信号源基础知识
- 格式:doc
- 大小:91.00 KB
- 文档页数:12
信号源工作原理
信号源工作原理是指在通信系统中产生、改变和传输信号的过程。
信号源通常是由电子器件或电路组成的,它能够将输入的信息转换为相应的电信号,以便在通信系统中传输和接收。
信号源根据工作原理的不同,可以分为模拟信号源和数字信号源。
模拟信号源是通过模拟电路来产生连续的模拟信号。
它通常由振荡器、放大器、滤波器等组成。
振荡器可以产生稳定的原始信号,而放大器和滤波器可以对信号进行增强和处理,以达到所需的信号特性。
模拟信号源可以产生连续的信号,如正弦波、方波等,适用于模拟通信系统。
数字信号源是通过数字电路来产生离散的数字信号。
它通常由数字信号处理器(DSP)、数字逻辑门、数字模拟转换器(DAC)等组成。
数字信号源可以将输入的数字信息转换为
对应的数字信号,并通过数字逻辑门进行逻辑操作和处理,最后通过DAC转换为模拟信号输出。
数字信号源能够产生离散
的信号,如脉冲、序列等,适用于数字通信系统。
在信号源工作过程中,需要考虑信号源的稳定性、精度、频率范围和输出功率等性能指标。
此外,信号源也要与其他组件(如调制器、解调器)相匹配,以确保整个通信系统的正常运行。
总的来说,信号源工作原理是将输入的信息转换为对应的电信
号,并提供合适的信号特性,以满足通信系统的需求。
不同类型的信号源根据其工作原理的不同,可以适用于不同的通信系统。
深度解读信号源所涉及的相关基础知识信号源是四大通用电子测量仪器之一,其他三种是:网络分析仪,频谱分析仪和示波器。
这篇介绍信号源所涉及的相关基础知识。
信号源的最常用的功能是用来产生一个正弦波,所以先从介绍正弦波的特征开始本篇文章。
一、正弦波的信号特性通过正弦波信号的表达等式,可以反映其信号所包含的参数为:信号幅度;频率;初始相位。
信号的频率和初始相位可以包含在信号的相位信息中。
对于理想的正弦波信号而言,其幅度和频率及初始相位应该为确定参数,所以正弦波信号是比较简单的信号。
定义一个连续波信号只需要幅度和频率两方面指标。
图1 正弦波信号特性信号源产生正弦波的典型幅度参数有如下几项:图2 信号源输出正弦波的典型幅度参数信号源要考虑幅度精度,以提高测试的可重复性,降低测试不确定度。
信号源的典型频率参数有如下几项:图3 信号源输出正弦波的典型频率参数信号源的频率精度与参考振荡器的年老化率及校准之后经历的时间有关。
实际正弦波的信号特征比理想信号要复杂的多,需要考虑相位噪声,寄生调频,杂散,如图4所示。
相位噪声在频域反映为噪声边带,在时域上反映为随机的相位抖动,可理解为有随机的噪声对理想正弦信号进行调相。
图4 实际正弦波的信号特征正弦波或连续波信号质量好坏的评估主要在频域上进行,频域上的杂散包含连续和离散成份,它们都对应时域上的失真。
连续的噪声边带称为相位噪声,离散的杂散根据其与基波的频率关系分为谐波和杂波。
相位噪声主要由振荡器内部噪声带来,而谐波杂波的形成与器件的非线性有关:vo(t)=a1vi(t)+ a2vi2(t)+ a3vi3(t)+ ...若输入为理想正弦信号,通过非线性作用输出为:。
信号原理
信号是指在传输过程中携带信息的一种物理量或波形。
它可以是电信号、光信号、声信号等。
信号传输的原理基于信息的编码与解码,以及信号的传输介质。
信号的产生可以通过各种方式实现。
例如,在电子设备中,信号可以通过电流或电压的变化来表示。
在光学设备中,信号可以通过光的强度、频率或相位变化来表示。
在声音传输中,信号可以通过声波的振动幅度或频率变化来表示。
信号的传输一般需要通过传输介质来完成。
常见的传输介质包括导线、光纤和无线电波等。
通过传输介质,信号可以在发送端产生,并在接收端被解码恢复为原始的信息。
在信号传输过程中,通常需要考虑信号的传输损耗和噪声等问题。
传输损耗指的是信号在传输过程中受到的衰减或变形。
噪声则是指在信号传输过程中由于外界干扰或信号源本身的不稳定性而引入的干扰。
为了提高信号的传输质量,在信号传输中常常会引入调制与解调的过程。
调制是将原始信息信号通过调制器转换为适合传输的信号形式,例如将模拟信号转换为数字信号。
解调则是将接收到的信号转换为原始信息信号。
调制与解调的过程可以有效地抵抗传输损耗和噪声的影响。
总之,信号传输的原理是通过信息的编码与解码,以及信号的
传输介质来实现。
在信号传输过程中需要考虑信号的传输损耗和噪声等问题,并通过调制与解调的过程提高信号的传输质量。
通信原理基础知识一、对于信号带宽的理解1.与信息速率的关系:信息速率是时域的说法,带宽是频域的说法。
带宽越宽,信息速率越高。
也可以这样理解,每个信息之间的时域间隔T(一个信息所占间隔)越短,也就相当于提高了速率,T大就意味着其对应频带宽度大。
2.基带信号与带通信号:基带信号的带宽如何得到的呢?可以从数学上来理解,把基带信号x(t)进行傅里叶变换,这就相当于把基带信号分成了无数三角波的积分的线性组合。
从频带上看,信号能量最集中的部分的最高频率fH,就是带宽。
因此,带宽之外还有信号,只是能量较小,工程上忽略不计(切记)。
对于基带信号,理论其带宽一定在f轴上对称(切记)。
但实际上不存在负频率,因此其带宽只有右半部分。
对于带通信号,其带宽全在右半部分。
二、抽样定理(Nyquist定理)(参考通信原理261页图)注:采样周期是时域的说法,采样频率是频域的说法。
对于基带信号m(t)来说,采样周期为T,采样频率fs=1/T,采样后得到的信号是ms(t),对应的频谱为Ms(f)。
从图中可以看出,Ms(f)相当于对原来的频谱M(f)以fs为间隔进行搬移,若要(在接收端或发送端需要)恢复原始信号,必须保证频谱不能重叠,即带内信号不畸变,因此fs≥2fH。
过采样:fs≥2fH只是恢复信号的最低要求。
对于信号来讲,带外有信息,只是能量小,因此fs越大,包含的频谱信息就越丰富,恢复信号ms(t)的失真就越小。
从时域来解释,T越小,就越能体现原始信号的信息,避免错过峰值等重要信息。
因此,过采样可以减小信号的失真。
如果过采样因子为L,则采样频率fs=2BL。
三、编码与调制编码编码是为了保证传输的可靠性,降低误码率。
具体解释:信道干扰中的乘性干扰所引起的码间串扰,可以采用均衡器的方法纠正;而加性干扰则需要通过其他办法解决。
不同类型的信道可以采取不同的差错控制方法。
譬如FEC编码。
大体上是将信号源(可能是模拟的,譬如视频;也可能是数字的)产生的bit流按一定方法编码,然后送入调制。
单元一有线电视系统一、应用场所与作用有线电视系统的主要设置场所为住宅建筑,其主要作用是改善广播电视的收视条件和增强抗干扰性能。
早期的电视都是以无线、空间波的形式来传送电视信号的,这样的优点是设备投资少,见效快,缺点是信号的传送受到地形、地貌的影响,信号质量较差。
为了改善收视效果,人们开发并使用了有线电视系统。
同时在某些场合下还可以进行其他图像、数据、信息传输。
二、组成与工作原理CA TV系统如下图所示,主要由前端系统、传输系统、分配系统三个部分组成。
㈠前端系统前端系统由信号源部分和信号处理部分组成。
1.信号源部分。
信号源部分是对系统提供视频和音频信号等多种信号源。
信号源部分的主要器件有地面电视接收天线、卫星电视接收天线、卫星电视接收机、光缆信号源、各类摄录放像设备、多媒体计算机设备等。
2.信号处理部分。
对系统提供的信号进行必要的处理和控制,其主要器件有天线放大器、宽带放大器、衰减器、调制器、解调器、滤波器、频道变换器、混合器等。
㈡传输系统传输系统的任务是把前端输出的高质量信号尽可能保质保量地送给用户分配网络。
传输系统的质量对整个系统有直接的影响。
其主要器件根据使用的传输线缆的不同而不同。
在电缆传输系统中主要有干线放大器、同轴电缆、均衡器等,在光缆传输系统中主要有光发射器、光接收机、光缆等。
㈢分配系统分配系统是把干线传输的射频信号分配给系统内的所有用户,并保证各用户的信号质量和各用户终端的电平均衡度。
其主要器件有同轴电缆、线路延长放大器、分支器、分配器、用户终端(即电视出口插座)等。
按系统中不同传输介质分类,有线电视系统可以分为全同轴电缆系统、光缆与同轴电缆混合系统、微波与同轴电缆混合系统和全光缆系统。
✧传输系统和分配系统都使用同轴电缆为全同轴电缆系统。
由于电缆对信号的损耗较大,所以全同轴电缆系统目前仅有小型系统还采用这种传输方式。
✧光缆与同轴电缆相结合的系统目前大、中型系统一般均为这种系统。
通常干线用光缆,分配系统用同轴电缆。
有线电视网络基础知识1、概论1.1 引言有线电视是用高频电缆、光缆、微波等传输,并在一定的用户中进行分配和交换声音。
世界上最早的有线电视系统出现在1949年美国俄勒冈州阿斯特利亚镇,为了解决电视阴影区居民收设了增益较高的大型天线,通过电缆把天线接收下来的信号传到居民区分配给用户,这是最早的公共天Television,MATV),现在一般指在公寓、办公楼、小型住宅内的小型分配系统,其特点是只接收开路。
后来逐步发展到具有简易前端的公用天线电视(Community Antenna Television)。
最后发展到现在的线电视技术。
中国最早的有线电视是1973年在北京市北京饭店安装的公用天线系统。
1990年,湖北沙市建立了我国第一个有线电视台。
几十年来,有线电视在世界各地迅速发展起来,从开始只是接收开路电视节目发展到自己制作节目展到上百个频道,从几十个用户的小系统发展到几百万户的大系统,传输距离从几百米发展到几十展到临频传输,从单纯的电缆电视发展到集光缆、电缆、微波于一体的综合系统,从单一的传输电视节从单向传输发展到双向互传等。
今天的有线电视系统虽然还是用CATV来表示,但早已不是原来公用天后来只用同轴电缆传输信号的电缆电视(Cable TV),而是具有双向传输、能够提供全方位服务的现代有线电视是一门综合性的应用技术,它除了应用了传统的电子技术之外,还采用了现代光学技压缩等多种技术的最新成果。
近年来有线电视的发展迅猛,远远超过空间发射电视,并且可以预见有线。
虽然近来卫星数字压缩加密电视通过空间传送到用户已经进入商业市场,而且有人设想在空间建立光多的信息,但从商业上考虑,这种方法代价昂贵。
最好的办法是无线传输和有线传输相结合线系统传输到地面小型用户和家庭或个人。
1.2 有线电视的优点有线电视在世界范围内得以迅猛发展的原因是它具有许多突出的优点。
1.2.1 可以解决位于电视弱场强区和阴影区用户的电视接收问题,提高电视的覆盖率。
信号源基础知识
信号源基础知识
1、认识函数信号发生器
信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。
众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器。
谈及模拟式函数信号源,结构图如下:
这是通用模拟式函数信号发生器的结构,是以三角波产生电路为基础经二极管所构成的正
弦波整型电路产生正弦波,同时经由比较器的比较产生方波。
而三角波是如何产生的,公式如下:
换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。
同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下:
当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。
再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。
同样的同步地改变I1及I2,也可以改变频率,这也就是
信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。
而在占空比调整上的设计有下列两种思路:
1、频率(周期)不变,脉宽改变,其方法如下:
改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性,但其最主要的缺点是占空比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。
但不容否认的在使用上比较好调。
2、占空比变,频率跟着改变,其方法如下:
将方波产生电路比较器的参考幅度予以固
定(正、负可利用电路予以切换),改变充放电斜率,即可达成。
[NextPage]
这种方式的设计一般使用者的反应是“难调”,这是大缺点,但它可以产生10%以下的占空比却是在采样时的必备条件。
以上的两种占空比调整电路设计思路,各有优缺点,当然连带的也影响到是否能产生“像样的”锯齿波。
接下来PA(功率放大器)的设计。
首先是利用运算放大器(OP) ,再利用推拉式
(push-pull)放大器(注意交越失真
Cross-distortion的预防)将信号送到衰减网路,这部分牵涉到信号源输出信号的指标,包含信噪比、方波上升时间及信号源的频率响应,好的信号源当然是正弦波信噪比高、方波上升时间快、三角波线性度要好、同时伏频特性也要好,(也即频率上升,信号不能衰减或不能减太大),这部分电路较为复杂,尤其在高频时除利用电容作频率补偿外,也牵涉到PC板的布线方式,一不小心,极易引起振荡,想设计这部分电路,除
原有的模拟理论基础外尚需具备实际的经验,“Try Error”的耐心是不可缺少的。
PA信号出来后,经过π型的电阻式衰减网路,分别衰减10倍(20dB)或100倍(40dB),
此时一部基本的函数波形发生器即已完成。
(注意:选用π型衰减网络而不是分压电路是要让输出阻抗保持一定)。
一台功能较强的函数波形发生器,还有扫频、VCG、TTL、 TRIG、 GATE及频率计等功能,其设计方式在此也顺便一提:
1. 扫频:一般分成线性(Lin)及对数(Log)扫频;
2. VCG:即一般的FM,输入一音频信号,即可与信号源本身的信号产生频率调制;
上述两项设计方式,第1项要先产生锯齿波及对数波信号,并与第2项的输入信号经过多路器(Multiplexer)选择,然后再经过电压对电流转换电路,同步地去加到图二中的I1、I2上;
3. TTL同步输出:将方波经三极管电路转成0(Low)、5V(High)的TTL信号即可。
但注意这样的TTL信号须再经过缓冲门(buffer)后才能输出,以增加扇出数(Fan Out),通常有时还并联几个buffer。
而TTL INV 则只要加个NOT Gate即可;
4. TRIG功能:类似One Shot功能,输入一个TTL信号,则可让信号源产生一个周期的信号输出,设计方式是在没信号输入时,将图二的SWI接地即可;
5. Gate功能:即输入一个TTL信号,让信号源在输入为Hi时,产生波形输出,直到输入为LOW时,图二SWI接地而关掉信号源输出;
6. 频率计:除市场上简易的刻度盘显示之外,无论是LED数码管或LCD液晶显示频率,其与频率计电路是重叠的,方块图如下:
[NextPage] 2. 任意波形发生器,仿真实验的最佳仪器
任意波形发生器是信号源的一种,它具有信号源所有的特点。
我们传统都认为信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。
可见信号源在电子实验和测试处理中,并不测量任何参数而是根据使用者的要求,仿真各种测试信号,提供给被测电路,以达到测试的需要。
信号源有很多种,包括正弦波信号源,函数发生器、脉冲发生器、扫描发生器、任意波形发生器、合成信号源等。
一般来讲任意波形发生器,是一种特殊的信号源,综合具有其它信号源波形生成能力,因而适合各种仿真实验的需要。
一、函数功能,仿真基础实验室设计人员的环境
函数信号源是使用最广的通用信号源,它能提供正弦波、锯齿波、方波、脉冲串等波形,有的还同时具有调制和扫描能力,众所周知,在我们的基础实验中(如大学电子实验室、科研机构
研究实验室、工厂开发实验室等),我们设计了一种电路,需要验证其可靠性与稳定性,就需要给它施加理想中的波形以辨别真伪。
如我们可使用信号源的DC补偿功能对固态电路控制DC偏压电平;我们可对一个怀疑有故障的数字电路,利用信号源的方波输出作为数字电路的时钟,同时使用方波加DC补偿产生有效的逻辑电平模拟输出,观察该电路的运行状况,而证实故障缺陷的地方。
总之利用任意波形发生器这方面的基础功能,能仿真您基础实验室所必须的信号。
二、任意波形,仿真模拟更复杂的信号要求
众所周知,在我们实际的电子环境所设计的电路在运行中,由于各种干扰和响应的存在,实际电路往往存在各种信号缺陷和瞬变信号,例如过脉冲、尖峰、阻尼瞬变、频率突变等(见图1,图2),这些情况的发生,如在设计之初没有考虑进去,有的将会产生灾难性后果。
例如图1中的a处过尖峰脉冲,如果给一个抗冲能力差的电路,将可能会导致整个设备“烧坏”。
确认电路对这样一个状况敏感的程度,我们可以避免不必
要的损失,该方面的要求在航天、军事、铁路和一些情况比较复杂的重要领域尤其重要。
由于任意波形发生器特殊的功能,为了增强任意波形生成能力,它往往依赖计算机通讯输出波形数据。
在计算机传输中,通过专用的波形编辑软件生成波形,有利于扩充仪器的能力,更进一步仿真模拟实验。
同时由于编辑一个任意波形有时需要花费大量的时间和精力,并且每次编辑波形可能有所差异这样有的任意波形发生器,内置一定数量的非易失性存储器,随机存取编辑波形,有利于参考对比;或通过随机接口通讯传输到计算机作更进一步分析与处理。
[NextPage] 三、下载传输,更进一步实时仿真
在一些军事、航空、交通制造业等领域中,有些电路运行环境很难估计,在实验设计完成之后,在现实环境还需要作更进一步实验,有些实验的成本很高或者风险性很大(如火车高速实验时铁轨变换情况、飞机试机时螺旋桨的运行情况等),人们不可能长期作实验判断所设计产品(例如高速火车、飞机)的可行性和稳定性等;我们
就可利用有些任意波形发生器波形下载功能,在作一些麻烦费用高或风险性大的实验时,通过数字示波器等仪器把波形实时记录下来,然后通过计算机接口传输到信号源,直接下载到设计电路,更进一步实验验证。
综上所述,任意波形发生器是电子工程师信号仿真实验的最佳工具。
我们选购时除关心传统信号源的缺陷——频率精度、频率稳定度、幅度精度、信号失真度外,更应关心它编辑与波形生存和下载能力,同时也要注意它的输出通道数,以便同步比较两信号的相移特性,更进一步达到仿真实验状态。
图1 有尖脉冲的数字信号
图2 有频率突变的方波。