表面等离子共振技术
- 格式:ppt
- 大小:8.04 MB
- 文档页数:76
表面等离子共振技术(surface plasmon resonance technology, SPR)综述作者:刘闯等来源:北京大学单分子与纳米生物学实验室摘要:SPR技术作为检测,分析生物分子相互作用的有效工具,有些国家已经生产出成熟的商业化的SPR传感系统。
对SPR生物传感器的工作原理,应用领域,最新进展作出阐述,并对其在生物分子检测领域的应用和研究发展前景进行了讨论。
引言:表面等离子共振技术(surface plasmon resonance technology, SPR)是20世纪90年代发展起来的一种生物分子检测技术,是基于SPR检测生物传感芯片(biosensor chip)上配位体与分析物作用的一种前沿技术,在20世纪初,Wood观测到连续光谱的偏振光照射金属光栅时出现了反常的衍射现象,并且对这种现象进行了公开描述。
1941年,Fano用金属与空气界面的表面电磁波激发模型对这一现象给出了解释。
1957年,Ritchie发现,当电子穿过金属薄片时存在数量消失峰。
他将这种消失峰称之为“能量降低的”等离子模式,并指出了这种模式和薄膜边界的关系,第一次提出了用于描述金属内部电子密度纵向波动的“金属等离子体”的概念。
2年后,Powell和Swan用实验证实了Ritche的理论。
随后,Stem和Farrell 给出了这种等离子体模式的共振条件,并将其称为“表面等离子共振技术(surface plasmon resonance , SPR)”。
1968年,Otto和Kretschmann等人研究了金属和介质界面用光学方式激发SPR的问题。
并分别设计了两种棱镜耦合方式。
此后, SPR技术获得了长足的发展。
1990年,国际上第一台商业生产的生物传感器在瑞典的Biocore公司诞生。
实践证明,SPR传感器与传统检测手段比较,具有无需对样品进行标记,实时监测,灵敏度高等突出优点。
所以,在医学诊断,生物监测,生物技术,药品研制和食品安全检测等领域有广阔的应用前景。
表面等离子共振法
表面等离子共振法是一种用于研究生物分子相互作用的技术。
它基于表面等离子共振现象,通过将生物分子固定在金属薄膜表面上,利用激光束照射金属薄膜,测量反射光的强度和相位变化,从而得到生物分子的结合情况和亲和力等信息。
表面等离子共振法具有灵敏度高、实时性强、无需标记等优点,因此被广泛应用于生物医学研究、药物筛选、生物传感器等领域。
在生物医学研究中,表面等离子共振法可以用于研究蛋白质、抗体、核酸等生物分子的相互作用,从而深入了解生物分子的结构和功能,为疾病的诊断和治疗提供重要的理论基础。
在药物筛选中,表面等离子共振法可以用于评估药物与靶分子的亲和力和特异性,从而筛选出具有高效、低毒副作用的药物,为药物研发提供重要的技术支持。
在生物传感器中,表面等离子共振法可以用于检测生物分子的浓度和活性,从而实现对生物过程的实时监测和控制,为生物医学工程和生物制造提供重要的技术手段。
总之,表面等离子共振法是一种重要的生物分子相互作用研究技术,具有广泛的应用前景和重要的理论和实践价值。
表面等离子体共振传感技术的发展与应用随着科技的不断发展,传感技术也日新月异。
表面等离子体共振传感技术(SPR)作为目前最先进的生物分析技术之一,被广泛应用于生物芯片、药物筛选、生物传感器等领域。
本文将从表面等离子体共振原理、传感技术的演变和应用案例等方面为您介绍表面等离子体共振传感技术的发展与应用。
一、表面等离子体共振原理表面等离子体共振(Surface Plasmon Resonance, SPR)源于表面等离子体的产生与传播。
表面等离子体(Surface Plasmon, SP)是电磁波在金属与介质接触界面上产生的电子振荡模式。
当SP在金属表面与介质中的折射率的平衡点发生改变时,SP发生共振现象。
共振角度与介质中分子浓度成反比,故可通过实时检测共振角度的变化,间接测量分析物与生物分子之间的相互作用。
二、传感技术的演变表面等离子共振是一种实时、不需标记、无需特定洗涤步骤、无需纯化或分离的敏感且广泛应用的检测技术。
随着技术的发展,其在不同领域的应用也越来越广泛。
1.药物筛选表面等离子共振可用于开发靶向药物,如癌症治疗药物的研制。
以免疫抑制剂为例,可使用类似共轭缩合物LOV2FMN-BP1等方法,实现药物与抗体的共价结合,并依靠SPR技术进行筛选。
2.生物传感器表面等离子共振传感器是一种应用广泛的生物分析技术。
SPR传感器可以检测一种实时反应,并且不需要荧光或者其他的标记物质。
因此,SPR传感器被广泛应用于肿瘤、心血管疾病等领域,涉及医疗及疫苗研发等众多领域。
3.生物芯片表面等离子共振技术可用于生物芯片检测系统。
消费者的测试物质(如肝炎病毒或癌细胞)通过血液或其他生物样本传送到生物芯片测试系统。
当测试物与芯片接触时,通过SPR技术获取反应曲线。
三、应用案例表面等离子共振传感技术广泛应用于药物筛选、生物传感器、生物芯片等领域,其中最为广泛的应用为药物筛选。
以达菲那铂(Danaparoid Sodium)为例,配合SPR传感技术,快速检出药品成分,从而保证药品质量。
表面等离子共振技术表面等离子共振技术(简称SPR)是一种近红外波段技术,它用于研究物质表面之间的相互作用,并成为生物物理学研究的新工具。
SPR技术具有高灵敏度、高大分辨率、快速实时响应等优点。
此外,它可以较好地用于实验室分析和监测血清中的抗原和抗体。
表面等离子共振的原理是,将特定的光源引入抽油管中,然后将抽油管中的光向下倾斜入光管中。
随着光管中折射率不同的液体反射该光源,光源随着反射而发射,发出的光被检测器检测。
当物质表面上的分子结构改变时,由检测器检测到的发射信号会发生变化。
表面等离子共振技术的应用领域有很多,包括生物分子分析、监测血清中的抗原和抗体、检测血清中的药物和毒素等。
例如,可以用SPR技术来检测定量的蛋白质和药物,以及血清和细胞的相互作用。
此外,SPR技术可用于检测血清中的生物标志物,以及特定疾病的风险评估和诊断。
最近,表面等离子共振技术受到了越来越多的关注,因其对生物分子相互作用的高精度测定以及对血清中的抗原和抗体的检测而被广泛应用。
近几年,SPR技术的研究和应用取得了较大的进展,如开发了新的灵敏度更高的传感器和更快速的测量技术。
此外,研究者也提出了基于SPR技术的新结构传感器用于测量生物标志物。
SPR技术为研究人员提供了一种灵活方便的分析技术,它在血清和细胞表面之间相互作用的研究中发挥着重要作用。
然而,目前SPR 技术仍然存在着一些不足。
例如,它的发展仍然相对落后,系统和设备价格昂贵,而且还不能满足生物分子的高精确性测量要求等。
为了改善SPR技术的缺陷,研究人员正在努力改善传感器的设计和性能,研发新的接收机技术,并开展新的研究,以确定更精确的表面分子结构。
总之,表面等离子共振技术已成为生物物理学研究的新工具,具有广阔的应用前景,有望在血清和细胞表面相互作用的研究中发挥重要作用。
前景展望表面等离子共振技术是一种有前途的技术,预计将在血清分析和药物研发中发挥重要作用。
随着技术的进步,SPR技术应用领域将越来越多,将得到更广泛的应用。
表面等离子共振技术原理表面等离子共振(Surface Plasmon Resonance,SPR)是一种基于光谱学的生物分析方法,其原理可以用于监测分子间的相互作用、分析生物分子结构及其组装、以及监测细胞活性等多个领域。
本文主要介绍SPR技术的原理。
1. SP光,金属薄膜和介质的相互作用SPR技术是建立在SP光的基础上的,需要了解SP光如何被金属薄膜和周围介质相互作用。
SP光是指在金属表面和空气或水等介质之间的界面处,由于金属的自由电子在界面处聚集成电子云而产生的电磁辐射波。
这个电磁辐射波被称为表面等离子波。
SP光的频率与金属薄膜的厚度、形态和材料有关。
当金属薄膜的厚度、形态和材料发生改变时,SP光的频率也会发生变化。
介质(如水)的折射率对SP光的频率也有影响。
当SP光遇到与介质中其它分子之间有相互作用的分子(如蛋白质、核酸和多糖等分子)时,SP光的频率也会发生改变。
这是因为分子的介入会改变周围介质的折射率,导致SP光频率的变化。
SPR技术可用于监测分子之间的相互作用。
2. SPR实验装置及实验原理SPR实验装置主要由显微镜、激光、检测器、样品流动系统等组成。
显微镜用于在金属薄膜表面观察SP光在不同条件下的变化;激光用于产生SP光;检测器用于测量SP光的强度和频率;样品流动系统用于将待测样品(如蛋白质溶液)输送到SP芯片表面。
SPR实验分为四个步骤:1)基线调整;2)样品注入;3)流路清洗;4)数据分析。
当样品注入到SP芯片表面时,如果样品中含有目标分子(如蛋白质),则会与固定在SP芯片表面上的适配分子(如抗体)发生特异性结合,并改变SP光的频率和强度。
数据分析可根据SP光频率的变化来计算分子间相互作用的亲和力、结合常数、动力学参数以及浓度等信息。
3. SPR技术的优点和应用SPR技术有多个优点:1)SPR技术的检测限度低,可以检测到微量分子相互作用;2)SPR技术对样品的处理很少,可以直接用生物样品进行测试;3)SPR技术的实验操作简单和快速;4)SPR技术可实现实时检测,结果直接可视化。