钢轨波磨
- 格式:doc
- 大小:20.00 KB
- 文档页数:2
地铁钢轨波磨的特征及治理措施摘要:钢轨波磨就是指轨道在纵轴方向上因摩擦产生的一种波纹状耗损现象,且伴有不同的波长和振动频率。
这种波磨现象会让车辆在经过时发出噪音、发生明显的摇晃,降低人们的乘坐舒适程度,缩短车辆及其结构部件的使用寿命,从而增加了其运行的危险程度,因此对于钢轨波磨要及时采取防范和控制措施,不能任波磨现象持续发展。
本文通过对地铁钢轨波磨的特征进行研究,提出控制钢轨波磨的治理措施。
关键词:地铁轨道;钢轨波磨;磨损治理钢轨波磨是一种非常繁杂的,因车辆行驶时车轮转动接触轨道产生的物理现象。
这种现象在公路、汽车轮胎、火车轨道等具有反复滚动接触情况的位置时常发生。
而波磨现象的存在对人们的出行造成了严重困扰,所以人们对这一问题的解决进度逐渐提高了关注程度。
很多相关专业人员也加大了对波磨治理措施的研究力度,以便减少新的轨道产生波磨现象,同时控制现存轨道波磨状况的继续发展。
1.地铁钢轨波磨的特征虽然如今地铁轨道在世界各个地区均有设置,其构造多种多样,行驶的地铁车型、路线也存在差异,但是所形成的钢轨波磨在经过专业人员研究后发现,其仍具备了时间集中性、曲线、车辆和轨道结构相关性等共有特征。
1.1时间集中性钢轨波磨的严重情况多发生在新线开通和线路改建的前期。
如美国某地区的轨道电车是在1889年开始运行,但在六年后,轨道就开始产生很大的波磨现象;甚至有些地区的轨道仅仅运行六个月就出现了钢轨波磨;对于西班牙和巴黎的地铁,都在曲线轨道上发现了钢轨波磨,有些地区在投入了弹性车轮后也在短时间内出现了曲线波磨;即使是在对轨道改造过路线后的地区,仍避免不了波磨现象的发生;北京、南京等地大都也在地铁运行后的1~6个月内发生了轨道波磨情况。
1.2曲线相关性研究结果显示,钢轨波磨在半径较小的曲线轨道上最为常见,在半径较大的曲线和直线轨道上偶尔发现。
比如:中国、法国、德国、美国等大部分地区的钢轨波磨线路均是以弧形为主的。
通常,曲线上的波磨在低位置的轨道处较为明显,但一般来说,低位置轨道处的波磨较短,高位置的轨道处波磨较长。
钢轨波磨研及整治措施研究分析摘要:钢轨波浪形磨耗(简称钢轨波磨)是钢轨磨耗的主要形式之一。
随着铁路、高铁、地铁的迅速发展,钢轨波磨成为了铁路行业关注的重要轨道病害之一。
钢轨波磨不仅影响了行车舒适性,增加了维修工作量,更是行车的一大安全隐患。
本文结合轨道的结构及各地区轨道波磨形成特点分析轨道波磨的形成原因,及探讨轨道波磨的整治措施。
关键词:钢轨;波磨;整治措施一、波磨研究现状钢轨波磨是铁路工业界难以解决的技术问题。
从1863年第一条地铁建成至今已有一百五十多年的历史,人们对钢轨波磨的观察和研究也有一百余年。
虽然人们通过受力分析、波磨规律分析及数值计算推理对钢轨波磨初始形成和发展机理的有了很深的认知,但迄今为止还没有一种大范围统一的理论来解释波磨形成和发展的机理,以及影响波磨发展的因素。
近年来,列车速度、轴重、车流密度随着人类发展也在迅速提高,同时钢轨波磨带来的安全问题及成本问题也愈发明显。
我国随着高铁、地铁近几年的飞速发展,也掀起了对钢轨波磨研究的浪潮。
二、波磨形成特点分析经过近年来大量的调查研究,可以总结钢轨波磨有以下特点:1、钢轨波磨多发生在小半径曲线地段。
曲线半径在600m以下的曲线均存在不同程度的波磨,且曲线半径越小,波磨越严重。
因线路曲线段由两个曲率和超高不断变化的缓和曲线、一个曲率及超高均固定的圆曲线组成,当车辆从直线地段进入小半径曲线轨道的时候,会受到各种因素的影响,主要有轨道结构参数、轮轨几何型面和转向架结构等。
其中,轨道结构参数主要有外轨超高、曲线半径、缓和曲线长度和轨底坡等。
如果这些曲线参数设置不当或现场调试不当,将直接导致轮轨接触关系不稳定,这将是产生轮轨波磨的因素之一。
2、小半径曲线多出现在下股钢轨,且上股钢轨侧磨严重的地段,下股钢轨波磨越严重。
经试验研究,在曲线中,下股钢轨的磨耗指数要大于上股钢轨,这表明下股钢轨因磨耗而消耗的能量消耗要大于上股钢轨,所以在曲线上下股钢轨的波形磨耗要比上股钢轨严重。
钢轨波磨的原因及措施
嘿,朋友们!今天咱就来好好聊聊钢轨波磨这个事儿。
你们知道钢轨波磨是啥不?就好比一条原本平坦光滑的道路,突然变得坑坑洼洼一样!那这钢轨波磨又是咋出现的呢?
原因之一啊,就像是人走路走多了会累一样,火车长时间在钢轨上跑啊跑,钢轨也会受不了呀!钢轨长期受到车轮的反复作用,久而久之不就出现磨损啦!比如那些繁忙的铁路线,火车来来往往那么频繁,钢轨能不遭罪嘛!
还有啊,要是钢轨本身质量就不太好,那不就更容易出现波磨啦!这就好比一个身体不太强壮的人去干重体力活,肯定更容易出问题呀!就像有的钢轨,材质啊、工艺啊不过关,怎么能经得住那么高强度的“折腾”呢!
那面对钢轨波磨,咱能做点啥呢?首先呀,得像照顾病人一样,定期给钢轨做检查呀!及时发现问题,才能早点解决嘛。
而且呀,在铺设钢轨的时候,就得选质量好的,可别为了省那点钱,到后面弄出一堆麻烦。
就跟咱买东西一样,不能光图便宜,得看质量呀!
咱再说说维护方面,是不是得像给汽车保养一样,时不时给钢轨也做做保养呀!该打磨就打磨,该休整就休整。
就像你要是头发长了不剪,多难看呀,钢轨也是同理呀!
反过来说,如果咱不重视钢轨波磨这个问题,那后果可严重啦!火车跑起来不稳定,乘客坐着能舒服嘛!还可能增加事故发生的风险呢,这多吓人呀!所以呀,大家都要重视起来。
在我看来,钢轨波磨可不是小事情,我们必须认真对待,从源头抓起,做好预防和维护工作,这样才能让钢轨更好地为我们服务呀!。
城市轨道钢轨波磨研究摘要:地铁线路钢轨波磨在不同类型轨道的钢轨波磨出现固定频率特性。
本文主要就城市轨道钢轨在不同情况下的波磨进行研究,供同行借鉴参考。
关键词:地铁;波磨分类;减振扣件一、我国地铁钢轨波磨分类根据我国地铁钢轨波磨特征,可将钢轨波磨按照其频率特征分为:低频(40-140Hz)波磨、中频(140-300Hz)波磨和高频(300-1500Hz)波磨。
不同轨道类型的钢轨波磨的频率特征总结见图1所示。
可知,减振型扣件轨道的直线和曲线段波磨均为中高频波磨;普通扣件轨道和浮置板道床轨道曲线段表现为低频波磨,其直线段为高频波磨;弹性短轨枕轨道波磨为中频波磨;梯形轨枕轨道波磨为中低频波磨。
图1我国地铁不同轨道类型的钢轨波磨的频率特征。
(一)"减振扣件型"短波长波磨:我国地铁减振型扣件(包括:剪切型减振扣件、浮轨式扣件和压缩型减振扣件)轨道在直线和曲线段均易产生30-63mm短波长钢轨波磨,且在曲线波磨较直线表现严重,波磨幅值(波峰到波谷距离)范围为化0.5-0.25mm。
由于在不同曲线半径上,车辆运营速度不同(40-90km/h),因而钢轨波磨的通过频率表现在200-840Hz。
该频带不在P2共振频率(30-120Hz)和钢轨垂向Pinned-Pinned共振频率(950-1200 Hz)的范围。
对于减振型扣件轨道这种确定的短波长特征(30-63 mm)和波磨通过频率(200-840 Hz的现象,定义为“减振扣件型”短波长波磨。
目前地铁减振扣件型短波长波磨主要会造成轮轨的中高频(200-840 Hz振动,引起车轮、钢轨、扣件系统(包括:弹条,橡胶垫板,螺栓等)和车辆转向架部件等的过早疲劳失效;也导致了严重振动噪声问题。
(二)"P2共振型”中波长波磨:地铁非减振普通扣件轨道(简称普通扣件轨道)在所有小半径(R<800m)曲线段均出现钢轨波磨现象,其波长为100-250mm,对应的波磨通过频率范围为50-140 Hz。
钢轨损伤之钢轨波磨班级:09城轨1班钢轨波磨是轨道损伤的一种主要类型,它是钢轨沿纵向表面出现的周期性的类似波浪形状的不平顺现象,有波长和峰谷两种属性。
钢轨波磨分为三种类型:1、极短波距波形;2、短波距波形;3、;坡度4、5、,暗坑、生剧烈振动,促使轨道和机车车辆相关部件伤损的产生和发展,从而增加维修费用;由于列车通过波磨地段时引起轨道剧烈振动,致使道碴粉化速率加快,道床翻浆冒泥,轨道扣件松动,螺纹道钉、轨距杆大量折断,轨枕空吊,胶垫损坏等,从而极大地增加了工务维修费用。
2、噪声污染机车车辆通过波磨地段时会产生很大的噪声,对铁路沿线居民带来很大的危害。
同时这种噪声也会影响乘客,使他们产生不舒适感。
3、安全隐患如钢轨波磨严重,车辆通过波峰时冲击力急剧增大,而通过波谷时受力减小,这就容易引起列车减载脱轨,还容易引起钢轨和车轴的断裂,影响行车安全。
4、增加能耗由于波磨轨面的不平顺,导致轮轨粘着不良,相应地增加了轮轨运行阻力。
另外由于轮轨系统振动加剧,导致部件伤损率增加,消耗大量能量,而这些能量都必须由机车牵引力提供,从而增加能耗。
波磨的预防和减缓措施:1、减少钢轨接头,降低接头冲击设焊接无缝线路,尽可能减少接头或铺设冻结无缝线路,将接头冲击降到最低。
加强接头处道碴捣固,保持道床丰满并加以夯实,及时清筛接头范围内的板结道床。
2、增强轨道弹性,提高轨道阻尼增强轨道弹性可有效地减小轮轨系统振动强度,提高轨道阻尼可明显降低波磨发展速率。
具体措施为:采用优质道碴,补足道床厚度;及时清筛道床并适当缩短道床清筛周期;对道床粉化、坍塌及翻浆冒泥地段及时整治。
3、减少轨道不平顺强曲线轨道的养护,提高曲线圆顺度;消除钢轨死弯和轨头掉块。
使用大型养路机械进行线路维修作业4、5、。
钢轨波形磨耗的影响因素及减缓措施摘要:本文对波形磨耗的原因进行了解和归纳。
对波磨成因理论的正确性和减缓波磨措施的有效性进行了有力的证明。
关键词:钢轨;波形磨耗;影响因素;减缓措施对钢轨波形磨耗的成因进行了深刻探讨。
钢轨波磨就是在具有某些条件下轮对粘滑振动造成的钢轨不均匀磨损,由于长时间反复摩擦造成的。
轮轨系统的动力在不停的改变,可以让轮对粘滑振动表现出各种形态,和多种波磨相对应。
一般的情况下来说,大多数波磨形成的过程中,决定着波磨的发展。
另外有其他原因,虽然只是影响波磨发展速率,但它不是决定波磨是否存在的原因。
控制这些因素也可以有效的减缓波磨。
1线路条件对波磨的影响1.1曲线半径研究表明,如果线路曲线的半径越小,轮轨就越容易出现滑动,导致轮对粘滑振动以及波磨轻松就形成。
把曲线半径变大,即便波磨出现,它的发展速度也非常慢。
只有曲线半径大到一定程度,并伴有各种不利条件,才有可能出现轮对粘滑的振动。
如果曲线有更大的半径,即便有所有的不利条件加在一起,也不会发生轮对粘滑振动和波磨,我们把这样的半径称之为波磨形成临界半径。
通过对波磨进行现场实验,得出有一定证明力的结论,也同时说明泼磨临界半径的存在。
但是波磨临界半径的形成是非常困难的。
主要是存在各种不利条件,比如轮轨接触特性、轨道刚度和阻尼、轨道不平顺等一系列问题。
1.2轨道阻尼粘滑振动就是低轨道阻尼下轮的振动,转向架上前后两车轮振动效应叠加,给轮对粘滑振动的压力加大,波磨就非常容易产生。
如果在正常阻尼下,轮对就不容易发生粘滑振动,就容易减少磨耗功,波磨就很难形成。
由此可得,轨道阻尼对波磨的形成有着很大的影响。
据统计,低轨道阻尼下波磨的形成速度要快一倍以上。
1.3外轨超高通常情况下,外轨超高或欠超高对波磨都是不利的。
例如,外轨超高会致使粘滑振动强度受干扰,若是外轨欠超高则会导致粘滑振动强地大大减少。
在这种情况下,若是外轨超高,那么外侧的粘滑振动指数强度会不断提升。
地铁钢轨波磨调研及原因\对策分析摘要:通过对发生波磨现象的北京地铁线路进行现场调查,总结出北京地铁钢轨波磨的主要特征。
分析钢轨波磨产生的原因,发现轨道刚度、阻尼、自振频率、线路平顺性、钢轨硬度及地铁的线路和运营特征是钢轨波磨的敏感因素。
针对新建和既有地铁线路,分别提出预防和解决钢轨波磨的对策。
关键词:钢轨;波磨;调研;原因;对策钢轨投入运行后在表面形成一定规则的周期不平顺现象,就是常见的波浪形磨损,简称波磨(Corrugation)。
到20世纪70年代,由于高速重载列车的大量运用,钢轨波磨现象日益严重,由此引发了各国学者对钢轨波磨起因研究的浪潮,形成了许多有价值的波磨形成假说和分析模型[1]。
但至今未形成一个统一有效的理论模型来解释波磨初始形成和发展的机理以及波磨形成的关键因素[2]。
国内外的大量学者多从不同角度对铁路客运线路和重载货运线路钢轨波磨进行了深入的研究,并从多角度给出了预防和治理钢轨波磨的措施。
然而,随着近十年来城市轨道交通在我国的飞速发展,钢轨波磨在地铁运营中产生的负面影响也日益凸显。
例如在北京地铁已通车的4、5、10号线上,局部减振轨道通车不到一年便发生了钢轨波磨,严重的地段钢轨打磨后波磨重现时间仅2~4个月。
这种出现时间早、复发周期短、打磨后反复发生的波磨现象被称为钢轨异常波磨现象。
地铁钢轨波磨不仅引起了强烈的振动和噪声,增加了养护维修费用,还影响到行车安全,因此有必要对波磨的状况及影响因素进行调研分析,为综合治理钢轨波磨问题提供对策。
1 北京地铁钢轨波磨的现状调查通过北京地铁近几年通车的几条线路的现场调研和运营单位提供的打磨记录情况,得到钢轨波磨的特征如下:1.1 钢轨波磨出现时间早,个别线路开通运营仅1个月便在梯形轨枕地段发现了钢轨波磨现象。
1.2 钢轨波磨情况严重:调查发现,异常波磨地段最大矢度达到0.5mm,波长20mm~ 200mm。
1.3 异常波磨地段振动及振动诱发噪声增加显著:现场实测表明,在异常波磨地段,由波磨引起的环境噪声增大约15dB(A)。
钢轨波浪形磨耗原因分析与对策
钢轨波浪形磨耗是指钢轨表面形成周期性的波浪状磨损现象,严重影响列车行车安全和运输效率。
本文将分析钢轨波浪形磨耗的原因,并提出相应的对策。
钢轨波浪形磨耗的原因主要有以下几点:
1. 车辆荷载:列车在行驶过程中,会产生较大的荷载,使钢轨不断受力变形,从而引起波浪形磨耗。
特别是在曲线区段,由于轨道内外侧的切向受力不均衡,容易造成轨道波浪磨耗现象。
2. 制动力磨耗:列车制动时,制动摩擦力会使钢轨表面产生较大的摩擦力,导致波浪形磨耗。
特别是在陡坡和弯道区段,受力更加复杂,制动力磨耗更为明显。
3. 线路设计:线路在设计时,曲线半径、坡度和超高等参数设置不合理,会导致列车在行驶过程中产生较大的横向力和纵向力,增加了钢轨波浪形磨耗的风险。
对于钢轨波浪形磨耗问题,可以采取以下对策:
1. 加强巡视检查:加大对钢轨的巡视频率,及时发现和处理波浪形磨耗问题,防止事故发生。
通过定期测量钢轨几何参数,及时调整线路,减少波浪形磨耗的发生。
2. 提高材料质量:选用高强度、耐磨损的材料制造钢轨,提高其使用寿命,减少波浪形磨耗的发生。
3. 控制运输荷载:合理控制列车的荷载,减少轮轨接触力和钢轨的受力变形,降低波浪形磨耗的风险。
4. 加强线路维护:加大对线路维护的力度,及时清理铁屑、砂石等杂物,保持钢轨表面的光滑度,减少钢轨波浪形磨耗的发生。
钢轨波浪形磨耗是列车运行中的一个常见问题,对于保证列车行车安全和提高运输效率具有重要意义。
通过采取合理的设计措施和维护方法,可以有效预防和减少钢轨波浪形磨耗的发生,提高线路的安全性和运输效率。
浅析钢轨波形磨耗成因及防治摘要:钢轨是铁路的重要组成部分,其质量将影响铁路工程的应用,不仅对铁路的寿命有直接影响,而且对铁路列车的安全产生影响。
本文就钢轨磨耗成因及预防措施进行了研究。
关键词:钢轨波形磨耗;成因;影响因素;防治前言钢轨波形磨耗是线路上常见的钢轨病害之一。
钢轨波形磨耗会引起很高的轮轨相互作用力,加速机车车辆和轨道各组成部分的损坏,以至影响列车安全。
随着我国高速铁路的长期运营,钢轨波磨问题越来越受到重视。
1波磨的成因钢轨波形磨耗是指钢轨顶面纵向规律性的起伏不平的磨耗现象。
钢轨波形磨耗会增大轮轨振动和噪声,加大钢轨和轮对的荷载,能引起很大的轮轨附加动力,额外消耗牵引能源,加速轨面伤损和道床永久变形,增加维修养护费用,大大减小其使用寿命,甚至会影响行车安全。
钢轨波磨按波长分为波纹形和波浪形两种。
波纹形磨耗的波长为30-60mm,波幅为0.1-0.4mm,这种轨顶周期性不平顺,多发生在高速行车地段。
波浪形磨耗的波长为60-3000mm,波幅为2mm以下,主要发生在低速重载铁路上。
钢轨的波形磨耗主要发生在道岔区段钢轨、曲线地段钢轨、线路下沉地段的钢轨、难于经常维持道床捣固密实的钢轨、道床板结弹性差的钢轨以及轨道结构受约束较多较复杂的钢轨。
1.1曲线区段波形磨耗产生原因波形磨耗多出现在曲线地段,同时曲线半径越小,出现和发展的速率越快。
在曲线处轨道结构受到的作用力相对于直线路段是存在加成的,轮轨之间作用加大,波磨情况必然加剧。
轮对在曲线地段的振动表现为粘滑振动,在半径较小的曲线地段,轮轨间蠕滑力接近饱和,轮轨间磨耗功发生剧烈波动,造成钢轨的不均匀磨损或压溃。
列车通过时,由于载重的相对集中以及轨道不平顺、轨距、超高等,使轮对粘滑振动被激化 ,既定钢轨点的磨损或压溃不断发生重复和累加 ,逐步形成钢轨波磨。
1.2道岔地段波形磨耗产生原因道岔是机车车辆实现转线的重要线路设备,道岔结构复杂,钢轨形态变换、轨距加宽、线路超高、轨底坡设置等情况较多,使道岔区段具有多变的轮轨关系,又因其平面设计条件有限,这就导致轮对粘滑振动加剧,钢轨与列车间的相互作用相较于其他轨道更加复杂,钢轨磨耗情况更为严重。
钢轨损伤之钢轨波磨
班级:09城轨1班
钢轨波磨是轨道损伤的一种主要类型,它是钢轨沿纵向表面出现的周期性的类似波浪形状的不
平顺现象,有波长和峰谷两种属性。
钢轨波磨分为三种类型:
1、极短波距波形;
2、短波距波形;
3、;坡度
4、
5、,暗坑、
生剧烈振动,促使轨道和机车车辆相关部件伤损的产生和发展,从而增加维修费用;
由于列车通过波磨地段时引起轨道剧烈振动,致使道碴粉化速率加快,道床翻浆冒泥,轨道扣件松动,螺纹道钉、轨距杆大量折断,轨枕空吊,胶垫损坏等,从而极大地增加了工务维修费用。
2、噪声污染
机车车辆通过波磨地段时会产生很大的噪声,对铁路沿线居民带来很大的危害。
同时这种噪声也会影响乘客,使他们产生不舒适感。
3、安全隐患
如钢轨波磨严重,车辆通过波峰时冲击力急剧增大,而通过波谷时受力减小,这就容易引起列车减载脱轨,还容易引起钢轨和车轴的断裂,影响行车安全。
4、增加能耗
由于波磨轨面的不平顺,导致轮轨粘着不良,相应地增加了轮轨运行阻力。
另外由于轮轨系统振
动加剧,导致部件伤损率增加,消耗大量能量,而这些能量都必须由机车牵引力提供,从而增加能耗。
波磨的预防和减缓措施:
1、减少钢轨接头,降低接头冲击
设焊接无缝线路,尽可能减少接头或铺设冻结无缝线路,将接头冲击降到最低。
加强接头处道碴捣固,保持道床丰满并加以夯实,及时清筛接头范围内的板结道床。
2、增强轨道弹性,提高轨道阻尼
增强轨道弹性可有效地减小轮轨系统振动强度,提高轨道阻尼可明显降低波磨发展速率。
具体措施为:采用优质道碴,补足道床厚度;及时清筛道床并适当缩短道床清筛周期;对道床粉化、坍塌及翻浆冒泥地段及时整治。
3、减少轨道不平顺
强曲线轨道的养护,提高曲线圆顺度;消除钢轨死弯和轨头掉块。
使用大型养路机械进行线路维修作业
4、
5、。