八年级数学上册第十五章分式15.3分式方程第1课时分式方程及其解法教案人教版
- 格式:doc
- 大小:168.31 KB
- 文档页数:4
第十五章分式的方程15.3分式的方程第一课时 15.3.1分式的方程(认识、解法)1教学目标1.1知识与技能:[1]理解分式方程的意义。
[2]使学生掌握可化为一元一次方程的分式方程的一般解法。
[3]理解解分式方程时可能无解的原因,并掌握分式方程的验根方法。
1.2过程与方法:经历“实际问题---分式方程---整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识。
1.3 情感态度与价值观:[1]在活动中培养学生乐于探究﹑合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.[2]结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气。
2教学重点/难点/易考点2.1 教学重点[1]可化为一元一次方程的分式方程的解法。
[2]分式方程转化为整式方程的方法及其中的转化思想。
2.2 教学难点[1]理解解分式方程时可能无解的原因。
[2]解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根。
3 专家建议本节课内容难度不大,但是难点在于灵活运用。
在讲授分式方程解法时,老师应该尽量说清楚以下知识点:(1)类比整式方程与分式方程的区别。
(2)在进行解分式方程时,注意出现曾根的情况。
从下一节起将开始分式方程的应用。
因此,可以在课下带领同学进行分式的乘除、加减、幂运算以及混合运算进行专题练习,锻炼同学综合运用分式运算知识进行解题的技能。
4 教学方法[1]分组讨论。
[2]类比推理。
[2]启发引导探索的教学方法。
5 教学用具多媒体,黑板6教学过程6.1复习提问【师】同学们好。
同学们看一下大屏幕上的这个题,我们一起回亿一下之前我们学过哪些方程?我们该如何求解它呢?【生】答:(1)前面已经学过了一元一次方程.(2)一元一次方程是整式方程.(3)一元一次方程解法步骤是:①去分母②去括号③移项④合并同类项⑤系数化一。
第1课时分式方程课时目标1.让学生经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.2.通过探究分式方程解法的过程,让学生感受增根产生的合理性及验根的必要性,提升学生思维的深度认知.3.通过使学生经历运用所学知识解分式方程的过程,让学生体会化归的数学思想和数学知识之间的内在联系,进一步提高学生的运算能力.学习重点分式方程的解法.学习难点理解解分式方程时可能无解的原因.课时活动设计新知引入一艘轮船在静水中的最大航速为30千米/时,它以最大航速沿江顺流航行90千米所用的时间,与以最大航速逆流航行60千米所用的时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,(1)轮船顺流航行速度为30+v千米/时,逆流航行速度为30-v千米/时;(2)顺流航行90千米的时间为9030+v 小时,逆流航行60千米的时间为6030−v小时;(3)根据题意可列方程为9030+v =6030−v.想一想,像这样的方程属于什么方程,应该怎样解呢?设计意图:通过经历实际问题→列分式方程,让学生体会分式方程是一种有效描述现实世界的模型,发展学生分析问题和解决问题的能力,培养应用意识,激发学生的探究欲与学习热情,为探索分式方程的解法做准备.探究新知探究1 分式方程的概念问题1:什么是方程?我们学习过哪些方程?它们都是怎么定义的? 学生代表发言,教师总结.教师引导学生通过类比的方法得到分式方程的概念.分式方程的概念:分母中含有未知数的方程叫做分式方程. 分式方程的特征:①是等式;②分母中含有未知数. 问题2:下列关于x 的方程中哪些是分式方程? (1)1x =5;(2)x5=1;(3)x 2-x +13=0; (4)2x+2-1x ;(5)4x +3y =7;(6)12x 2-2a =1. 学生独立完成.探究2 分式方程的解法 1.解方程:2x -13-3x -12=116.请两名学生上台板演,教师给出正确的解答过程. 解:去分母,得2(2x -1)-3(3x -1)=11. 去括号,得4x -2-9x +3=11. 移项,得4x -9x =11+2-3. 合并同类项,得-5x =10. 系数化为1,得x =-2. 2.解分式方程:9030+v =6030−v .分析:先将分式方程转化为整式方程.解:9030+v =6030−v去分母,两边同乘(30+v )(30-v )90(30-v )=60(30+v )去括号2 700-90v =1 800+60v移项-90v -60v =1 800-2 700合并同类项-150v =-900系数化为1v =6思考:v =6是原分式方程的解吗?将v =6代入原方程中,左边=52=右边,因此v =6是原分式方程的解.总结:解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母.探究3 增根 解方程:1x -5=10x 2-25.解:方程两边同乘最简公分母(x -5)(x +5),得整式方程x +5=10. 解得x =5.将x =5代入原分式方程检验,分母x -5和x 2-25的值都为0,相应的分式无意义. 所以这个分式方程无解.思考:上面两个分式方程中,为什么9030+v =6030−v ①去分母后所得整式方程的解就是①的解,而1x -5=10x 2-25②去分母后所得整式方程的解却不是②的解呢?学生分小组进行交流,学生代表发言,教师总结.总结:一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此应做如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.设计意图:引导学生观察、反思、对比方程①②的解法,得出解分式方程时检验的必要性和具体检验方法.让学生经历这样的探究过程,促使学生深刻地领悟数学知识、数学方法产生的合理性,有利于提升学生的思维能力.典例精讲 例 解方程:(1)2x -3=3x ; (2)xx -1-1=3(x -1)(x+2).解:(1)方程两边同乘x (x -3),得2x =3x -9.解得x =9. 检验:当x =9时,x (x -3)≠0. 所以,原分式方程的解为x =9.(2)方程两边同乘(x -1)(x +2),得x (x +2)-(x -1)(x +2)=3.解得x =1. 检验:当x =1时,(x -1)(x +2)=0,因此x =1不是原分式方程的解. 所以,原分式方程无解.设计意图:通过例题,使学生熟悉解分式方程的步骤以及检验方法,规范解题步骤及书写格式,加深学生对分式方程解法的认识.课堂小结1.分式方程的概念是什么?2.怎样解分式方程?设计意图:让学生自己总结本节课的内容,帮助学生巩固所学知识,培养学生的总结概括能力.课堂8分钟.1.教材第150页,152页练习,第154页习题15.3第1题.2.作业.第1课时分式方程一、分式方程的概念.二、解分式方程的基本思想——化归.三、解分式方程的一般步骤:1.化——化分式方程为整式方程(去分母);2.解——解整式方程;3.检验——检验所得整式方程的解是否为原分式方程的解.四、例题讲解.教学反思第2课时分式方程的实际应用——工程、行程问题课时目标1.让学生经历用分式方程解决实际问题的过程,体会分式方程是刻画现实世界问题的有效数学模型,培养学生的建模思想.2.通过让学生列分式方程解决具体实际问题,培养学生的数学应用意识,提高学生分析问题和解决实际问题的能力.3.通过列分式方程解应用题,使学生进一步掌握列方程解应用题的方法和步骤,体会检验的必要性,渗透方程思想.学习重点会列分式方程解决实际问题. 学习难点实际问题中相等关系的提炼及转化为方程的过程. 课时活动设计回顾旧知1.解分式方程:1x -2+1=x+12x -4.2.列方程解决实际问题的一般步骤: 审、设、列、解、验、答 .3.常见等量关系式:路程=时间×速度;工作总量=工作效率×工作时间;顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度;利润=售价-进价.设计意图:复习解方程的步骤、列方程解决实际问题的步骤和常见等量关系式,唤醒学生已有的知识体系,为本节课的学习作铺垫.探究新知问题:一艘轮船顺水航行40千米所用的时间与逆水航行30千米所用的时间相同,若水流速度为3千米/时,求轮船在静水中的速度.分析:设轮船在静水中的速度为x 千米/时,则顺水航行的速度为 x +3 千米/时,逆水航行的速度为 x -3 千米/时,顺水航行的时间为 40x+3 小时,逆水航行的时间为 30x -3 小时,根据题意,可得方程 40x+3=30x -3 .解:设轮船在静水中的速度为x 千米/时,则40x+3=30x -3,解得x =21. 检验:当x =21时,(x +3)(x -3)≠0, 所以,x =21是原分式方程的解. 答:轮船在静水中的速度为21千米/时.对比列整式方程解应用题的步骤,学生交流讨论、教师归纳总结出列分式方程解实际问题的步骤:审、设、列、解、验、答.设计意图:用同学们熟悉的实际问题引入分式方程的模型,激发学生对本节课学习的兴趣.通过这道实际问题的解决,加深学生对解分式方程的步骤及解应用题的步骤的认识.典例精讲例1 两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?解:设乙队单独施工1个月能完成总工程的1x .记总工程量为1,根据工程的实际进度,得13+16+12x =1.方程两边乘6x ,得2x +x +3=6x.解得x =1. 检验:当x =1时,6x ≠0. 所以,原分式方程的解为x =1.由上可知,若乙队单独施工1个月可以完成全部任务,对比甲队1个月完成任务的13,可知乙队的施工速度快.例2 某次列车平均提速v km/h .用相同的时间,列车提速前行驶s km,提速后比提速前多行驶50 km,提速前列车的平均速度是多少?解:设提速前这次列车的平均速度为x km/h,则提速前它行驶s km 所用时间为s xh;提速后列车的平均速度为(x +v )km/h,提速后它行驶(s +50)km 所用时间为s+50x+vh .根据行驶时间的等量关系,得s x =s+50x+v .方程两边乘x (x +v ),得s (x +v )=x (s +50).解得x =sv50. 检验:由v ,s 都是正数,得x =sv50时,x (x +v )≠0. 所以,原分式方程的解为x =sv 50. 答:提速前列车的平均速度为sv 50 km/h .设计意图:通过例题让学生巩固解题步骤,规范书写格式,亲身体验建立分式方程解决实际问题的过程,提高学生分析问题和解决问题的能力.课堂小结1.列分式方程解决实际问题的一般步骤是什么?2.工程、行程问题中都存在哪些等量关系式?设计意图:通过小结,让学生回顾本节课所学内容,提高学生的归纳总结能力.课堂8分钟.1.教材第154页练习第1,2题,第154页习题15.3第3题.2.作业.第2课时分式方程的实际应用——工程、行程问题一、列分式方程解决实际问题的一般步骤:审、设、列、解、验、答.二、例题讲解.教学反思第3课时 分式方程的实际应用——销售及其他问题课时目标1.通过使学生经历用分式方程解决销售问题的过程,体会分式方程是刻画现实世界问题的有效数学模型,培养学生的建模思想.2.通过让学生列分式方程解决销售问题,培养学生的数学应用意识,提高学生分析问题和解决实际问题的能力. 学习重点会列分式方程解决销售问题. 学习难点销售问题中相等关系的寻找及转化为方程的过程. 课时活动设计回顾旧知1.列分式方程解决实际问题的一般步骤: 审、设、列、解、验、答 ;2.销售问题中基本量之间有什么关系? 利润= 售价-进价 ;利润率= 利润进价;总价= 单价×数量 ;打折后的销售价= 单价×折扣 ;……设计意图:通过复习列分式方程解决实际问题的步骤和销售问题中常见的基本量之间的关系,唤起学生已有的知识体系,为本节课的学习做好准备.探究新知问题:在某“爱心义卖”活动中,商家购进甲、乙两种文具,甲每个进货价比乙高10元,90元购买乙的数量与150元购买甲的数量相同.求甲、乙的进货价.分析:设甲的进货价为x 元,则乙的进货价为 x -10 元,150元可以购买甲的数量为 150x 个,90元可以购买乙的数量为 90x -10 个,根据题意,可得方程150x=90x -10 .解:设甲的进货价为x 元/个,则150x=90x -10,解得x =25.经检验,当x =25时,x (x -10)≠0,所以x =25是原分式方程的解. x -10=25-10=15.答:甲的进货价为25元/个,乙的进货价为15元/个.设计意图:用同学们熟悉的实际问题题引入分式方程的模型,激发学生们对本节课学习的兴趣,加深学生对解分式方程的步骤和解应用题步骤的认识.典例精讲例 某超市用5 000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又用11 000元购进该品种的苹果,但这次的进货价比试销时的进货价每千克多了0.5元,购进苹果的数量是试销时的2倍.(1)试销时该品种的苹果的进货价是每千克多少元?(2)如果超市将该品种的苹果每次都按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市两次销售该品种苹果共赢利多少元?解:(1)设试销时该品种的苹果的进货价是每千克x 元. 根据题意,得2×5000x=11000x+0.5,解得x =5.经检验,x =5是原分式方程的解.答:试销时该品种的苹果的进货价是每千克5元. (2)试销时购进苹果的数量为50005=1 000(千克),第二次购进苹果的数量为2×1000=2 000(千克).赢利为(1 000+2 000-400)×7+400×7×0.7-5 000-11 000=4 160(元). 答:超市两次销售该品种苹果共赢利4 160元.设计意图:通过例题引导学生再次体会建立分式方程解决销售问题的过程,增强学生对销售问题中基本量之间关系的深刻理解,培养学生的应用意识.教学中,教师应注意鼓励学生积极探究,充分发挥学生的主观能动性,让学生经过自己的努力,最终解决实际问题,体验到获得成功后的喜悦.巩固训练某商城销售一种商品,第一个月将此商品的进价提高25%作为销售价,共获利6 000元.第二个月商场搞促销活动,将商品的进价提高10%作为销售价,第二个月的销售量比第一个月增加了80件,并且商场第二个月比第一个月多获利400元.此商品的进价是每件多少元?商场第二个月共销售此商品多少件?解:设此商品的进价为每件x 元.根据题意,得6000+40025%x =600025%x +80,解得x =500.经检验,x =500是原分式方程的解.6000+40010%×500=128(件).答:此商品的进价是每件500元,商场第二个月共销售此商品128件.设计意图:通过练习巩固所学,提高学生分析和解决问题的能力.课堂小结1.列分式方程解决实际问题的步骤是什么?2.销售问题中常见量之间有什么关系?设计意图:通过小结,让学生回顾本节课所学内容,提高学生的归纳总结能力.课堂8分钟.1.教材第155页习题15.3第7,8题.2.作业.第3课时 分式方程的实际应用——销售及其他问题一、列分式方程解决实际问题的一般步骤:审、设、列、解、验、答.二、销售问题中常见量之间的关系.三、例题讲解教学反思。
第十五章分式15.3 分式方程第1课时一、教学目标【知识与技能】1.理解分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用;2.知道分式方程的意义,会解可化为一元一次方程的分式方程.3. 了解分式方程产生增根的原因,掌握解分式方程验根的方法.【过程与方法】经历“实际问题—分式方程模型”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.【情感、态度与价值观】1.在探索活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.2. 通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】1. 正确、完整地解可化为一元一次方程的分式方程.2.探索如何将分式方程转化为整式方程并掌握解分式方程的一般步骤.【教学难点】产生增根的原因.五、课前准备教师:课件、直尺等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课一艘轮船在静水中的最大航速为20 km/h,它沿江以最大航速顺流航行100 km所用时间,与以最大航速逆流航行60 km所用时间相等,江水的流速为多少? (出示课件2)解:设江水的流速为v km/h,根据题意,得100 20+v =60 20−v这样的方程与以前学过的方程一样吗?(二)探索新知1.创设情境,探究分式方程的概念教师问1:为要解决导入中的问题,我们得到了方程10020+v =6020−v,仔细观察这个方程,未知数的位置有什么特点?(出示课件4)教师问2:方程与上面的方程有什么共同特征?教师问3:上面所得到的方程是我们以前学过的方程吗?学生回答:不是.教师问4:以前我们学过什么方程?试举例说明.学生回答:以前学过一元一次方程和二元一次方程,如x-1=3,x+y=7等.教师问5:仔细观察这两个方程,未知数的位置有什么特点?学生回答:分母中都含有未知数.教师问6:像这种,分母中含有未知数的方程叫做分式方程.,你能再写出几个分式方程吗?学生思考后,找学生回答。
第十五章分式15.3分式方程第1课时一、教学目标(一)学习目标1.了解分式方程的概念.2.会用去分母的方法解可化为一元一次方程的简单的分式方程,体会化归思想和程序化思想.3.了解解分式方程根需要进行检验的原因.(二)学习重点解分式方程的基本思路和解法.(三)学习难点解分式方程过程中产生增根的原因及如何验根.二、教学设计(一)课前设计1.预习任务(1)分母中含__未知数____的方程叫做分式方程.(2)解分式方程的基本思路:利用“__去分母_”法将分式方程化为整式方程.2.预习自测(1)在下列方程中,关于x的分式方程有()①215x=3+216x,②xp=xp,③2(1)1xx--=1,④xm-nm=xn(m,n为非零常数),⑤7x++19x,⑥xm+yn=1(m,n为非零常数).A.1个B.2个C.3个D.4个【知识点】分式方程的定义【解题过程】解:①④⑥分母中没有未知数,不是分式方程;⑤不是等式,所以不是分式方程;②③是方式方程.故选B.【思路点拨】分母中含未知数的方程叫做分式方程【答案】B.(2)若x=3是分式方程2ax--12x-=0的根,则a的值是()A.5 B.-5 C.3 D.-3【知识点】分式方程的有关概念【解题过程】解:把x=3代入分式方程求得a=5.故选A.【思路点拨】利用分式方程的解求a.【答案】A.(3)把分式方程2x+4=1x转化为一元一次方程时,方程两边需同乘()A.x B.2x C.x+4 D.x(x+4)【知识点】分式方程的解法.【数学思想】化归思想【解题过程】解:方程两边同乘以x(x+4),可以转化为一元一次方程.故选D.【思路点拨】方程两边同乘以最简公分母.【答案】D.(4)方程211xx-+=0的解是()A.x=1或-1 B.x=-1 C.x=0 D.x=1【知识点】分式方程的解法.【解题过程】解:左边约分可得x-1=0,则x=1,经检验x=1是原分式方程的解.【思路点拨】先去分母,化为整式求解.【答案】D.(二)课堂设计1.知识回顾(1)一元一次方程:只含有一个未知数,并且未知数的最高次数为1的整式方程叫做一元一次方程.(2)解一元一次方程的步骤:①去分母,②去括号,③移项,④合并同类项,⑤系数化为1.如何解一元一次方程:211 3332x xx-++=-.解:去分母,得18x+2(2x-1)=18-3(x+1).去括号,得18x+4x-2=18-3x-3移项,得18x+4x+3x=18-3+2.合并同类项,得25x=17.系数化为1,得x =1725.2.问题探究探究一 分式方程的概念.●活动① 整合旧知,探究分式方程的概念.问题1:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间与以最大航速逆流航行60千米所用的时间相等,江水的流速为多少?分析:设水流的速度为v 千米/时.(1)轮船顺流航行速度为________千米/时,逆流航行速度为________千米/时;(2)顺流航行100千米的时间为________小时;逆流航行60千米的时间为________小时;(3)根据题意可列方程为______________________________.师生活动: (1) 20+v 20-v ;(2) v +20100 v -2060;(3)v +20100=v -2060 追问1:所列方程与方程2157146x x ---=相比有什么不同? 归纳:像这样分母中含未知数的方程叫做分式方程.追问2:分式方程与整式方程的区别在哪里?通过观察发现这两种方程的区别在于未知数是否在分母上.未知数在_____的方程是分式方程.未知数不在分母的方程是____方程.师生活动:分母、整式.追问3:你能再写出几个分式方程吗?【设计意图】让学生在观察和思考的过程中,发现并概括出分式方程的本质特征,了解分式方程的概念,认识其本质属性——分母中含有未知数.探究二 探索分式方程的解法●活动① 大胆操作,探究新知识问题2:你能尝试解分式方程:100602020v v =+- 吗?师生活动:学生独立思考,并尝试解这个方程,全班交流分式方程的解法.【设计意图】让学生在已有的知识经验基础上,尝试解分式方程.●活动② 集思广益,得出分式方程的解法问题3:这些解法有什么共同特点?师生活动:学生讨论之后,教师总结,上述解法依据虽不同,但解分式方程的基本思想是一致的,即将分式方程转化为整式方程.教师再次提问:思考:(1)如何把分式方程转化为整式方程呢?(2)怎样去分母?(3)在方程两边乘以什么样的式子才能把每一个分母都约去呢?(4)这样做的依据是什么?学生思考后总结:(1)分母中含有未知数的方程,通过去分母就化为整式方程了;(2)利用等式的性质2可以在方程两边都乘同一个式子——各分母的最简公分母.【设计意图】通过探究活动,学生探索出解分式方程的基本思路是将分式方程化为整式方程,并知道解决问题的关键是去分母.●活动③追问 你得到的解v =5 是分式方程的100602020v v=+-解吗? 【设计意图】让学生知道检验分式方程的解的方法-----将未知数的值代入原分式方程的两边,看左右两边的值是否相等.探究三 分析增根产生的原因 ●活动① 增根产生的原因例1 解分式方程:2110525x x =-- 【知识点】 分式方程的解法【数学思想】化归思想【思路点拨】两边都乘以最简公分母(x +5)(x -5),转化为整式方程.【解题过程】解:两边都乘以最简公分母(x +5)(x -5)得x +5 =10解得x =5,问题:x =5是原分式方程2110525x x =--的解吗?该如何验证呢? 小结:x =5 是原分式方程变形后的整式方程的解,但不是原分式方程的解,是增根.产生的原因:在去分母的过程中,对原分式方程进行了变形,而这种变形是否引起分式方程解的变化,主要取决于所乘的最简公分母是否为0.检验的方法主要有两种:(1)将整式方程的解代入原分式方程,看左右两边是否相等;(2)将整式方程的解代入最简公分母,看是否为0.检验:当x =5时,(x -5)(x +5)=0,因此x =5不是原分式方程的解,原分式方程无解. 师生总结:基本思路:将分式方程化为整式方程一般步骤:(1)去分母;(2)解整式方程;(3)检验.注意:由于去分母后解得的整式方程的解不一定是原分式方程的解,所以需要检验. 练习:解分式方程:233x x=-. 【知识点】 分式方程的解法【数学思想】化归思想【思路点拨】两边都乘以最简公分母x (x -3)转化为整式方程,解整式方程得解,再检验.【解题过程】解:两边都乘x (x -3),得2x =3x -9解得x =9检验:当x =9时,x (x -3)≠0.所以,原分式方程的解为x =9【答案】x =9【设计意图】让学生了解分式方程增根的原因,明白解分式方程必须检验.●活动2例2 解分式方程:()()31112x x x x -=--+ 【知识点】 分式方程的解法【数学思想】化归思想【思路点拨】两边都乘以最简公分母(x -1)(x +2)转化为整式方程,解整式方程得解,再检验.【解题过程】解:方程两边乘(x -1)(x +2),得x (x +2)-(x -1)(x +2)=3. 解得x =1, 检验:当x =1时,(x -1)(x +2)=0,因此x =1不是原分式方程的解.所以,原分式方程无解.【答案】无解练习:解方程:-2++2x x 24=14x - 【知识点】 分式方程的解法【数学思想】化归思想【思路点拨】去分母,把分式方程化为整式方程,再解这个整式方程,结果要检验.【解题过程】解: 方程的两边同乘x 2-4,得(x -2)2+4=x 2-4,解得x =3.检验:当x =3时,x 2-4≠0,所以x =3是原方程的解.【答案】x =3.【设计意图】让学生按照规范的步骤和格式解分式方程,在积累解题经验的同时,体会化归思想和程序化思想.●活动3例3 当m 为何值时,关于x 的方程223+242mx x x x =--+的解小于零. 【知识点】 分式方程的解法,不等式的解法【数学思想】化归思想【思路点拨】去分母,把分式方程化为整式方程,再解这个整式方程,又因为方程的解小于零 ,所以转化为不等式,解不等式得结果.【解题过程】解:方程两边都乘以(x +2)(x -2),得2(x +2)+mx =3(x -2),整理,得(1-m )x =10,解得x =101-m. ∵方程的解小于零,∴101-m <0且101-m ≠-2. 解得m >1且m ≠6.【答案】m >1且m ≠6.练习: 已知关于x 的分式方程111x k k x x +-=+-的解为负数,则k 的取值范围是___________. 【知识点】 分式方程的解法,不等式的解法【数学思想】化归思想【思路点拨】去分母,把分式方程化为整式方程,再解这个整式方程,又因为方程的解为负数 ,所以转化为不等式,解不等式得结果.【解题过程】解:去分母,得(x-1)(x+k)-k(x+1)=x2-1.整理,得x=1-2k.依题意,得12121kk<0ì-ïí-贡ïî, 解得k>12且k≠1.【答案】k>12且k≠1.【设计意图】解题时让学生注意原方程分母不为零的这一隐含条件.3. 课堂总结知识梳理(1)分母中含未知数的方程叫做分式方程.(2)解分式方程的基本思想:把分式方程“转化”为整式方程,再利用整式方程的解法求解. (3)解分式方程的方法及一般步骤:①去分母,方程的两边都乘最简公分母,约去分母,化成整式方程;——化整②解这个整式方程;——解整③把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.——验根重难点归纳(1)解分式方程的基本思想;(2)解分式方程的方法及一般步骤;(3)解分式方程过程中产生增根的原因:在去分母的过程中,对原分式方程进行了变形,而这种变形是否引起分式方程解的变化,主要取决于所乘的最简公分母是否为0.(三)课后作业基础型自主突破1.下列方程是分式方程的是()A. x-15+34=1 B.3p+2x=3 C.1x-1=2 D.x+2x-x+33【知识点】分式方程的定义【思路点拨】分母中含未知数的方程叫做分式方程.【解题过程】解:A、B分母中没含有未知数,不是分式方程;D不是等式,所以不是分式方程;C是分式方程.故选C.【答案】C.2.解分式方程1101x+=-,正确的结果是()A.x=0 B.x=1 C.x=2 D.无解【知识点】分式方程的解法【数学思想】化归思想【思路点拨】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解题过程】解:去分母得:1+x﹣1=0,解得:x=0,经检验x=0是分式方程的解,故选A【答案】A.3.将分式方程231-11xx x=--去分母,得到正确的整式方程是()A.1-2x=3 B.x-1-2x=3 C.1+2x=3 D.x-1+2x=3 【知识点】分式方程的解法【数学思想】化归思想【思路点拨】两边都乘以(x-1).【解题过程】解:去分母得:x-1-2x=3,故选B【答案】B.4.当a=________时,关于x的方程12325x ax a+-=-+的解为x=0.【知识点】分式方程的解【思路点拨】把x=0代入分式方程可求解.【解题过程】解:把x=0代入分式方程得0123025aa+-=-+,则a+5= -2(2a-3), 得a=15【答案】1 5 .5.若式子12x-和32+1x的值相等,则x=________.【知识点】分式方程的解法【数学思想】化归思想【思路点拨】列分式方程,去分母,解整式方程可得.【解题过程】解:12x-=32+1x,去分母得:2x+1=3(x-2),解得x=7,经检验x=7是原方程的解.【答案】76.解分式方程413x x-= -【知识点】分式方程的解法【数学思想】化归思想【思路点拨】把分式方程转化成整式方程,求出整式方程的解,再代入x(x﹣3)进行检验即可.【解题过程】解:方程两边都乘以最简公分母x(x﹣3)得:4x﹣(x﹣3)=0,解得:x=﹣1,经检验:x=﹣1是原分式方程的解故答案为:x=﹣1.【答案】x=﹣1.能力型师生共研7.若关于x的方程3333x m mx x++=--的解为正数,则m的取值范围是()A.m<92B.m<92且m ≠32C.m>﹣94D.m>﹣94且m≠﹣34【知识点】分式方程的解、分式方程解法.【数学思想】化归思想.【思路点拨】直接解分式方程,再利用解为正数列不等式,解不等式得出x的取值范围,进而得出答案.【解题过程】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,∵关于x的方程3333x m mx x++=--的解为正数,∴﹣2m+9>0,解得:m<92,当x=3时,x=292m-+=3,解得:m=32,故m的取值范围是:m<92且m≠32.故选B.【答案】B.8.若关于x的方程2222x mx x++=--无解,则m的值是______.【知识点】分式方程的解、分式方程解法【数学思想】化归思想【思路点拨】去分母把分式方程转化成整式方程,再利用分式方程无解,把增根代入整式方程,进而得出答案.【解题过程】解:去分母,得2-x-m=2x-4,即3x=6-m.∵方程无解,∴x=2.把x=2代入3x=6-m,得m=0.【答案】0.探究型多维突破9.小明解方程121xx x--=的过程如下:解:方程两边同乘x得1-(x-2)=1,①去括号得1-x-2=1,②合并同类项得-x-1=1,③移项得-x=2,④解得x=-2,⑤∴原方程的解为x=-2.⑥请指出他解答过程中的错误,并写出正确的解答过程.【知识点】分式方程解法【数学思想】化归思想【思路点拨】按照解分式方程的步骤检查得出答案.【解题过程】解:小明的解法有三处错误:步骤①去分母有误;步骤②去括号有误;步骤⑥前少“检验”步骤.正确解法是:方程两边同乘x,得1-(x-2)=x,去括号,得1-x+2=x,移项,得-x-x=-2-1,合并同类项,得-2x=-3,两边同除以-2,得x=3 2.经检验,x=32是原方程的解.所以原方程的解是x=3 2.10.请你仔细观察下述材料:方程1111123x x x x-=-+--的解为x=1;方程1111134x x x x-=----的解为x=2;方程11111245x x x x-=-----的解为x=3;….(1)请你观察上述方程与解的特征,写出能反映上述方程一般规律的方程,并写出这个方程的解;(2)根据(1)中所得的结论,写出一个解为x=-5的分式方程.【知识点】分式方程解法【数学思想】化归思想【思路点拨】观察总结规律,要从整体和部分两个方面入手,防止片面地总结,得出错误结论.【解题过程】解:(1) 方法一:分式方程中的四个分母都可看作是未知数与一个整数的差,这四个整数左边两个连续,右边两个连续,左右两边不连续,但只间隔一个整数,每个分式的分子都是1,方程的解正好是中间被省略的那个整数,即1111(2)(1)(1)(2)x n x n x n x n-=------+-+,方程的解是x=n(n为整数).方法二:第(1)问的规律方程也可以写成:1111(1)(3)(4)x n x n x n x n-=---+-+-+,此时,方程的解应为x=n+2(n为整数).(2)将x=-5代入上式,可得所求分式方程为11117+6+4+3 x x x x-=-+.自助餐1.下列关于x 的方程中,是分式方程的是( ) A. 23356x x ++-= B. 137x x a -=-+ C. x a b x a b a b-=- D. 2(1)11x x -=- 【知识点】 分式方程的定义【思路点拨】根据分式方程的定义:分母里含有未知数的方程叫做分式方程判断.【解题过程】解:A.方程分母中不含未知数,故不是分式方程;B.方程分母含字母a ,但它不是表示未知数,也不是分式方程;C.方程的分母中不含表示未知数的字母,不是分式方程;D.方程分母中含未知数x ,是分式方程.故选D.【答案】D .2.分式方程21221-93+3x x x -=-的解为( ) A .3 B .-3 C .无解 D .3或-3【知识点】 分式方程的解法【数学思想】化归思想【思路点拨】依据解分式方程的步骤可得.【解题过程】去分母得12-2(x +3)=x -3,解得x =3.经检验,当x =3时,x 2-9=0,即x =3不是原分式方程的解,故原方程无解.故选C .【答案】C .3.当a =________时,关于x 的方程2111ax a x -=--的解与方程43x x-=的解相同. 【知识点】方程的解、分式方程解法.【数学思想】化归思想 【思路点拨】先解分式方程43x x -=,再把它的解代入另一个分式方程可得结果. 【解题过程】解:由方程43x x -=得x -4=3x ,解得x =-2.当x =-2时,x ≠0,所以x =-2是方程43x x -=的解.又因为方程2111ax a x -=--的解与方程43x x-=的解相同,因此x =-2也是方程2111ax a x -=--的解.这时221121a a --=---,解得a =17. 当a =17时,a -1≠0,故a =17满足条件. 【答案】17. 4.若关于x 的分式方程2233x m x x -=--无解,则m 的值为_______. 【知识点】方程的解、分式方程解法【数学思想】化归思想【思路点拨】先去分母得整式方程,再把增根代入整式方程可得结果.【解题过程】解:方程两边都乘x -3,得x -2(x -3)=m 2.∵原方程无解,∴x =3.把x =3代入x -2(x -3)=m 2,得m =±3.【答案】±3.5. 解分式方程:21344-12142x x x x +=-+- 【知识点】分式方程解法【数学思想】化归思想【思路点拨】方程两边同时乘以(2x +1)(2x -1),即可化成整式方程,解方程求得x 的值,然后进行检验,确定方程的解. 【解题过程】解:原方程即132(21)(21)2121x x x x x +=-+-+-, 两边同时乘以(2x +1)(2x −1)得:x +1=3(2x −1)−2(2x +1),x+1=6x −3−4x −2,解得:x =6.经检验:x =6是原分式方程的解。
15.3分式方程第1课时分式方程及其解法一、新课导入1.导入课题:前面我们探讨了分式的有关性质及其运算,在分式的研究中,还有一个重要的内容就是分式方程,今天我们一起走进分式方程.2.学习目标:(1)知道分式方程的概念,(2)会解分式方程.3.学习重、难点:重点:分式方程及其解法.难点:分式方程产生增根的原因.二、分层学习1.自学指导:(1)自学内容:教材第149页到第150页的内容.(2)自学时间:5分钟.(3)自学方法:对照自学提纲,认真阅读课本.重点词句或不理解的地方做上记号.(4)自学参考提纲:①什么样的方程叫分式方程?分母中含有未知数的方程叫分式方程.②解分式方程的基本思路是什么?将分式方程化为整式方程.③将分式方程化成整式方程的关键步骤是什么?去分母,即方程两边乘最简公分母.2.自学:请同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否认识分式方程的特点和分式方程的解法.②差异指导:指导个别学生正确找出最简公分母.(2)生助生:学生之间相互交流帮助.4.强化:(1)判断分式方程的方法是:看分母是否含有未知数.(2)分式方程的关键步骤是去分母,难点是找最简公分母.(3)下列方程哪些是分式方程?④⑤.(4)指出下列方程中各分母的最简分母,并写出去分母后得到的整式方程.解:①最简公分母2x(x+3),去分母得x+3=4x;②最简公分母x2-1,去分母,得2(x+1)=4;③最简公分母3x+3,去分母,得3x=2x+3x+3.1.自学指导:(1)自学内容:教材第150页“思考”到第151页的内容.(2)自学时间:8分钟.(3)自学方法:认真阅读课本,思考去分母后化成的整式方程的解,为什么有的是原分式方程的解,有的不是?对照课本中的例子想想理由.归纳解分式方程的基本步骤.(4)自学参考提纲:①说说为什么解分式方程一定要检验?因为得到的解可能会导致最简公分母为0,即分母为0.②说说解分式方程的检验方法.将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解③解分式方程的一般有哪些步骤? 去分母,解整式方程,检验.④某生在解例2时去分母得x(x+2)-1=3,你认为他错在哪里? 漏乘了最简公分母. ⑤试解方程23511x x =--; 解:去分母,得3(x+1)=5x=53-1=23检验:当x=23时,(x+1)(x-1)≠0, 所以,原分式方程的解为x=23. 32122x x x =--- 解:去分母,得2x=3-2(2x-2) 去括号得2x=3-4x+4 移项6x=7 系数化为1,x=76检验:当x=76时,2(x-1)≠0. 所以原分式方程的解为x=762.自学:同学们结合自学指导进行自学.3.助学: (1)师助生:①明了学情:观察学生在解分式方程过程中易产生错误的环节或步骤. ②差异指导:对学生出现的错误进行分类指导. (2)生助生:交流提纲④,对⑤互相批改、纠错. 4.强化:(1)解分式方程的一般步骤. (2)分式方程的验根方法.(3)分式方程无解的条件.检验:当x=12时,4x2-1=0,因此x=12不是原分式方程的解.所以,原分式方程无解.三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学后体验.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、情感、方法、成果及不足进行归纳点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在本课的教学过程中,应从这样的几个方面入手:(1)分式方程和整式方程的区别:分清楚分式方程必须满足的两个条件:①方程式里必须有分式,②分母中含有未知数.这两个条件是判断一个方程是否为分式方程的必要条件.同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根.正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验.(2)分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分渗透这种化归思想.(3)解分式方程时,如果分母是多项式,应先写出将分母进行因式分解的步骤,从而让学生准确无误地找出最简公分母.另外,对分式方程可能产生增根的原因,要启发学生认真思考和讨论.一、基础巩固(每题10分,共60分)1.下列式子是分式方程的是(C)2.把分式方程两边同乘(x-1),约去分母后,得(D)3.分式方程的解是(D)A.x=1B.x =-1C.x=-14D.无解解:(1)去分母,3x-6+4(x+2)=16去括号,合并同类项7x=14系数化为1,x=2检验:当x=2时,(x+2)(x-2)=0,因此x=2不是原分式方程的解.所以,原分式方程无解.(2)去分母得,(x+1)(x+2)=x(x+4)去括号,合并同类项,得3x+2=4x移项,x=2检验:当x=2时,x(2+x)≠0,所以,原分式方程的解为x=2.二、综合应用(20分)7.已知关于x的方程有增根,求该方程的增根和k的值.解:去分母,得3x+3-(x-1)=x2+kx,整理,得x2+(k-2)x-4=0.因为有增根,所以增根为x=0或x=1.当x=0时,代入方程得-4=0,所以x=0不是方程的增根;当x=1时,代入方程,得k=5,所以k=5时方程有增根x=1.三、拓展延伸(20分)8.解方程:学习小提示同学们,通过这节课的学习,你们学到了哪些知识?明白什么道理?时间就像日历一样,撕掉一张就不会再回来。
15.3 分式方程 ( 一)一、教课目的:知识与技术:能将实质问题中的等量关系用分式方程表示,领会分式方程的模型思想过程与方法:经历研究分式方程观点的过程,研究“实质问题”成立模型的方法感情、态度与价值观:培育从实质问题抽象、归纳分式方程的数学化思想,领会数学的应用价值二、要点、难点1.要点: 会解可化为一元一次方程的分式方程,会查验一个数是否是原方程的解 .2.难点: 会解可化为一元一次方程的分式方程,会查验一个数是否是原方程的解 .3.学习方法: 采纳先回首已学过的一元一次方程观点、解法、建模,而后利用本章前言中的问题引入,理解分式方程化归整式方程这一实质思想三、教课互动设计 1、情境导入提出本册书封面上的一道方程100 60 . 比较剖析新方程和整式方程的差别,揭露 20 v20v新方程的实质特点 .像这样分母中含未知数的方程叫做分式方程 .追踪训练:以下方程中,哪些是分式方程?哪些整式方程?(1)x2x(2)43 7 (3) 1 3(4)x( x1)1 (5)3 x x23x yx 2 xx2(6)2x x 110 (7)x1(8)2x 13x125xx2、充足裸露学生的思想过程,研究解分式方程(1)学生独立研究100 60 的解法20 v20 v(2)全班沟通分式方程的解法(3) 师生共同小结解分式方程的基本思想是一致的,马上分式方程转变为整式方程。
3、剖析无解的原由,突出验根的必需,完美求解的步骤( 1)学生独立解方程:110.x 5x 2 25x=5 这个数会使原分式方程分母为零。
( 2)全班沟通,学生会发现解出的整式方程的指引学生思虑为何会出现这一状况?怎么办理?14师生共同总结解分式方程的步骤(1)去分母。
确立最简公分母,方程两边乘以最简公分母,化成整式方程。
(2)解这个整式方程。
( 3)查验。
即把整式方程的解代入最简公分母,假如最简公分母的值不为0,则整式方程的解是原分式方程的解;不然,这个解不是原分式方程的解,一定舍去.(4)写出分式方程的解。
第十五章分式(一)教材分析本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。
全章共包括三节:15.1 分式15.2 分式的运算15.3 分式方程其中,15.1节引进分式的概念,讨论分式的基本性质及约分、通分等分式变形,是全章的理论基础部分。
15.2节讨论分式的四则运算法则,这是全章的一个重点内容,分式的四则混合运算也是本章教学中的一个难点。
克服这一难点的关键是通过必要的练习掌握分式的各种运算法则及运算顺序。
在这一节中对指数概念的运用从正整数扩大到全体整数,这给运算带来便利。
15.3节讨论分式方程的概念,主要涉及可以化为一元一次方程的分式方程。
解方程中要应用分式的基本性质,并且出现了必须检验(验根)的环节,这是不同于以前学习的解方程的新问题。
根据实际问题列出分式方程,是本章教学中的另一个难点,掌握它的关键是提高分析问题中数量关系的能力。
分式是不同于整式的另一类有理式,是代数式中重要的基本概念;相应地,分式方程是一类有理方程,解分式方程的过程比解整式方程更复杂些。
然而,分式或分式方程更适合作为某些类型的问题的数学模型,它们具有整式或整式方程不可替代的特殊作用。
借助对分数的认识学习分式的内容,是一种类比的认识方法,这在本章学习中经常使用。
解分式方程时,化归思想很有用,分式方程一般要先化为整式方程再求解,并且要注意检验是必不可少的步骤。
(二)教学目标本章教科书的设计与编写以下列目标为出发点:1.以描述实际问题中的数量关系为背景,抽象出分式的概念,体会分式是刻画现实世界中数量关系的一类代数式。
2.类比分数的基本性质,了解分式的基本性质,掌握分式的约分和通分法则。
3.类比分数的四则运算法则,探究分式的四则运算,掌握这些法则。
4.结合分式的运算,将指数的讨论范围从正整数扩大到全体整数,构建和发展相互联系的知识体系。
15.3 分式方程
第1课时分式方程及其解法
【知识与技能】
1.理解分式方程的意义;
2.掌握解分式方程的基本思路和解法;
3.理解解分式方程可能无解的原因,掌握解分式方程的验根方法.
【过程与方法】
通过探索实际问题中的数量关系,体会分式方程的模型作用,在经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题,解决问题的能力,渗透转化的数学思想,培养学生的应用意识.
【情感态度】
在活动中培养学生乐于探索、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.
【教学重点】
解分式方程的基本思路和解法.
【教学难点】
理解解分式方程可能无解的原因,及增根的含义.
一、情境导入,初步认识
问题一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行90千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
【教学说明】让学生求出江水流速为v千米/时后,自主探究,获得方程.然后师生共同评析.教师讲课前,先让学生完成“自主预习”.
思考 (1)方程
9060
3030
v v
=
+-
与以往学过的方程有什么不同之处?
(2)什么叫分式方程?分式方程的特征是什么?
(3)怎样解分式方程
9060 3030
v v
=
+-
呢?
【教学说明】教师提出问题后,学生自主探究,相互交流,得出相应结论.教师应关注学生的参与情况及解决问题的情形,适时予以点拨,最后师生共同评析.
二、思考探究,获取新知
分式方程:分母中含有未知数的方程叫做分式方程.
解分式方程的基本思路是将分式方程运用去分母的方法化成为整式方程. 如:解方程90603030v v
=+-. 解:在方程两边乘的最简公分母(30+v)(30-v ),得
90(30-v)=60(30+v ).
解得v=6.
检验:将v=6代入方程,左边=5/2=右边,所以v=6是原分式方程的解.
试一试 解方程2110525
x x =-- . 思考 上面两个分式方程中,为什么
90603030v v =+-去分母后所得整式方程的解就是原分式方程的解,而2110525
x x =--去分母后所得整式方程的解却不是原分式方程的解呢? 【教学说明】教师提出问题后,学生先独立解决问题,然后在小组中提出自己的看法并讨论.在学生讨论时,教师可参与交流,鼓励学生勇于探索、实践,解释产生这一现象的原因,并让学生明白解分式方程时一定要验根.
【归纳结论】
一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此;解分式方程时必须检验.检验方法可以如下:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;如果使最简公分母为0,则整式方程的解不是原分式方程的解,它是原分式方程增根,原分式方程无解.
三、典例精析,掌握新知
例1解方程233x x
=- . 解:方程两边同乘以x(x-3),得
2x=3(x-3).
解得x=9.
检验:x=9时,x(x-3)=54≠0,∴x=9是原分式方程的解.
例2解方程()
31112x x x x -=--+() . 解:方程两边同乘以(x-1)(x+2),得
x (x+2)-(x-1)(x+2)=3
化简,得x+2=3.
解得x=1.
检验:把x=1代入(x-1)(x+2)=0,x=1不是原分式方程的解,原分式方程无解.
【教学说明】两例都可以让学生自主完成,教师巡视,注意学生的解题格式和解题过程,发现问题,及时点拨,使学生掌握解分式方程的方法.
四、运用新知,深化理解
解下列方程:
【教学说明】学生独立完成,选三名同学上黑板解答,教师巡视,对有困难同学给予帮助,鼓励他们努力完成解答,然后全班同学评析三位上黑板同学的解答,吸取经验,总结问题,帮助自己完善认知.若有时间,教师可引导学生做教材P150练习以帮助学生熟练地解分式方程.
【答案】(1)解:方程两边同时乘以x(x-6),得x-6=7x,解得,x=-1.
检验:当x=-1时,x(x-6)≠0,x=-1是原分式方程的解.
(2)解:方程两边同时乘以(x-1),得x=4+3(x-1),解得x=-1
2 .
检验:当x=-1
2
时,x-1≠0.x=-
1
2
是原分式方程的解.
(3)方程可化简为:
31
22
x x x x
+
-+
=
()()
,两边同乘以x(x-2)(x+2),得3(x+2)
+(x-2)=0,得x=-1.
检验:当x=-1时,x(x-2)(x+2)≠0,x=-1是原分式方程的解.
五、师生互动,课堂小结
1.解分式方程的一般步骤是什么?
2.解分式方程时为什么要检验,说说你的看法.
1.布置作业:从教材“习题15.3”中选取.
2.完成练习册中本课时的练习.
在本课的教学过程中,应从这样的几个方面入手:
(1)分式方程和整式方程的区别:分清楚分式方程必须满足的两个条件:①方程式里必须有分式,②分母中含有未知数.这两个条件是判断一个方程是否为分式方程的充要条件.同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意
义,否则,这个根就是原方程的增根.正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验.
(2)分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分渗透这种化归思想.
(3)解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤,从而让学生准确无误地找出最简公分母.
另外,对分式方程可能产生增根的原因,要启发学生认真思考和讨论.。