故障类型和
- 格式:docx
- 大小:891.76 KB
- 文档页数:43
plc故障类型和诊断方法
PLC(可编程逻辑控制器)故障类型和诊断方法:
1. 电源故障:可能是电源线路故障、电源模块故障或电源供应不稳定。
诊断方法包括检查电源线路连接是否良好、使用电压表检测电源输出电压是否正常,以及检查电源模块是否损坏。
2. 输入/输出(I/O)故障:可能是输入/输出模块故障、输入/输出信号线路故障或传感器/执行器故障。
诊断方法包括检查输入/输出模块是否正确连接、使用示波器或多用途表检测信号线路是否正常,以及检查传感器/执行器是否损坏。
3. 程序错误:可能是程序逻辑错误、程序存储器故障或通信故障。
诊断方法包括检查程序逻辑是否正确、使用PLC 编程软件检查程序存储器是否正常,以及检查通信模块是否正常工作。
4. 通信故障:可能是通信模块故障、通信线路故障或网络故障。
诊断方法包括检查通信模块是否正确连接、使用示波器或多用途表检测通信线路是否正常,以及检查网络设置是否正确。
5. 输出执行故障:可能是输出模块故障、输出信号线路故障或执行器故障。
诊断方法包括检查输出模块是否正确连接、使用示波器或多用途表检测信号线路是否正常,以及检查执行器是否损坏。
6. 内部故障:可能是PLC主板故障、CPU故障或存储器故障。
诊断方法包括检查PLC主板是否有明显损坏迹象、使用示波器或多用途表检测CPU工作状态,以及使用PLC编程软件检查存储器是否正常。
以上仅是一些常见的PLC故障类型和诊断方法,具体的故障和诊断方法可能因PLC型号和配置而有所不同。
在进行PLC故障诊断时,建议参考PLC的用户手册和技术规格书,以获取更详细的故障排除指南。
发电机故障类型及不正常运行状态
1.故障类型
(1)定子绕组相间短路:危害最大;
(2)定子绕组一相的匝间短路:可能进展为单相接地短路和相间短路;
(3)定子绕组单相接地:较常见,可造成铁芯烧伤或局部溶化;
(4)转子绕组一点接地或两点接地:一点接地时危害不严峻;两点接地时,因破坏了转子磁通的平衡,可能引起发电机的剧烈震惊或将转子绕组烧损;
(5)转子励磁回路励磁电流急剧下降或消逝:从系统汲取无功功率,造成失步,从而引起系统电压下降,甚至可使系统崩溃。
2.不正常运行状态
(1)由于外部短路引起的定子绕组过电流:温度上升,绝缘老化;
(2)由于负荷等超过发电机额定容量而引起的三相对称过负荷:温度上升,绝缘老化;
(3)由于外部不对称短路或不对称负荷而引起的发电机负序过电流和过负荷:在转子中感应出100hz的倍频电流,可使转子局部灼伤或使护环受热松脱,而导致发电机重大事故。
此外,引起发电机的100hz 的振动;
(4)由于突然甩负荷引起的定子绕组过电压:调速系统惯性较大发电机,在突然甩负荷时,可能消失过电压,造成发电机绕组绝缘击穿;
(5)由于励磁回路故障或强励时间过长而引起的转子绕组过负荷;
(6)由于汽轮机主气门突然关闭而引起的发电机逆功率:当机炉爱护动作或调速掌握回路故障以及某些人为因素造成发电机转为电动机运行时,发电机将从系统汲取有功功率,即逆功率。
故障类型和影响分析内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)故障类型和影响分析(FMEA)1、故障类型影响分析的特点及优缺点:1)能够明确地表示出局部的故障讲给系统整体的影响,确定对系统安全性给予致命影响的故障部位。
因此,对组成单元或子系统可靠性的要求更加明确,并且能够提出它们的重要度。
利用FMEA也很容易从逻辑上发现设计方面遗漏和疏忽的问题。
2)能用定性分析法来判断可靠性和安全性的大小或优劣,并能提出问题和评价其重要度。
3)FMEA法不仅用于产品设计、制造、可靠性设计等方面,而且还可以把设计和质量管理、可靠性管理等活动有机连接起来。
因此,对系统规定评价是非常有利的。
4)应用时,若把重要的故障类型忽略了,则所进行的分析,特别是所进行的预测将是徒劳无用的。
所以,对重要故障类型不能忽略。
5)为定量地进行系统安全性预测、评价和其他安全性研究提供一定的数据资料。
2、FMEA基本原理:1)故障类型:运行过程中的故障;过早地启动;规定的时间内不能启动;规定的时间内不能停车;运行能力降低、超量或受阻。
2)造成原件发生故障的原因:设计上的缺点;制造上的确定;质量管理方面的缺点;使用上的缺点;维修方面的缺点。
3)故障等级:A简单划分时利用下表故障类型分级表i(0~10)B评点法C S=√C1?C2?…?C i上述方法中的每一项有经验来判断,也可用下面的公式来算:C S=F1+F2+F3+F4+F5评点参考表C风险矩阵法严重度的等级与内容用定性方法给故障概率分类的原则是:I级:故障概率很低,元件操作期间出现机会可以忽略。
II级:故障概率低,元件操作期间不易出现。
III级:故障概率中等,元件操作期间出现机会可达到50%。
IV级:故障概率高,元件操作期间易出现。
用定量方法给故障概率分类的原则是:I级:在元件工作期间,任何单个故障类型出现的概率少于全部故障概率的。
II级:在元件工作期间,任何单个故障类型出现的概率多于全部故障概率的,而少于。
交换机常见的故障类型及分析排查1.无法正常启动或重启:这可能是由于电力问题、硬件故障或固件问题导致的。
首先,检查电源是否连接正常且供电稳定。
如果没有问题,检查交换机的硬件组件是否完好无损,如CPU、内存、网络接口等。
如果硬件正常,可以尝试重装或升级固件来解决问题。
2. 网络连接问题:这种故障可能是由于网络线路连接问题、配置错误或链路故障导致的。
排查时,首先检查交换机与其他设备的物理连接是否正常,确保线路没有松动或损坏。
然后,检查交换机的配置是否正确,特别是端口的VLAN设置和IP地址设置。
另外,检查链路是否正常,可以使用ping命令检查网络连通性。
3.端口故障:端口故障可能是由于硬件问题、配置错误或链路故障导致的。
首先,检查交换机的端口是否有物理损坏或连接问题。
如果端口正常,检查端口的配置是否正确,如VLAN、速率、双工模式等。
如果配置正常,检查链路是否正常工作,可以通过连通性测试或端口状态查看来进行检查。
4.速率降低或性能问题:这种故障可能是由于网络拥堵、配置错误或硬件问题导致的。
首先,检查网络带宽利用率是否高,如果是,可能需要优化网络配置或增加带宽。
另外,检查交换机的配置是否正确,特别是QoS配置,以确保流量分配合理。
最后,如果以上两个方面都没有问题,那么可能是交换机的硬件问题,可以尝试升级固件或更换交换机。
5.网络安全问题:这种故障可能是由于配置错误、攻击或病毒感染导致的。
首先,检查交换机的配置是否存在漏洞或错误,如未授权访问或弱密码。
然后,检查网络是否遭受到攻击,可以通过监控流量或分析日志来发现异常。
如果存在病毒感染,可以使用杀毒软件来扫描和清除病毒。
在排查交换机故障时,可以采取以下步骤:1.收集信息:首先,收集有关故障的详细信息,如故障类型、发生时间、受影响的设备等。
这有助于缩小故障范围和定位问题。
2.检查物理连接:检查交换机与其他设备的物理连接是否正常。
确保线缆连接牢固,没有损坏或松动。
故障类型和影响分析故障类型分析是指对故障进行分类和概述,以便更好地了解潜在的故障模式和根本原因。
常见的故障类型包括以下几种:1.设备故障:这是最常见的故障类型,它指的是设备在工作期间出现的突然故障或失效。
设备故障通常是由于设计问题、部件老化、误操作或外力损伤等原因引起的。
2.电气故障:这是指与电气系统或电源相关的故障。
电气故障可能包括电源断电、电线短路、电压不稳定等问题。
这类故障通常会导致设备无法正常运行或烧毁。
3.机械故障:这是指与机械设备、机械部件或机械系统相关的故障。
机械故障可能包括设备损坏、零件磨损、传动系统故障等问题。
这类故障通常会导致设备无法正常运转或功能受限。
4.环境故障:这是指与环境相关的故障。
环境故障可能包括温度过高或过低、湿度过高或过低、振动或冲击等问题。
这类故障通常会对设备的性能和稳定性产生影响。
5.软件故障:这是指与计算机软件相关的故障。
软件故障可能包括程序错误、系统崩溃、数据丢失等问题。
这类故障通常会导致计算机系统无法正常运行或功能受损。
影响分析是指对故障的影响进行评估,以便更好地理解和应对故障的后果。
常见的影响分析包括以下几个方面:1.生产停工:故障可能导致设备停机,进而导致生产线停工。
生产停工会导致生产延误、交货期延长和成本增加。
2.生产质量下降:故障可能导致产品质量下降。
例如,设备故障可能导致产品不良率增加,而软件故障可能导致数据错误或功能失效。
3.安全风险增加:故障可能导致安全风险增加。
例如,机械故障可能导致设备损坏或意外发生,而电气故障可能导致火灾或电击。
4.维修成本增加:故障需要进行维修或更换损坏的部件,这将增加维修成本。
如果故障频繁发生,维修成本将更加显著。
5.可靠性下降:故障可能导致设备可靠性下降。
设备的可靠性是指在一定时间内正常工作的概率。
如果设备故障频繁发生,设备的可靠性将显著下降。
综上所述,故障类型和影响分析对于设备和系统的维护和管理非常重要。
通过对故障类型的分析,可以更好地了解潜在的故障模式和根本原因。
电机故障类型及机理
电机故障类型及机理有多种,常见的故障类型包括如下几种:
1. 绝缘故障:绝缘故障是电机故障的常见类型,主要由于绝缘层破损或老化引起的。
这可能会导致电机绝缘阻抗下降,进而导致电流过大、发热等问题。
2. 轴承故障:电机的轴承故障一般是由于轴承磨损、润滑不良或过载等原因引起的。
轴承故障会导致电机运行时发出异常声音、震动增大等现象。
3. 绕组故障:绕组故障主要由于绕组的短路、开路或接地等引起。
这可能会导致电机运行不稳定、发热过高等问题。
4. 电刷故障:电刷是直流电机的关键部件,如电刷磨损、接触不良等问题会导致电机失去励磁、转速不稳定等问题。
5. 电线故障:电机的电线故障可能包括线路短路、断路等情况,这可能会导致电机无法正常工作。
以上是常见的电机故障类型,具体故障机理会因具体情况而有所不同。
一般来说,电机故障主要是由于材料老化、负载过大、运行环境恶劣、外部短路等原因引起的。
对于电机的故障诊断和维修,需要通过对故障现象的分析来确定具体的故障机理,并采取相应的修复措施。
故障类型和影响分析逻辑分析法:故障类型和影响分析1 目的FMEA的目的是辨识单一设备和系统的故障模式及每种故障模式对系统或装置造成的影响。
评价人员通常提出增加设备可靠性的建议,进而提出工艺安全对策。
2 故障和故障类型1)故障元件、子系统、系统在运行时,达不到设计规定的要求,不能完成任务的情况称为故障。
2)故障类型系统、子系统或元件发生的每一种故障的形式称为故障类型。
例如,—个阀门故障可以有4种故障类型:内漏、外漏、打不开、关不严。
3)故障等级根据故障类型对系统或子系统影响程度的不同而划分的等级称为故障等级。
3 资料文件的要求使用FMEA方法需要如下资料:①系统或装置的P&IDS;②设备、配件一览表;③设备功能和故障模式方面的知识;④系统或装置功能及对设备故障处理方法知识。
FMEA方法可由单个分析人员完成,但需要其他人进行审查,以保证完整性。
对评价人员的要求随着评价的设备项目大小和尺度有所不同。
所有的FMEA评价人员都应对设备功能及故障模式熟悉,并了解这些故障模式如何影响系统或装置的其他部分。
4 故障分类故障类型及发生故障的原因见表1。
5 故障类型分级方法5.1 定性分级方法定性分级方法按故障类型对子系统或系统影响的严重程度分为4级(见表2)。
划分故障等级主要是为了分出轻重缓急以采取相应的对策,提高系统的安全性。
5.2 半定量故障等级划分法依据损失的严重程度、故障的影响范围、故障的发生频率、防止故障的难易程度和工艺设计等情况来确定半定量等级(见表3)。
1)评点法在难于取得可靠性数据的情况下,可以采用评点法,此法较简单,划分精确。
它从几个方面来考虑故障对系统的影响程度,用一定的点数表示程度的大小,通过计算,求出故障等级。
利用下式求评点数:式中 Cs——总点数,0<Cs<10;Ci——因素系数,0<Ci<10。
评点因素和点数Ci见表4。
如何确定点数Ci呢?可由3~5位有经验的专家座谈、讨论,提出Ci的数值,这种方法又称BS法(Brain Storming),意思是集中智慧。
另—个方法是德菲尔法(Delphi Technique),即函询调查法,将提出的问题和必要的背景材料,用通信的方式向有经验的专家提出,然后把他们答复的意见进行综合,再反馈给他们,如此反复多次,直到认为合适的意见为止。
另一种求点数的方法列于表5,可根据评点因素求出点数,然后相加,计算出总点数Cs。
由以上两种方法求出的总点数Cs,均可按表6选取故障等级。
2)风险矩阵法故障发生的可能性和引起的后果,综合考虑后会得出比较准确的衡量标准,我们称这个标准为风险率(也称危险度),它代表故障概率和严重度的综合评价。
(1)严重度。
指故障类型对系统功能的影响程度,分为4个等级(见表7)。
(2)故障概率。
故障概率是指在一特定时间,故障类型所出现的次数。
时间可规定为一定的期限(如一年、一月等);或根据大修间隔期、完成一项任务的周期或其他被认为适当的期间来决定。
可以使用定性和定量方法确定单个故障类型的概率。
兹分述如下:用定性方法故障概率可分为4级。
①Ⅰ级:故障概率很低,元件操作期间出现的机会可忽略;②Ⅱ级:故障概率低,元件操作期间不易出现;③Ⅲ级:故障概率中等,元件操作期间出现的机会为50%;④Ⅳ级:故障概率高,元件操作期间易于出现故障。
用定量方法故障概率可分4级。
①Ⅰ级:在元件操作期间,任何单个故障的概率少于全部故障概率的0.01;②Ⅱ级:在元件操作期间,任何单个故障的概率,多于全部故障概率的0.01而少于0.10;③Ⅲ级:在元件操作期间,任何单个故障的概率,多于全部故障概率的0.10而少于0.20;④Ⅳ级:在元件操作期间,任何单个故障的概率,大于全部的故障概率的0.20。
有了严重度和故障概率的数据后,就可运用风险率矩阵的评价法;因为用这两个特性就可表示出故障类型的实际影响。
有的故障类型虽有较高的发生概率,但造成的危害严重度甚低,因而风险率也低。
另一种情况,即使造成的危害严重度很大,但发生概率很低,其风险率也不会高。
为了综合这两个特性,可将故障概率为纵坐标,严重度为横坐标,画出风险率矩阵(图1)。
沿矩阵原点到右上角画一对角线,并将所有故障类型按其严重度和发生概率填入矩阵图中,可以看出系统风险的密集情况。
处于右上角方块中的故障类型风险率最高,依次左移逐渐降低。
图1 风险率矩阵图(3)可靠性框图。
对于复杂的系统,为了说明子系统间功能的传输情况,可用可靠性框图表示系统状况(图2)。
图2 可靠性方框图注:1.系统包括子系统10、20、30;2.子系统10包括组件11、12、13;3.组件11包括元件01A、01B、02、03、04、05和06;4.元件01A和01B相同,是冗余设计;5.元件02由a及b组成,只用一个编码;6.从功能上看,元件03同时受到07和来自其他系统的影响;7.元件05、06是备用品回路;05发生故障,06即投入运行;8.正常运行时,元件07不工作从图2中可以明确地看出系统、子系统和元件之间的层次关系,系统、子系统间的功能输入和输出以及串联和并联方式。
各层次要进行编码,和将来制表的项目编码相对应。
可靠性框图与流程图或设备布置图不同,它只是表示系统与子系统间功能流动情况,而且可以根据实际需要,对风险度大的子系统进行深入分析,问题不大的子系统则可放置一边。
6 制表使用FMEA方法的特点之一就是制表。
由于表格便于编码、分类、查阅、保存,所以很多部门根据自己情况拟出不同表格(见表8、表9、表10),但基本内容相似。
表8 故障类型影响分析表格—1表9 故障类型影响分析表格—2表10 故障类型影响分析表格—36.1 分析步骤按照下述步骤进行FMEA分析。
1)明确系统本身的情况分析时首先要熟悉有关资料,从设计说明书等资料中了解系统的组成、任务等,查出系统含有多少子系统,各子系统含有多少单元或元件,了解它们之间如何接合,熟悉它们之间的相互关系、相互干扰以及输入、输出等情况。
2)确定分析程度和水平根据所了解的系统情况,一开始要决定分析到什么水平,这是—个很重要的问题。
如果分析程度太浅,就会漏掉重要的故障类型,得不到有用的数据;如果分析的程度过深,一切都分析到元件甚至零部件,则会造成分析程序复杂,措施很难实施。
通常,经过对系统的初步,就会知道哪些子系统关键,哪些子系统次要。
对关键的子系统可以分析得深一些,不重要的分析得浅一些,甚至可以不进行分析。
对一些功能像继电器、开关、阀门、贮罐、泵等,都可当做元件对待,不必进一步分析。
3)绘制系统图和可靠性框图一个系统可以由若干个功能不同的子系统组成,如动力、设备、结构、燃料供应、控制仪表、信息网络系统等,其中还有各种接合面。
为了便于分析,对复杂系统可以绘制各功能子系统相结合的系统图,以表示各子系统间的关系。
对简单系统可以用流程图代替系统图。
从系统图可以继续画出可靠性框图,它表示各元件是串联的或并联的以及输入和输出情况。
由几个元件共同完成一项功能时用串联连接,元件有备品时则用并联连接。
可靠性框图内容应和相应的系统图一致。
4)列出所有故障类型,并选出对系统有影响的故障类型按照可靠性框图,根据过去的经验和有关的故障资料,列举出所有的故障类型,填入FMEA 表中。
然后从其中选出对子系统以至系统有影响的故障类型,深入分析其影响后果、故障等级及应采取的措施。
如果经验不足,考虑得不周到,将会给分析带来影响。
因此,这是一件技术性较强的工作,最好由安全技术人员、生产人员和工人三者结合进行。
5)列出造成故障的原因对危险性特别大的故障类型,如故障等级为Ⅰ级,则要进行致命度分析。
6.2 致命度分析对于特殊危险的故障类型,例如故障等级为Ⅰ级的故障类型,有可能导致人员伤亡或系统损坏,因此对这类元件要特别注意,可采用致命度的分析方法(CA)进一步分析。
美国汽车工程师学会(SAE)把故障致命度分成表11中的4个等级。
表11 致命度等级与内容致命度分析一般都和故障类型影响分析合用。
使用下式计算出致命度指数Cr,它表示元件运行106h(次)发生的故障次数。
式中 n——元件的致命故障类型号数,n=1,2,3……j;j——致命故障类型的第j个序号;——单位时间或周期的故障次数,一般指元件故障率;t——完成一项任务,元件运行的小时数或周期(次)数;——元件的测定值与实际运行时的强度修正系数;——元件的测定值与实际运行时的环境条件修正系数;α——中该故障类型所占比例;β——造成致命影响的故障发生概率,其值见表12。
表12 造成致命影响的故障发生概率致命度分析所用表格见表13。
表13 致命度分析表7 事例7.1 柴油机燃料供应系统的FDEA分析图3为一柴油机燃料供应示意图。
柴油经膜式泵送往壁上的中间贮罐,再经过滤器流入曲轴带动的柱塞泵,将燃料向柴油机气缸喷射。
图3 柴油机燃料供应示意图1—调速器;2—齿条;3—气缸;4—喷嘴;5—逆止阀;6—柱塞;7—燃料贮槽;8—过滤器;9—小齿轮;10—弹簧;11—凸轮;11—曲轴;13—齿轮此处共有5个子系统,即燃料供应子系统、燃料压送子系统、燃料喷射子系统、驱动装置、调速装置,其系统图如图4所示。
图4 柴油机燃料系统可靠性框图这里仅就燃料供应子系统做出故障类型影响分析,并填入FMEA分析表中,摘出对系统有严重危险的故障类型,汇总见表14、表15,从中可以看出采取措施的重点。
从分析结果可以看出,燃料供应子系统的单向阀、燃料输送装置的柱塞和单向阀、燃料喷射装置的针形阀都容易被污垢堵住;因此要变更原来设计,即在燃料泵(柱塞泵)前面加一个过滤器。
表14 柴油机燃料供应子系统故障类型影响分析表表15 柴油机燃料系统故障类型及等级表7.2 暖风系统FMEA及CA分析1)暖风系统概述家用暖风系统的任务是完成采暖的需要,每年冬季要工作6个月,使室温保持22℃。
系统的使用周期为10年。
在室外温度降低到-23℃时,室内温度不变。
暖气系统设置在地下室内,环境温度也是-23℃,同时还有相当的粉尘。
因此,环境条件修正系数κE定为0.94,而强度修正系数κA为1.0。
室内温度达不到22℃,就被认为是系统出了故障,而造成这种故障的元件故障类型就被认为是致命故障类型。
本系统所使用的公用工程部分(即外电和煤气)都不在分析范围之内。
系统由3个子系统构成,即加热子系统、控制子系统、空气分配子系统。
现分述如下:(1)加热子系统:①煤气管;②切断气源用的手动阀;③控制煤气流量的控制阀;④火嘴;⑤由点火器传感器控制的点火器控制阀;⑥点火器(由点火器控制阀控制)。
(2)控制子系统。
100V交流电源经整流后变为24V直流电源,分别供给点火器温度传感器、火嘴温度传感器、室内温度传感器,再由各传感器控制相应装置。