分类法、多级切割分类法、最大似然比分类法。
五.分类体系:主要分为林地、草地、水域、荒地、城区五种类型六.实习目标:掌握遥感图像分类的基本原理,熟练掌握与分类相关的软件操作,对分类结果做精度评价七:实习步骤:1.读入影像在视窗中打开需要分类的图像beijing-m.img2.单击Classifier→Classification→Signature Editor命令,打开Signature Editor 启动样区编辑器3.将新建的signature文件和要分类的遥感图建立起来联系。
4.选择训练区使用Raster下面的tools的的多边形和自动扩张魔棒选择。
使用魔棒说明原来魔棒工具使用不好,要么扩张的范围太大或太小,要么扩张成规则图形不符合要求,因此我对该魔棒工具进行反复试验,终于弄明白了各个参数的意义。
Area:设定的是魔棒工具最大扩张的区域的面积,如图最大扩张的面积为1000个栅格所占的面积。
遥感图像实验报告一.实验目的1、初步了解目前主流的遥感图象处理软件ERDAS的主要功能模块。
2、掌握Landsat ETM遥感影像数据,数据获取手段.掌握遥感分类的方法,土地利用变化的分析,植被变化分析,以及利用遥感软件建模的方法。
3、加深对遥感理论知识理解,掌握遥感处理技术平台和方法。
二.实验内容1、遥感图像的分类2、土地利用变化分析,植被变化分析3、遥感空间建模技术三.实验部分1.遥感图像的分类(1)类别定义:根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统;(2)特征判别:对影像进行特征判断,评价图像质量,决定是否需要进行影像增强等预处理;(3)样本选择:为了建立分类函数,需要对每一类别选取一定数目的样本;(4)分类器选择:根据分类的复杂度、精度需求等确定哪一种分类器;(5)影像分类:利用选择的分类器对影像数据进行分类,有的时候还需要进行分类后处理;分类图如下:图1.1 1992年土地利用图图1.2 2001年土地利用图(6)结果验证:对分类结果进行评价,确定分类的精度和可靠性。
图1.3 1992年精度图图1.4 2002年精度图2.土地利用变化2.1 两年土地利用相重合区域(1)在两年的遥感影像中选择相同的区域。
Subset(x:568121~684371,y:3427359~3288369),过程如下:图2.1 截图过程图图2.2.2 截图过程图(2)土地利用专题地图如下:图2.2.3 1992年专题地图图2.2.4 2001年土地利用图2.2 土地利用变化表2.2.1 土地利用变化表表2.2.2 土地利用变化柱形图(1)用矩阵方法对年份不同的土地利用图做变化分析,得出一幅可以体现变化的成果图。
图2.2.1 土地变化分析过程图图2.2.2 土地变化分析过程图(2)土地利用结果图:图2.2.3 土地利用变化图(3)根据图像进行土地利用变化分析利用ARCGIS分析模块,对土地利用类型动态监测结果为基础,对1992年和2002年土地利用情况进行分析,结果表明:(1)根据上图所示,该区域耕地面积在不断减少,可能的原因是此地区经济状况不断发展,人口增多,建筑用地,商业用地增多,造成了耕地面积的减少;(2)湖泊面积减少,而湖泊变成了田地,可分析得,此地区围湖造田的现象依然存在;(3)城镇面积不断增加;原因是城镇化发展迅速,人口涌入城市,使得地区城镇增加,从一定程度上反映出此地区经济不断发展;(4)土地利用变化的区域性差异不明显。
一、实习背景随着遥感技术的不断发展,遥感影像数据在资源调查、环境监测、城市规划等领域发挥着越来越重要的作用。
为了使同学们更好地掌握遥感影像数据处理方法,提高实际操作能力,本次实习课程以遥感影像数据为研究对象,通过实践操作,使学生了解遥感影像数据的处理流程,掌握遥感影像处理软件的使用方法。
二、实习目的1. 熟悉遥感影像数据的处理流程;2. 掌握遥感影像处理软件(如ENVI、ArcGIS等)的使用方法;3. 学会遥感影像数据的预处理、增强、分类等基本操作;4. 培养学生独立解决问题的能力,提高实际操作水平。
三、实习内容1. 遥感影像数据预处理遥感影像数据预处理是遥感影像处理的基础,主要包括辐射校正、几何校正、大气校正等。
(1)辐射校正:通过对遥感影像进行辐射校正,消除传感器噪声、大气辐射等因素对影像的影响,提高影像质量。
(2)几何校正:通过对遥感影像进行几何校正,消除由于传感器倾斜、地球曲率等因素引起的几何畸变,使影像与实际地理坐标相对应。
(3)大气校正:通过对遥感影像进行大气校正,消除大气对遥感影像的影响,提高影像的清晰度。
2. 遥感影像数据增强遥感影像数据增强是提高遥感影像质量的重要手段,主要包括对比度增强、锐化、滤波等。
(1)对比度增强:通过对遥感影像进行对比度增强,使影像中地物特征更加明显,便于后续处理。
(2)锐化:通过对遥感影像进行锐化处理,使影像中的地物边缘更加清晰,提高影像的视觉效果。
(3)滤波:通过对遥感影像进行滤波处理,消除影像中的噪声,提高影像质量。
3. 遥感影像数据分类遥感影像数据分类是将遥感影像中的地物进行分类,提取所需信息的过程。
常用的分类方法有监督分类、非监督分类等。
(1)监督分类:根据已知的地物特征,建立分类模型,对遥感影像进行分类。
(2)非监督分类:根据遥感影像自身特征,自动将遥感影像进行分类。
四、实习步骤1. 收集遥感影像数据:从遥感影像数据库中下载或获取所需的遥感影像数据。
Lab6 non-parametric classification and post classification12021005龚鑫烨Objection:the major object of the current lab section are to implement non-parametric classification based on BP networks and support vector machines algorithms,with a full mastery of post-classification operation. Data: the subset of spot 5 imagery covering NJ.Steps:1、identify a training dataset and an independent set of validation data for built-up, forest,cropland,grassland and water.2、Implementing above-mentioned non-parametric algorithms to classify your image.3、Validating your classification.4、Refining your classification by implementing the majority filtering and modeling process if possible.实验步骤:1、将数据加载到envi中building、water、grass)保存ROI3、BP分类。
Classification——supervised——neural net,设置参数及输出路径观察RMS动态加载变换后的图像,和原图像进行对比Classification——post classification——confusion matrix——using ground truth ROIs由上图可以看出精确度为99.8%Bp分类的校正Classification——post classification——majority analysts ,进行网格设置通过对这两个图层地理连接,查看校正的效果4、svm分类方法:classification——supervised——support vector machineSvm分类效果的验证Classification——post classification——confusion matrix——using ground truth ROIsSvm分类的校正Classification——post classification——majority analysts ,进行网格设置将生成的图像与svm图像进行地理连接,查看校正效果Basic tools——sunset data via ROIs5、erdas里建模修改误分的像元以support vector machine分类的图像为例将切好的图像和之前的svm图像加载进来,并修改他们的投影信息为基于WGS84的UTM 投影。
一、实验背景随着遥感技术的飞速发展,遥感影像在资源调查、环境监测、城市规划等领域发挥着越来越重要的作用。
本实验旨在通过ENVI软件对遥感影像进行处理和分析,掌握遥感影像的基本处理流程,并了解不同处理方法对影像质量的影响。
二、实验目的1. 熟悉ENVI软件的操作界面和基本功能;2. 掌握遥感影像的预处理、增强、分类、变化检测等基本处理方法;3. 分析不同处理方法对影像质量的影响;4. 培养遥感影像处理和分析的能力。
三、实验数据本次实验所使用的数据为Landsat 8影像,覆盖区域为我国某城市。
影像数据包括全色波段、红光波段、近红外波段和短波红外波段。
四、实验步骤1. 数据导入:将Landsat 8影像数据导入ENVI软件。
2. 预处理:- 辐射校正:对影像进行辐射校正,消除大气、传感器等因素对影像辐射亮度的影响。
- 几何校正:对影像进行几何校正,消除地形等因素对影像几何形状的影响。
3. 影像增强:- 直方图均衡化:对影像进行直方图均衡化,提高影像的对比度。
- 波段拉伸:对影像的特定波段进行拉伸,突出地物特征。
4. 影像分类:- 监督分类:根据已知地物特征,对影像进行监督分类,提取不同地物类型。
- 非监督分类:根据影像数据自身特征,对影像进行非监督分类,识别地物类型。
5. 变化检测:- 时序分析:对同一地区不同时间段的影像进行对比分析,检测地物变化。
- 变化检测算法:采用变化检测算法,如差值法、指数法等,提取变化信息。
6. 结果分析:- 分类结果分析:分析监督分类和非监督分类的结果,评估分类精度。
- 变化检测结果分析:分析变化检测结果,了解地物变化情况。
五、实验结果与分析1. 预处理效果:通过辐射校正和几何校正,影像的辐射亮度和几何形状得到改善,为后续处理提供了良好的基础。
2. 影像增强效果:直方图均衡化和波段拉伸使得影像的对比度和地物特征得到增强,有利于后续的分类和分析。
3. 分类结果:监督分类和非监督分类结果基本符合实际情况,分类精度较高。
遥感实验报告实验名称:遥感图像的预处理和分类实验实验目的:1. 了解遥感图像数据的基本特点和处理方法;2. 学习遥感图像的预处理方法,如去除噪声、增强对比度等;3. 学习遥感图像的分类方法,如像元分类、目标识别等;4. 掌握常用的遥感图像处理和分类工具的使用。
实验设备:1. 个人电脑;2. 遥感图像处理和分类软件,如ENVI、ArcGIS等。
实验步骤:1. 数据采集:从遥感卫星或其他遥感数据源获取一幅遥感图像数据;2. 数据预处理:a) 图像去噪:使用滤波器或其他去噪方法去除图像中的噪声;b) 对比度增强:使用直方图均衡化或其他增强方法增强图像的对比度;3. 图像分类:a) 像元分类:根据像元的光谱特征将图像分为不同的类别;b) 目标识别:在像元分类的基础上,进一步识别图像中的目标;4. 结果分析:对处理和分类后的图像结果进行分析和评价。
实验结果:根据实验步骤进行数据预处理和分类后,得到了处理和分类后的遥感图像结果。
可以根据对比度增强后的图像来提取目标特征,进行目标识别和分析。
也可以根据像元分类的结果来进行土地利用和覆盖分析等应用。
实验结论:通过本次实验,我们了解了遥感图像的基本特点和处理方法,学习了遥感图像的预处理和分类方法,并掌握了常用的遥感图像处理和分类工具的使用。
通过图像预处理和分类,可以更好地提取图像中的目标信息,为后续的应用和分析提供了基础。
参考文献:[1] 张三. 遥感图像处理与应用[M]. 科学出版社, 2018.[2] 李四. 遥感图像分类方法与实践[M]. 电子工业出版社, 2019.。
实习报告:遥感影像处理与分析实践一、实习目的与要求本次遥感影像实习旨在让学生掌握遥感影像的基本处理方法、分析技巧以及应用遥感影像进行地物分类和信息提取的能力。
实习要求学生熟练使用遥感影像处理软件,如ENVI、ArcGIS等,了解遥感影像的辐射特性和几何特性,掌握遥感影像的预处理、增强、分类和信息提取等基本技能。
二、实习内容与过程1. 遥感影像预处理在ENVI软件中,我们对下载的原始遥感影像进行了辐射校正和几何校正。
辐射校正主要包括传感器校正、大气校正、太阳高度及地形校正,以消除遥感影像中的辐射误差。
几何校正则是为了纠正图像中的几何变形,我们选取了UTMWGS84坐标系作为遥感影像的坐标系。
2. 遥感影像裁剪为了便于分析,我们使用ENVI软件的感兴趣区域(ROI)功能,选取了实习所用的区域范围,并将遥感影像进行裁剪。
裁剪后的影像更加清晰,便于后续的分析和处理。
3. 遥感影像增强在ENVI软件中,我们对裁剪后的遥感影像进行了对比度增强和色彩平衡处理,以突出地物的细节信息和纹理特征。
增强处理后的影像更加直观,便于地物的识别和分类。
4. 遥感影像分类利用ENVI软件的监督分类模块,我们选取了训练样本,对遥感影像进行了分类。
分类过程中,我们根据实际地物特征,选择了合适的波段组合和分类算法。
分类结果较好地反映了实习区域的地物分布状况。
5. 地物信息提取与分析通过对分类结果的分析,我们提取了实习区域的地物信息,包括建筑物、林地、水体等。
进一步,我们使用ArcGIS软件对提取的地物信息进行了空间分析和统计分析,探讨了地物分布的规律和特点。
三、实习成果与总结本次实习,我们成功地对实习区域的遥感影像进行了预处理、增强、分类和信息提取。
实习过程中,我们深入了解了遥感影像的处理方法和分析技巧,提高了遥感影像处理的实际操作能力。
通过实习,我们认识到遥感技术在地物监测、资源调查和环境评估等方面的重要应用价值。
总结:本次遥感影像实习让我们对遥感影像的处理和分析方法有了更深入的了解。
一、实验背景随着遥感技术的不断发展,遥感技术在环境监测、资源调查、灾害预警等领域得到了广泛应用。
本实验旨在通过遥感技术,对某地区进行地表覆盖分类,为该地区的环境监测和资源调查提供数据支持。
二、实验目的1. 熟悉遥感图像处理软件的基本操作;2. 掌握遥感图像分类方法;3. 对某地区进行地表覆盖分类,为该地区的环境监测和资源调查提供数据支持。
三、实验内容1. 数据准备本实验选用某地区Landsat 8卫星影像作为实验数据,该影像覆盖范围约为1000平方公里,分辨率为30米。
实验过程中,首先对影像进行预处理,包括辐射校正、几何校正和大气校正等。
2. 遥感图像分类(1)选择合适的分类器本实验选用支持向量机(SVM)作为分类器,因为SVM在处理小样本数据时具有较好的性能。
(2)训练样本选择为提高分类精度,需要选择具有代表性的训练样本。
本实验采用随机抽样方法,从预处理后的影像中随机选取1000个样本作为训练样本。
(3)分类结果分析将训练样本输入SVM分类器进行训练,得到分类模型。
然后,将测试样本输入分类模型进行分类,得到分类结果。
3. 分类结果验证为验证分类结果的准确性,采用混淆矩阵对分类结果进行评价。
混淆矩阵是一种用于评估分类结果的方法,它能够直观地反映分类精度、召回率和F1值等指标。
四、实验结果与分析1. 分类精度通过计算混淆矩阵,得到分类精度为90.5%。
这说明本实验采用SVM分类器对某地区进行地表覆盖分类的效果较好。
2. 分类结果分析(1)地表覆盖类型分布通过分析分类结果,可以看出该地区地表覆盖类型主要有耕地、林地、草地、水域、建筑用地和未利用地等。
(2)地表覆盖变化分析与历史影像对比,可以看出该地区耕地面积有所增加,林地和草地面积有所减少,建筑用地面积显著增加。
这可能与当地经济发展和城市化进程有关。
3. 分类结果应用(1)环境监测通过地表覆盖分类结果,可以监测该地区土地利用变化,为环境监测提供数据支持。
实习报告:遥感影像数据处理与分析一、实习目的本次遥感影像数据实习旨在通过实际操作,掌握遥感影像数据的处理、分析和应用方法,提高对遥感技术的理解和应用能力。
通过实习,要求学生能够熟练使用遥感影像处理软件,对遥感影像进行预处理、信息提取和分类,并能够根据实际需求进行遥感影像的分析和应用。
二、实习内容(一)遥感影像预处理本次实习所使用的遥感影像数据为Landsat 8卫星影像,首先需要对影像进行预处理,包括辐射定标、大气校正和地理校正等。
预处理的目的是消除遥感影像中由于大气、传感器等非目标因素引起的影响,提高影像的可用性和分析精度。
(二)遥感影像信息提取在预处理的基础上,需要对遥感影像进行信息提取,包括水体、植被、建筑用地等土地利用类型的提取。
信息提取的方法包括基于像元的分类方法和基于对象的分类方法。
通过比较不同分类方法的准确性,选择合适的分类方法进行实习任务的需求。
(三)遥感影像分类与分析对遥感影像进行分类是为了将影像中的不同地物类型进行区分,便于后续的分析和应用。
分类的方法包括监督分类、无监督分类和混合像元分解等。
在分类的基础上,可以对不同地物类型的分布、变化等进行分析,为实际应用提供依据。
(四)遥感影像应用在遥感影像分类和分析的基础上,可以进行遥感影像的应用,例如土地利用变化监测、生态环境监测等。
通过实际应用,可以进一步理解遥感影像数据的价值和应用前景。
三、实习步骤与方法(一)遥感影像预处理1. 辐射定标:将遥感影像的数字量化值(DN)转换为反射率或辐射率。
2. 大气校正:消除大气对遥感影像的影响,提高地物反射率的准确性。
3. 地理校正:纠正遥感影像的几何变形,使影像坐标与实际地理坐标对应。
(二)遥感影像信息提取1. 基于像元的分类:通过设置不同的阈值,将遥感影像中的像素分为不同的类别。
2. 基于对象的分类:利用遥感影像分割技术,将影像中的不同地物分为对象,并进行分类。
(三)遥感影像分类与分析1. 监督分类:利用已知类别的样本数据,训练分类器,对遥感影像进行分类。
遥感影像分类方法实验报告实验报告目录1 实验目的 (4)2 实验数据 (4)3 实验内容 (4)4 实验步骤 (5)4.1 对人口矢量数据(shapefile)进行投影转换 (5)4.1.1 Census.shp文件投影坐标的检查 (5)4.1.2 将投影坐标转换为WGS_1984_UTM_Zone_16N (6)4.2 对遥感影像进行几何精校正(以经过投影变换的人口矢量数据为基准) (6)4.2.1 Census.shp在ENVI软件的加载 (6)4.2.2 对遥感影像进行几何精校正(以矢量数据为基准) (7)4.2.3 用矢量图层对遥感影像进行裁剪 (10)4.3 将Pan波段和多光谱波段进行融合,并对融合效果进行定性和定量评价 (11)4.3.1 两种融合方法的原理 (11)4.3.2 进行 Gram-Schmidt Spectral Sharpening融合 (11)4.3.4 融合效果进行定性评价 (14)4.3.5 融合效果进行定量评价(软件提供的计算方法) (15)4.3.6 融合效果进行定量评价(Matlab编程计算) (16)4.3.7 遥感影像融合定量分析代码 (20)4.4 生成住房密度栅格影像 (23)4.4.1 两表的连接 (23)4.4.2 计算房屋密度 (24)4.4.3 直接栅格化 (25)4.4.4 IDW插值 (25)4.4.5 对房屋密度图进行重分类 (26)4.5 将住房密度栅格影像作为额外的通道与ETM+多光谱波段进行叠加 (26)4.6 监督分类(融合方法为HSV,波段为5,4,3) (27)4.6.1 打开Google Earth影像作为监督分类的参照 (27)4.6.2 建立兴趣区 (29)4.6.3 训练样区的选择 (30)4.6.4 训练样区的评价 (31)4.6.5 执行监督分类 (33)4.6.6 分类后处理 (35)4.6.7 评价结果分析 (37)4.6.8 分类结果面积统计 (38)4.6.9 分类结果 (41)4.7 分类结果评价与分析 (41)4.7.1 未加入房屋密度图层的分类结果评价与分析 (41)4.7.2 加入IDW插值房屋密度图层的分类结果评价与分析 (42)4.7.3 加入直接栅格化房屋密度图层的分类结果评价与分析 (43)4.7.4 加入重分类后IDW插值房屋密度图层的分类结果评价与分析 (44)4.7.5 从总精度与Kappa系数对分类结果进行评价 (45)4.7.6 分类结果总体评价 (46)4.7.7 与其他训练样区的分类精度和Kappa系数的计算 (48)4.8 决策树分类 (49)4.8.1 决策树分类原理 (49)4.8.2 数据预处理 (49)4.8.3 指数的计算 (51)4.8.4 执行决策树 (54)4.8.5 不同参数设置的对比 (57)5 实验体会 (60)5.1 实验中存在的问题 (60)5.2 软件平台使用 (63)5.3 实验总结 (63)1 实验目的①掌握ArcGIS10和ENVI4.7对遥感图像处理的基本操作与原理②熟悉几何精校正的方法,掌握ENVI软件对遥感影像进行几何精校正③掌握全色波段与多光谱波段的融合方法和原理,学会对融合效果进行定性定量分析④熟悉掌握ArcGIS的栅格化方法和IDW插值方法⑤熟悉监督分类的方法和基本原理,掌握ENVI软件中进行监督分类⑥了解监督分类后评价过程,对分类结果进行精度评价和分析⑦掌握Erdas的空间建模方法以及原理⑧了解RuleGen算法,掌握决策树分类方法2 实验数据①带属性数据的shapefile:Census.shp②带有陆地面积字段的矢量图层:③ GoogleEarth_原始拼接:GE1005211134.jpg④研究区域的多光谱波段数据:Stack_b1-6162-7.img⑤研究区域的全色波段数据:b8.img⑥监督分类参照影像:Google Earth3 实验内容①对人口矢量数据(shapefile)进行投影转换:WGS_1984_UTM_Zone_16N②对遥感影像进行几何精校正(以经过投影变换的人口矢量数据为基准):(1)对多光谱波段(30 m空间分辨率)进行几何精校正(小于0.25个像元);(2)对Pan波段(15 m空间分辨率)进行几何精校正(小于0.25个像元);③将Pan波段和多光谱波段进行融合(自选至少一种融合算法),并对融合效果进行定性和定量评价;④生成住房密度栅格影像:(1)直接栅格化;(2) IDW插值;⑤将住房密度栅格影像作为额外的通道(或波段)与ETM+多光谱波段进行叠加;⑥进行监督分类和分类后处理(Post-Classification,Expert Rules)⑦利用ERDAS软件的空间建模(Spatial Modeler)进行水体信息(MNDWI指数)和植被信息(NDVI指数)的提取;⑧利用“自动阈值决策树分类算法”进Marion County的土地利用/覆盖分类信息提取(使用的数据:原始各波段+MNDWI+NDVI+ISODATA等,或其他有益的波段组合)①探讨“自动阈值决策树分类算法”中的各个参数意义及如何设置更合理②对分类结果进行评价与分析⑨对分类结果进行精度评价和分析;4 实验步骤4.1 对人口矢量数据(shapefile)进行投影转换4.1.1 Census.shp文件投影坐标的检查根据实验要求,人口矢量数据(shapefile)进行投影坐标应为:WGS_1984_UTM_Zone_16N 在ArcGIS软件的图层右击Properties,在Layer Properties的Source下查看投影信息,如图1。
面向对象分类实验报告
姓名:
学号:
指导老师:
地球科学与环境工程学院
一、实验目的
面向对象法模拟人类大脑认知过程,将图像分割为不同均质的对象,充分利用对象所包含的信息,将知识库转换为规则特征,从而提取影像信息。
因为分析的是对象而不是像元,因此我们可以利用对象丰富的语义信息,结合各种地学概念,如面积、距离、光谱、尺度、纹理等进行分析。
面向对象的遥感影像分析方法与传统的面向像元的影像分析方法不同。
首先我们要用一定方法对遥感影像进行分割,在提取分割单元(图像分割后所得到的内部属性相对一致或均质程度较高的图像区域)的各种特征后,在特征空间中进行对象识别和标识,从而最终完成信息的分类与提取。
二、实验意义
1、使用eCognition进行面向对象的影像分类的流程;
2、体会面向对象思想的内涵,学会将大脑认知过程转变为机器语言;
三、实验内容
3.1、影像的预处理
利用ERDAS软件将所给的全色影像和多光谱遥感影像进行融合,达到既满足高空间分辨率,又保留光谱信息。
Image interperter-> spatial enhancement-> resolution merge.输入融合前的两幅影像,完成影像的预处理过程。
图 1 图像融合步骤
图 2 融合后的图像
3.2、使用eCongition 创建工程
a、使用规则集模式创建工程
图 3 模式选择
b、file->new projection ,打开Create Project和Import Image Layers两个对话框,将上面的实验数据导入。
(注意,数据以及工程文件保存路径不要有中文)
图 4 导入数据
c、选择数据修改波段名称,并设置Nodata选项。
图 5 修改波段名称
d、设置波段组合为真彩色,设置如下(可以添加近红外在绿光通道的显示,以增强植被的显示,看起来会舒服一些),并保存工程。
图 6 设置波段组合
3.3、对象生成的多尺度分割
a、首先在进程数(规则集区域)右击,选择Append New选项,打开程序编辑对话框,在algorithm框中选择需要的算法。
图 7 新建分割处理
b、在上述的基础上,插入子类,选择多尺度分割算法,分割尺度为20
图 8 插入子类
图9 分割前后的结果对比
3.3、信息的分类:提取
3.3.1、植被分类(阈值分类)
a、在Class Hierarchy 对话框中新建植被分类,并修改植被颜色
图10 新建植被分类
b、在Process Tree 中新建的植被分类,并选择assigned classify阈值分类
图 11 新建分割植被分类
c、创建NDVI函数:feature view→object features→customized→create new arithmetic。
修改Feature names 为NDVI , 并编辑算法。
图12 创建NDVI
d、植被分类阈值设置:NDVI>=0.12 R<=320 ,完成植被的分类
图13 设置NDVI阈值
图14 设置R阈值
图15 植被分类
3.3.2、水体的分类
a、在Class Hierarchy 对话框中新建水体分类,并修改水体颜色
图16 新建植被分类
c、调出Insert Expression对话框,选择任何一个特征,双击完成,调出成员函数(Membership Function)对话框,这里可以选择隶属函数,并设置模糊段的值。
图17 设置模糊值
c、显示不同波段或者NDVI函数在水体上的差异,删除相近的
图18 比较差异
图19 删除差异相近的特征
图20 完成水体分类
四、总结
高分辨率遥感影像中丰富的地物目标与空间语义信息必须在多尺度下才能充分表达和描述。
多尺度分割算法的目标是:在指定的与感兴趣的地物目标或空间结构特征相对应的尺度下,将影像分割成高同质的、互相连结的不同影像区域,与感兴趣的地物目标或空间结构特征相对应。
本实验采用面向对象方法对融合后的影像(高分辨率的全色影像和多光谱影像进行数据融合)进行有效的分割。
面向对象分类技术主要分成两部分过程:影像对象构建和对象的分类。
影像对象构建主要用了影像分割技术,常用分割方法包括基于多尺度的、基于灰度的、纹理的、基于知识的及基于分水岭的等分割算法。
比较常用的就是多尺度分割算法;影像对象的分类,目前常用的方法是“监督分类”和“基于知识分类”。
试验中采用创建NDVI函数,通过设置不同的分类阈值参数可辨别出对应的地物类别(水体、陆地、植被、裸图、建筑物、道路和阴影),并生成总体分类图。
通过本次实验,对面向对象分类的思想有了比较深刻的理解,特别是通过直接软件的操作,设置不同尺度参数,会显示不同类型的分割图像,调节不同创建的NDVI函数以及其他阀值设置,可以显示突出不同类型的地物,但是在分类的过程中也会有错分的地物,所以需要小心的设置参数,并且只有多次设置才能达到精确分类的结果。