气体在线分析系统
- 格式:docx
- 大小:1.79 MB
- 文档页数:6
基于TDLAS技术的在线多组分气体浓度检测系统孙灵芳;于洪【摘要】为了提高环境气体监测精度,降低设备维护成本需求,设计了一种多组分气体同时或近同时在线检测系统.该系统基于TDLAS技术采用DFB可调谐激光测量气体浓度,能够实现760 nm O2和2 326 nm CO混合气体同时在线监测.设计发射单元、接收单元等模块,分析TDLAS可调谐激光检测、PID温度控制、锁相检测原理.结合火电厂烟道氧量浓度测试,对系统进行了验证.实验结果表明:与传统的工业气体测量装置相比,该系统能获得更高的精度、更快的响应速度以及良好的稳定性,适应恶劣环境能力强,具有较好的实用性及可行性.%In order to improve the accuracy of detecting the environmental gas in the industry and satisfy the requirement for reducing the equipment cost,a meanwhile online or nearly meanwhile on-line multi-component gas detection system was designed.Based on TDLAS technology,this system adopted the DFB tunable laser to detect the gas concentration.Moreover,it can also realize the online simultaneous detection of the mixed gas of 760 nm O2 and 2 326 nm CO.This paper designed and analyzed the modules such as transmitting unit and Receiving unit.TDLAS tunable laser detection,PID temperature control and principle of phase lock detection were analyzed.The system was verified through the test of flue oxygen concentration in the thermal power plant.According to the experimental result,comparing with the traditional industrial gas measuring device,this system has higher accuracy and faster response speed and goodstability,and has the strong ability to function in the harsh environment as well as the high applicability and feasibility.【期刊名称】《仪表技术与传感器》【年(卷),期】2017(000)003【总页数】5页(P73-77)【关键词】光谱分析;多组分气体;锁相放大;正弦调制;谐波检测【作者】孙灵芳;于洪【作者单位】东北电力大学自动化工程学院,吉林吉林 132012;东北电力大学节能与测控技术研究中心,吉林吉林 132012;东北电力大学自动化工程学院,吉林吉林132012【正文语种】中文【中图分类】TP273可调谐半导体激光吸收光谱技术(tunable diode laser absorption spectroscopy,TDLAS)利用分布反馈激光器(DFB)的窄线宽和波长调谐等特性来实现气体分子“指纹区”吸收谱线的扫描和测量,具有高灵敏度、高分辨率、响应速度快、适应恶劣环境强等优点[1]。
第三章直接测量式气体CEMS在线系统是指在没有改变烟气的组成并在颗粒物存在或者渗透过滤除去颗粒物的条件下直接测量气体浓度的系统。
在线式气体CEMS测量系统分为点测量系统和线测量系统。
点监测仪称为烟道中监测仪,线监测仪称为跨烟道监测仪。
直接测量式一般分为两类:一类传感器安装在探头端部,探头直接插入烟道,使用电化学或光电传感器,测量较小范围内污染物浓度(相当于点测量);另一类传感器和探头直接安装在烟道或管道上,传感器发射一束光穿过烟道,利用烟气的特征吸收光谱进行分析测量,可以归为线测量,可以采用红外、紫外、差分光学吸收光谱、激光等技术。
一、点在线气体CEMS点(短路径)在线系统在烟道中的一个单点上测量,就像一个普通的抽取系统探头在烟道中的一个点上抽气一样。
单点的长度可为几厘米,对于有些光电系统,为了测量浓度低的气体,长度到1m或超过1m,但是与烟道和管道的直径相比,测量路径较短。
如果气体浓度分层,必须要考虑探头的长度和位置以确保样品能够代表烟气。
一种点在线气体CEMS的测量探头有烧结不锈钢或陶瓷多孔材料制成,便于被探头过滤除去颗粒物的气体扩散到测量室进行测量和在线用标准气体对仪器进行校准。
另一种点在线气体CEMS的测量探头为开放式,主要是考虑烟气中烟尘的浓度较高以及量大面广的湿法除尘和脱硫净化后烟气中水分含量较高和颗粒物的粘性,这些因素可能堵塞探头,所以设计带有颗粒物的烟气直接从探头穿过,利用气体对光的吸收测量污染物的浓度。
这种设计采用标准气体流过气室(典型的长度为30cm)标准技术。
校准时通过滑道将探头移出烟道或管道,用不吸附被测定气体的材料制成的圆筒将开放式探头密封或者将与探头开口长度相同的气室放入光路中,然后通入标准气体对仪器进行校准。
校准过程比较麻烦,校准时消耗气体量比较多,因此要针对具体的烟气条件确定最佳的校准时间间隔,其关键在于确保仪器的连续运行和满足相对准确度的要求。
开放式探头与密封式探头相比较更适合于在含尘量高、烟气条件更恶劣的环境下连续使用。
在线气体分析仪预处理系统的功能作用与正确选型根据气体成分分析仪工作原理的不同,气体成分分析大致可分为两种测量方式:一是,直接测量方式,即将探头安装在过程气体管道中直接测量(测量、变送装置在探头内),如红外气体分析仪、紫外气体分析仪和激光拉曼光谱气体分析仪等,由于它采用了最新光学技术,能在不影响被测气体本身状态的情况下进行实时测量,具有测量准确、反应迅速的优点,尤其是它不需预处理装置,与传统的热导式气体分析仪相比有很大的优势。
二是,间接(取样)测量方式,即将过程气体抽出进行除尘等处理后送至分析单元进行测量(测量、变送装置在内)。
由于受工业过程气体高温、高粉尘、高水份、负压及腐蚀性等恶劣气体条件影响,对采用间接分析测量方式来说,最大的困难就是怎样获得适合测试条件的样气,惟一的方法就是采用预处理装置对样气进行处理,因此选用(制作)能适应工艺条件、性能稳定可靠的预处理装置是解决在线气体分析仪使用问题的关键。
虽然直接测量方法在对气体进行实时测量时可省去预处理装置,但工业过程气体的监测大部分时候是一个连续的过程,需要提供在线实时的数据参考,因此为了保证测量结果的准确性,即便是采用光学技术原理的气体分析仪一般也建议采用间接测量方式。
本文针对在线气体分析仪的预处理装置——预处理系统进行了分析与介绍,希望可以帮助大家更好的了解在线气体分析仪的基本原理。
一、预处理系统部件组成1.取样部分主要设备有粗过滤器、取样阀、取样管道、支架、蒸汽伴热管或电加热器等,安装在现场。
这是预处理系统的核心组成部分,也是决定仪器能否给出科学可信数据的一个重要环节,因此在实际的取样过程中应该做到小心谨慎、规范操作。
2.样气处理部分主要设备有取样阀、取样管道、支架、精密过滤器、干燥装置、稳压装置、稳流装置、压力表、流量计、冷却或加热装置、取样泵、尾气处理装置、标准气和载气装置、气泵或水泵、清洗装置等,安装在分析室仪表盘内。
3.控制部分主要设备有电源装置、小型PLC控制器、电磁阀或气动切换阀、环境状态报警仪等,安装在分析室仪表盘内。
气体在线分析仪(常用气体分析设备)气体分析仪是一种用来测量气体成分的流程分析仪器,在许多生产过程中,尤其是有化学反应的生产过程中,仅根据温度、压力、流量等物理参数进行自动控制往往不够。
在冶金、电子、化工等行业中,空气分离设备不仅生产工业氧、工业氮,而且生产5n级高纯氮、高纯氧、高纯氩等高纯气体,保证气体产品质量,对中间产品和成品中微量杂质要严格控制,这对离线、在线气体分析仪的检测灵敏度、测量精度、稳定性和使用寿命等方面都提出了更高的要求,气体分析器有很多种。
常用气体分析设备四种常用的类型:1、热导式气体分析仪(HT-LE200、HT-EC300)是一种物理类的气体分析仪表。
它根据不同气体具有不同热传导能力的原理,通过测定混合气体导热系数来推算其中某些组分的含量。
该分析仪表简单可靠,适用于多种气体,是一种常用基本的气体分析仪表。
但直接测量气体的导热系数比较困难,所以实际上常把气体导热系数的变化转换为电阻的变化,再用电桥来测定。
2、磁氧式气体分析仪(HT-LA800)其原理是利用烟气组分中氧气的磁化率特别高这--物理特性来测定烟气中含氧量。
氧气为顺磁性气体(气体能被磁场所吸引的称为顺磁性气体),在不均匀磁场中受到吸引而流向磁场较强处。
在该处设有加热丝,使此处氧的温度升高而磁化率下降,因而磁场吸引力减小,受后面磁化率较高的未被加热的氧气分子推挤而排出磁场,由此造成“热磁对流”或“磁风”现象。
在一-定的气样压力、温度和流量下,通过测量磁风大小就可测得气样中氧气含量。
3、电化学式气体分析仪(HT-LA431、HT-LA416、HT-FX100、HT-EC200)是一种化学类的气体分析仪表。
它根据化学反应所引起的离子量的变化或电流变化来测量气体成分。
为了提高选择性,防止测量电极表面沾污和保持电解液性能,一般采用隔膜结构。
常用的电化学式分析仪有定电位电解式和伽伐尼电池式两种。
定电位电解式分析仪的工作原理是在电极上施加特定电位,被测气体在电极表面就产生电解作用,只要测量加在电极上的电位,即可确定被测气体特有的电解电位,从而使仪表具有选择识别被测气体的能力。
在线气体分析仪工作原理在线气体分析仪是一种用于检测环境空气、生产过程中所排放的气体的仪器设备。
它通过测量空气中各种气体的浓度,来判断空气是否达到安全标准,或者在生产过程中,控制气体的浓度,以保持生产过程的顺利进行。
在线气体分析仪的工作原理主要包括以下几个方面:气体采样为了测量环境空气的成分,在线气体分析仪需要采集一定量的空气样本。
通常,气体分析仪会通过吸入空气的方式来采集空气样本,并将样本送入分析仪中进行分析。
在气体采样的过程中,要注意采样点的位置的选择。
要选择在空气流通的区域进行采样,避免影响测量结果。
同时,在采样的过程中,需要注意对气体的保护。
一些易被空气污染物干扰的气体,在采集之前需要保护它们,否则会导致测量结果不准确。
气体分离在线气体分析仪中,不同的气体成分会有不同的特性,如沸点、可溶性等。
因此,分析仪需要将样本中的不同气体成分进行分离,以便于进行浓度的测量。
一般来说,分离的方式有两种:物理分离和化学分离。
物理分离常用的有温度控制和温度梯度实现的气体色谱法,和分子筛过滤法。
化学分离主要是利用反应的选择性和灵敏度实现的。
气体浓度的测定气体分析仪最重要的一个环节就是测定气体的浓度。
不同的气体成分通过分离后,分别进入分析仪的探测器中进行浓度的测定。
探测器的类型多种多样,包括电化学、光学、质谱等。
电化学传感器可以实现各种气体的浓度检测,而光学传感器主要用于检测有机物和其他化合物的浓度,质谱传感器则可以检测极微小的元素和化合物。
在测定气体浓度之前,需要校准仪器。
校准的目的是使仪器测量结果更加准确。
校准通过给仪器提供已知浓度的气体样本进行实现。
数据处理随着气体的浓度被测量出来,仪器还需要对测量结果进行进一步的处理。
比如,可以将测量结果与标准值进行比对,以判断空气是否达标;还可以对测量结果进行趋势分析,以判断产生不合格空气的产生源头,并加以调整。
为了方便处理和储存数据,很多在线气体分析仪都配有计算机界面。
烟气在线监测系统技术方案一、引言烟气排放对环境和人体健康产生很大的影响,因此监测和控制烟气排放是非常重要的。
传统的烟气监测方法主要采用离线采样和分析的方式,这种方式不仅浪费时间和资源,而且监测成本较高。
为了解决这一问题,烟气在线监测系统应运而生。
本文将介绍烟气在线监测系统的技术方案。
二、系统架构1.烟气采样系统:烟气采样系统的作用是将烟气从源头吸入系统,进行浓度分析。
烟气采样系统需要考虑烟气的采样点、流速和温度等参数,以确保采样的准确性。
2.传感器:传感器是烟气在线监测系统的核心部件,用于检测烟气中的各种有害气体成分和颗粒物。
传感器可以根据需要选择单一参数或者多参数检测仪器,如SO2传感器、CO传感器、颗粒物传感器等。
3.数据采集与处理系统:数据采集与处理系统主要负责采集传感器的输出信号,并对信号进行处理和分析。
数据采集与处理系统需要有强大的计算和存储能力,以确保数据的实时性和准确性。
4.通信系统:通信系统用于将采集和处理后的数据传输到远程监控中心或者其他终端设备上。
通信系统可以采用有线或者无线通信方式,例如以太网、4G、LoRa等。
三、关键技术和功能1.高精度传感器:烟气在线监测系统需要使用具有高精度、高灵敏度的传感器,以确保监测数据的准确性。
传感器的选择应根据监测对象的不同有所区别,如颗粒物传感器要能够准确检测不同粒径的颗粒物。
2.数据采集与处理技术:数据采集与处理系统需要具备数据的实时采集、存储和分析处理能力。
可以采用先进的实时数据库技术和数据分析算法,从大量数据中提取有用信息,并产生相应的报表和分析结果。
3.可视化管理界面:系统应提供直观的可视化管理界面,方便用户实时监测和管理烟气排放情况。
界面可以采用图表、报表等方式展示监测数据和统计结果,并支持用户自定义查询和导出功能。
4.报警与预警功能:系统应能够对超过安全标准的烟气排放进行报警和预警。
可以通过声音、图像、短信、邮件等方式提醒相关人员及时采取措施。
烟气(CEMS)在线监测系统一、背景介绍1、项目背景烟气排放连续监测系统(Continuous Emission Monitoring System)简称CEMS。
随着环保事业的发展,CEMS的技术日趋成熟和规范。
目前国内烟气CEMS大多采用“大件系统集成”,即主要分析部件采用进口设备,这样对测量的准确性提供了保证,但国内的大气污染物排放标准与设备厂商所在国或地区相差较大,多数排放企业没有对被测得污染物成分充分地净化处理,在高尘、高湿、流场不稳等客观恶劣监测环境下,使得没有改进的采样探头和分析仪器不太适合这样的监测场所。
烟气CEMS的实施需要对每个监测场所实行严格的现场勘查,熟悉被测试对象,单独的进行合理设计与配置、选材和施工,而不是用统一规格的产品让每一个现场去适应它。
另外烟气CEMS的运行是连续的,国内的市场环境造成销售价格偏低和维护的备品备件跟不上,售后服务自然纸上谈兵。
随着**“十二五”规划中节能减排的政策出台,以及行业内大气污染物排放标准的改版升级,特别是2007年后,湿法脱硫技术的广泛应用,导致许多颗粒物浓度低于150mg/m,因而颗粒物CEMS将主要以适合测量低浓度的散射法为主。
同时气态污染物CEMS将向全谱分析和线状光谱技术方向发展,测量范围则逐渐向低浓度发展,追求更高的准确度和精密度。
对于固定污染源废气自动连续监测系统而言,另外一个重要的组成部分是数据采集与传输系统。
该系统将重点发展数据加标技术,过程监控技术以及物联网技术。
天津智易时代科技发展有限公司根据**环保部对烟气排放连续监测系统的技术要求及有关标准,我们运用了先进的烟气成分分析技术、自动控制技术以及计算机数据处理和网络通讯技术,集成了一套烟气排放连续监测系统。
智易时代CEMS采用国际先进的红外分析仪与烟尘、温度、压力、流量、湿度及相关的辅助设备,结合多年的行业经验,设计了一套功能齐全完善的CEMS。
这套系统很集中的体现了我公司CEMS系统集成的优势,更加符合实际用户所需。
在线气体分析系统在生物质能高值化利用技术的应用导语生物质能是一种重要的可再生能源,具有环境友好、成本低廉和碳中性等特点。
迫于能源短缺与环境恶化的双重压力,世界各国都提出了明确的生物质能源发展目标,制定了相关发展规划、法规和政策,促进可再生的生物质能源发展。
近年来,全球生物质能的开发利用技术取得了飞速发展,应用成本快速下降,以生物质产业为支撑的“生物质经济”被国际学界认为是正在到来的“接棒”石化基“烃经济”的下一个经济形态。
一、生物质能高值化利用技术随着国际社会对保障能源安全、保护生态环境、应对气候变化等问题日益重视,加快开发利用生物质能等可再生能源已成为世界各国的普遍共识和一致行动,也是全球能源转型及实现应对气候变化目标的重大战略举措。
生物质能技术主要包括生物质发电、生物液体燃料、生物燃气、固体成型燃料、生物基材料及化学品等,以下将针对各个具体技术的发展现状分别进行分析。
1.生物质发电技术生物质发电技术是最成熟、发展规模最大的现代生物质能利用技术。
目前,全球共有 3 800 个生物质发电厂,装机容量约为 6 000 万千瓦,生物质发电技术在欧美发展最为完善。
丹麦的农林废弃物直接燃烧发电技术,挪威、瑞典、芬兰和美国的生物质混燃发电技术均处于世界领先水平。
日本的垃圾焚烧发电发展迅速,处理量占生活垃圾无害化清运量的 70% 以上。
我国的生物质发电以直燃发电为主,技术起步较晚但发展非常迅速。
截至 2017 年底,我国生物质发电并网装机总容量为 1 476.2 万千瓦,其中农林生物质发电累计并网装机 700.9 万千瓦,生活垃圾焚烧发电累计并网装机 725.3 万千瓦,沼气发电累计并网装机 50 万千瓦;我国生物质发电装机总容量仅次于美国,居世界第二位。
2.生物液体燃料生物液体燃料已成为最具发展潜力的替代燃料,其中生物柴油和燃料乙醇技术已经实现了规模化发展。
2017 年全球生物柴油的产量达到 3 223.2 万吨,美国、巴西、印尼、阿根廷和欧盟是生物柴油生产的主要国家和地区,其中欧盟的生物柴油产量占全球产量的 37%,美国占 8%,巴西占 2%。
气体在线分析仪常见类型原理气体在线分析仪是一种专门用于分析和检测气体成分和浓度变化的仪器,广泛应用于工业生产、环境监测、安全防护等领域。
根据其原理和用途的不同,气体在线分析仪可以分为多种类型。
本篇文档将简要介绍常见的气体在线分析仪类型及其原理。
红外吸收型气体在线分析仪红外吸收型气体在线分析仪是一种利用气体分子对红外光的吸收特性来检测气体成分的仪器。
当空气中的分子被红外线照射时,其中部分波长的光会被分子吸收,非吸收波长的光则不受影响。
因此,通过检测经过气体后的红外线光谱变化,可以得到气体分子的组成和浓度信息。
红外吸收型气体在线分析仪通常应用于检测二氧化碳、甲烷、氨气等气体。
激光吸收型气体在线分析仪激光吸收型气体在线分析仪是一种利用激光束经过气体时被吸收或散射的原理来检测气体成分的仪器。
激光束经过气体时,会与气体分子发生相互作用,吸收或散射部分能量。
通过检测激光束经过气体后的成分和能量变化,可以得到气体分子的组成和浓度信息。
激光吸收型气体在线分析仪通常应用于检测硫酸气、氢氯酸等气体。
催化燃烧型气体在线分析仪催化燃烧型气体在线分析仪是一种通过气体催化燃烧反应来检测气体成分的仪器。
气体通入分析仪时,先经过预处理,然后在催化燃烧器中与催化剂反应,产生燃烧产物。
通过检测燃烧产物的浓度变化,可以得到气体成分和浓度信息。
催化燃烧型气体在线分析仪通常应用于检测甲烷、乙炔等气体。
等离子体发射型气体在线分析仪等离子体发射型气体在线分析仪是一种利用气体分子受电离后释放光子来检测气体成分的仪器。
气体通入分析仪时,经过电离或加热后分子发生电离,产生等离子体。
等离子体中的气体分子受到电子和离子的碰撞后发生激发态和离解反应,释放出光子。
通过检测光子的能量和数量变化,可以得到气体成分和浓度信息。
等离子体发射型气体在线分析仪通常应用于检测氢气、铵等气体。
热导型气体在线分析仪热导型气体在线分析仪是一种利用气体热导率差异来检测气体浓度的仪器。
激光在线气体分析仪的原理介绍分析仪工作原理激光在线气体分析仪通过分析激光被气体的选择性吸取来获得气体的浓度。
它与传统红外光谱吸取技术的不同之处在于,半导体激光光谱宽度远小于气体吸取谱线的展宽。
激光在线气体分析仪的原理:1.朗伯—比尔定律因此,TDLAS技术是一种高辨别率的光谱吸取技术,半导体激光穿过被测气体的光强衰减可用朗伯—比尔(Lambert—Beer)定律表述式中;IV,0和IV分别表示频率V的激光入射时和经过压力P,浓度X和光程L的气体后的光强;S(T)表示气体吸取谱线的强度;线性函数g(v—v0)表征该吸取谱线的形状。
通常情况下气体的吸取较小,可用式(4—2)来貌似表达气体的吸取。
这些关系式表明气体浓度越高,对光的衰减也越大。
因此,可通过测量气体对激光的衰减来测量气体的浓度。
2.光谱线的线强气体分子的吸取总是和分子内部从低能态到高能态的能级跃迁相联系的。
线强S(T)反映了跃迁过程中受激吸取、受激辐射和自发辐射之间强度的净效果,是吸取光谱谱线较基本的属性,由能级间跃迁概率经及处于上下能级的分子数目决议。
分子在不同能级之间的分布受温度的影响,因此光谱线的线强也与温度相关。
假如知道参考线强S(T0),其他温度下的线强可以由下式求出式中,Q(T)为分子的配分函数;h为普朗克常数;c为光速;k 为波尔兹曼常数;En为下能级能量。
各种气体的吸取谱线的线强S(T0)可以查阅相关的光谱数据库。
多参数分析仪的性能特点是怎样的呢?多参数分析仪是应现场或野外作业等部门需求研制开发的新一代水质测定仪。
接受模块化设计,不同的功能由各种独特功能模块来完成。
这种设计预留了强大的扩展功能,在需要加强测试点或加添测试参数时;只需简单的添置新的探头或新的功能模块就可以了,不须购买整套系统(主机加探头)。
而且新添加的部件可地跟原有系统融合,省却了大量的重新安装和调试的成本。
多参数分析仪性能特点:1、参数个性化定制组合,可依据客户监测需求,快捷组合、选配、定制相应监测参数;2、通过快捷配置智能仪器平台软件和组合参数分析模块,实现智能化在线监测应用;3、各种测量参数接受创新的在线分析模块,可以在后台快捷的进行组合,而不需要仪表在面板上与触摸屏构成空间竞争;4、引流一体化系统集成、串联式流通装置,使用数量很少的水样完成多种实时数据分析;5、内置减压装置及恒流速技术,不受管线压力变化影响,保证流速恒定、分析数据稳定;6、多参数分析仪具有自动在线传感器和管线维护,极少需要人工维护,为参数测量营造良好的运行环境;将多而杂的现场问题集成化、简单化处理,除去了应用过程的不确定因素;7、多种可选的远程数据链路,可租赁、可建设的远程数据库,让客户运筹帷幄之中,掌控千里之外。
基于TDLAS技术的可燃气体在线监测系统在燃气电厂的应用分析摘要:基于可调谐激光二极管吸收光谱技术的在线气体检测系统可用于燃气轮机机组厂区内调压站等区域的可燃气体浓度,具有24小时主动在线式监测,灵敏度高、响应速度快、不受其它气体交叉干扰,无需定期标定等突出优势。
本文在介绍运用波长调制技术的吸收光谱原理的基础上对此项技术进行应用分析。
关键词:TDLAS 可燃气体在线检测燃气轮机电厂1 TDLAS技术原理TDLAS(Tunable Diode Laser Absorption Spectroscopy)是可调谐二极管激光吸收光谱技术的简称,由于该二极管采用半导体材料制成,通常又称为可调谐半导体激光吸收光谱技术。
由于激光二极管的高单色性,因此可以利用气体分子的一条孤立的吸收谱线对气体的吸收光谱进行测量,从而可方便地从混合污染成分中鉴别出不同的分子,避免其他光谱的干扰。
采用可调谐激光二极管吸收光谱技术进行气体探测的主要优点是具有很高的灵敏度和较高分辨率,实用指标可以做到ppm量级,最高可以达到ppb量级。
所选用的工作波段水分和其他气体几乎没有吸收,使系统具有良好的选择性,不受其他成分的干扰。
1.1 光路结构光源发出的激光被分成3路。
第一路通过光纤直接进入检测器,用于确定激光强度,监测激光源的工作情况;第二路经过中央控制单元的内置参比池后被检测,用于确定系统的工作零点,进行系统的自标定;第三路经光缆传输至发射单元的准直器,经准直器后穿过气体管道中被测气体,被安装在管道直径相对方向上的接收单元中的近红外检测器接收,获得的测量信号通过标准电光转换模块转换成1660nm的激光通过光缆传回中央处理系统,然后再经标准光电转换模块转换成电信号,经过后续处理后得到气体浓度。
1.2 中央控制系统中央控制系统是分析仪的核心,中央处理器电路通过通讯电路控制激光二极管的电流驱动电路,温度控制电路以及波长调制信号电路,以产生需要的激光源,传感器及其前置放大电路接收经过被测气体的激光,转换成电信号,测量信号处理电路对该电信号进行相敏检波处理,获得二次谐波信号,然后通过中央处理器电路的AD转换端口,转换成数字信号进行进一步处理。
气体在线分析系统
气体在线分析系统常用于在线分析管道、仓储等生产现场气体含量,为生产工艺提供数据,提高生产效率、保护生产安全。
不同工艺、不同气体、不同环境等因素均影响分析仪的选型。
因此,客户在选择分析仪时应优先考虑专业的生产厂家。
目前市面上气体在线分析系统厂家众多,为您推荐南京艾伊科技。
一、艾伊科技——气体分析仪专业生产厂家
南京艾伊科技成立于2008年,是集生产、研发、销售为一体的高新技术企业,致力于为客户提供气体、粉尘领域安全解决方案。
经过十年发展,公司拥有气体分析仪、气体检测仪、粉尘检测仪等系列50余项产品,认证专利30余项,产品销往30多个国家和地区,为全球客户提供安全设备和服务。
二、AGA1000\AGA1000d型红外气体分析仪
AGA型红外气体分析仪根据气体对红外光吸收的原理来实现对气体的过程监测,根据应用现场的不同需求,分为AGA1000及AGA1010d型。
红外分析仪采用NDIR非分光红外原理,
可用实时监测管道中甲烷(CH4)、二氧化碳(CO2)、一氧化碳(CO)、二氧化硫(SO2)等。
产品特点
测量CO、CO2、SO2、CH4等气体。
单气室设计,便于拆卸清洗,不易污染造成数据偏差。
TEC温控技术减少温度对数据影响。
报警记录功能,实时浓度曲线。
至多同时分析三种气体。
防爆、非防爆型号可选,可配套预
处理系统,用于各类恶劣工况
规格参数
三、AGA3000型电化学氧分析仪
AGA系列电化学气体分析仪是利用气体在原电池中发生氧化还原反应产生电流实现检测。
该系列分析仪可用于常量氧在线监测场所。
产品特点
适用于常量氧在线监测。
支持氧传感器热插拔,维护方便。
防爆型设计,适用于防爆场所。
遥控操作,中文菜单,使用方便。
316
不锈钢外壳,可用于各类工况。
规格参数
四、AGA1010型顺磁氧分析仪
AGA系列顺磁气体分析仪是基于氧气具有高顺磁性特点设计,可检测微量氧、常量氧、纯度氧等各种浓度。
同时具有非防爆型和防爆型多种型号,可用于各种安全条件严峻场合。
产品特点
机械哑铃式原理,检测精度高,预热时间短,响应速度快。
微量氧、常量氧、纯度氧检测。
标准19英寸机箱,多种信号输出。
防爆与非防爆可选,
可配套预处理
系统,用于各类工况。
规格参数
五、AGA1050型紫外分析仪
AGA型紫外在线分析仪采用紫外差分吸收光谱分析法(DOAS),可检测烟气中SO2、NOx 的浓度。
紫外差分原理在低量程检测领域,具有精度高、抗交叉干扰能力强,寿命长等优点。
仪表采用高精度光谱仪及成熟算法,保证了测量准确度,适用于低浓度排放烟气成分测量。
规格参数
六、预处理系统
气体分析预处理系统是根据所分析的现场工艺条件、操作参数、分析组分来确定,不同工艺不同配置。
预处理系统的部件根据现场条件可采用耐腐蚀材料(316L/聚四氟),被测样气经过取样、保温、除油、除尘、冷凝除水、增压或减压、恒流、恒压将干净、干燥、恒定的样气送至气体分析仪表。
气体在线分析系统哪家好,为您推荐艾伊科技
更多产品、方案、报价信息请联系艾伊科技()索取!。