02统计学第二章计量资料的统计描述
- 格式:ppt
- 大小:1.14 MB
- 文档页数:2
统计学资料背诵版一、单选题:第二章:计量资料的统计描述1、描述一组偏态分布资料的变异度,以四分位数间距指标较好。
2、用均数和标准差可以全面描述正态分布资料的特征。
3、各观察值均加(或减)同一数后标准差不变。
4、比较某地1~2岁和5~5.5岁儿童身高的变异程度,宜用变异系数。
5、偏态分布宜用中位数描述其分布的集中趋势。
6、各观察值同乘以一个不等于0的常数后,变异系数不变。
7、正态分布的资料,均数等于中位数。
8、对数正态分布是一种右偏态分布(说明:设X变量经Y=lgX变换后服从正态分布,问X变量属何种分布?)9、横轴上,标准正态曲线下从0到2.58的面积为49.5%10、当各观察值呈倍数变化(等比关系)时,平均数宜用几何均数。
第三章:总体均数的估计与假设检验1、均数的标准误反映了样本均数与总体均数的差异。
2、两样本均数比较的t检验,差别有统计学意义时,P越小,说明越有理由认为两总体均数不同。
3、甲乙两人分别从同一随机数字表抽得30个(各取两位数字)随机数字作为两个样本,求得X1和S 12、X2和S22,则理论上由甲、乙两样本均数之差求出的总体均数95%可信区间,很可能包括04、在参数未知的正态总体中随机抽样,丨X-μ丨≥t0.05/2,vS X的概率为5%5、某地1992年随机抽取100名健康女性,算得其血清总蛋白含量的均数为74g/L,标准差为4g/L,则其95%的参考值范围为74±1.96×46、关于以0为中心的t分布,叙述错误的是相同时,丨t丨越大,P越大。
7、在两样本均数比较的t检验中,无效假设为两总体均数相等。
8、两样本均数比较作t检验时,分别取以下检验水准,犯第二类错误概率最小的是α=0.309、正态性检验,按α=0.10水准,认为总体服从正态分布,此时若推断有错,其错误的概率等于β,而β未知。
10、关于假设检验,说法正确的是采用配对t检验还是两样本t检验是由试验设计方案所决定的。
计量资料得统计描述方法怎样表达一组数据?描述计量资料得常用指标—A 、描述平均水平(中心位置):均数X 、中位数与百分位数、几何均数G 、众数(mode) B 、描述数据得分散程度:标准差、四分位数间距、 变异系数、方差、全距(一)均数mean 与标准差standard deviation1、 (算术)均数X均数就是描述一组计量资料平均水平或集中趋势得指标。
*直接计算公式:12nX X X X X nn+++==∑应用条件:适用于对称分布,特别就是正态分布资料。
2、 中位数(median )M 与百分位数(percentile)A 、中位数M就是将一组观察值从小到大排序后,居于中间位置得那个值或两个中间值得平均值。
应用条件:用于任何分布类型,包括偏态资料、两端数据无界限得资料。
计算:n 为奇数时--1()2n M X+=n 为偶数时--()(1)2212n n M X X +⎛⎫=+ ⎪⎝⎭9人数据:12,13,14, 14, 15, 15, 15, 17, 19天B 、百分位数 就是将N 个观察值从小到大依次排列,再分成100等份,对应于X%位得数值即为第X 百分位数。
中位数就是第百分50位数。
四分位数间距(quartile range)= 第25百分位数(P25)~第75百分位数(P75)。
四分位数间距用于描述偏态资料得分散程度(代替标准差S),包含了全部观察值得一半。
百分位数计算(频数表法):(%)XX XL Xi P L nX f f =+-∑X L :第X 百分位数所在组段下限 L Σf :小于X L 各组段得累计频数X i :第X 百分位数所在组段组距n :总例数 f x :所在组段频数注:有得教材X= r ;L f ∑=C)(天155219===+X X M 8845122221415214.5()M X X X X ⎛⎫==== ⎪⎝⎭+如果只调查了前八位中学生,则:+(+)(+)天例:求频数表得第25、第75百分位数(四分位数间距)组段 频数f 累积频数∑f 56~ 2 2 59~ 5 762~ 12 19 ∑f 25 L 25 65~15 34 P 25在此68~ 25 5971~ 26 85 ∑f 75 L 75 74~19 104 P 75在此77~ 15 119 80~ 10 129 83~851 130合 计130① 确定Px 所在组段:P 25所在得组段:n X %=130×25%=32、5,65~组最终得累积频数=34,32、5落在65~组段内;P 75所在得组段:n X %=130×75%=97、5, 此值落在74~组段 ② 确定Px 所在组段得X L 、X i 、f x 、L Σf ③ P 25=65+3x[(130x25%-19)/15]=65、90P 75=74+3x[(130x75%-85)/19]=74、66四分位数间距=65、90~74、66 (次/分)3、几何均数G (geometric mean)应用:适用于成等比数列得资料,特别就是服从对数正态分布资料。
2计量资料的统计描述指标介绍计量资料的统计描述指标是对数据集合进行概括和描述的方法,可帮助我们了解数据的分布、集中趋势和离散程度,以及可能存在的异常值。
常用的统计描述指标包括均值、中位数、众数、极差、标准差、方差、四分位数和百分位数等。
1. 均值(Mean):均值是一组数据的总和除以数据的个数。
均值可以反映数据的集中程度,但容易受到异常值的影响。
2. 中位数(Median):中位数是一组数据按大小排序后,位于中间位置的数值。
中位数可以反映数据的中间位置,不受异常值的影响。
3. 众数(Mode):众数是一组数据中出现次数最多的数值。
众数可以反映数据集中的特点。
4. 极差(Range):极差是一组数据的最大值与最小值之差。
极差可以反映数据的全面分布。
5. 标准差(Standard Deviation):标准差测量数据的离散程度。
标准差越大,数据的离散程度越大。
6. 方差(Variance):方差是标准差的平方。
方差可以反映数据的离散程度,但单位是原数据的平方。
7. 四分位数(Quartiles):四分位数将一组数据按大小排序后,分为四等分,分位点分别是Q1(25%分位点)、Q2(中位数)和Q3(75%分位点)。
四分位数可以帮助我们了解数据集的分布情况。
8. 百分位数(Percentiles):百分位数是将一组数据按大小排序后,分为100等分,每个等分对应一个百分位数。
百分位数可以帮助我们了解数据的分布情况,例如第75百分位数表示排在该位置的数据值大约有75%的数据小于它。
这些统计描述指标都是通过对数据进行运算得出的,可以帮助我们了解数据的分布情况和特点。
在实际应用中,我们可以根据具体的问题选取适当的统计描述指标进行分析,帮助我们更好地理解数据。
同时,还需要注意统计描述指标的局限性,例如均值容易受到异常值的影响,中位数和众数不能反映数据的离散程度等,因此在使用时需要结合具体情况进行综合分析。
医学统计学简答题第二章定量数据的统计描述1.变异系数与标准差的区别标准差使用的度量衡单位与原始数据相同,在两组数据均数相差不大,单位也相同时,从标准差的大小就可以直接比较两样本的变异程度。
但是有时我们需要对均数相差较大或单位不同的几组观测值的变异程度进行比较,标准差不再适宜,这时就应该使用变异系数了。
2.集中趋势和离散趋势的指标及适用范围(1)集中趋势:算术均数、几何均数、中位数,统称平均数,均反映集中趋势。
算术均数:主要适用于对称分布,尤其适合正态分布资料。
几何均数:应用于对数正态分布,也可应用于呈倍数关系的等比资料。
在医院中主要用于抗原(体)滴度资料。
中位数:适合条件:a.极偏态资料。
b.有不确定的数据(有>或<)。
c.有特大值或特小值。
d.分布不明的资料。
(2)离散趋势:极差、四分位数间距、方差和标准差、变异系数均反映离散趋势极差:除了两端有不确定数据之外,均可计算极差。
四分位间距:用于描述偏态分布资料。
方差和标准差:用于描述正态分布计量资料的离散程度。
变异系数:a.均数相差较大。
b.单位不同。
3.简述变异系数的实用时机变异系数适用于变量单位不同或均数差别较大时,直接比较无可比性,适用变异系数比较。
4.怎样正确描述一组计量资料(1)根据分布类型选择指标(2)正态分布资料选用均数与标准差,对数正态分布资料选用几何均数,一般偏态分布资料选用中位数与四分位数间距。
5.标准差与标准误的联系和区别有哪些?区别:(1)概念不同:标准差是描述观察值(个体值)之间的变异程度,S越小,均数的代表性越好;标准误是描述样本均数的抽样误差,标准误越小,均数的可靠性越高。
(2)用途不同:标准差与均数结合估计参考值范围。
(3)计算含量的关系不同:当样本含量n足够大时,标准差趋向稳定;而标准误随n的增大而减小,甚至趋于0。
联系:标准差、标准误均为变异指标,当样本含量不变是,标准误与标准差成正比。
6.正态分布的主要特征(1)正态曲线在横轴上方均数处最高,即频数最大(2)正态分布以均数为中心,左右对称,无限接近于x轴(3)曲线与横轴所围面积为1。
计量资料的统计描述描述性统计分析是进行统计分析的第一步,做好这一步是正确进行统计推断的先决条件。
计量资料常用的统计描述指标和方法主要有:1、集中趋势指标(Central Tendency):包括均数、几何均数、中位数等。
其中均数适用于正态分布和对称分布资料;几何均数适用于对数正态分布和呈等比的数据资料;中位数适合于所有分布类型的资料,但在实际中,中位数主要应用于偏态分布资料、分布不明资料和开口资料。
2、离散趋势指标(Dispersion):包括全距、四分位数间距、方差、标准差、变异系数、标准误等。
方差、标准差用于正态分布资料,四分位数间距用于偏态分布资料,变异系数用于度量单位不同和均数相差悬殊的资料,标准误用于反映样本均数的离散程度,说明均数抽样误差大小。
SPSS的许多模块均可完成描述性统计分析,但专门为该目的而设计的几个模块则集中在Descriptive Statistics菜单中,最常用的是列在最前面的四个过程:Frequencies过程:产生频数表;按要求给出某百分位数。
对计量资料、计数资料和等级资料的描述都适用Descriptives过程:进行一般性的统计描述,用于服从正态分布的资料,计算产生均数、标准差等;Explore过程:用于对数据概况不清时的探索性分析;Crosstabs过程:完成计数资料和等级资料的统计描述和一般的统计检验,我们常用的X2检验也在其中完成。
本次实习练习前3个过程:Frequencies过程,Descriptives过程,Explore过程。
Crosstabs过程在X2检验实习讲述。
Frequencies过程案例:某地101例健康男子血清总胆固醇值测定结果如下,请绘制频数表、直方图,计算均数、标准差、变异系数CV、中位数M、p2.5和p97.5。
4.77 3.37 6.14 3.95 3.56 4.23 4.31 4.715.69 4.12 4.56 4.37 5.396.30 5.217.22 5.543.93 5.214.125.18 5.77 4.79 5.12 5.20 5.10 4.70 4.74 3.50 4.69 4.38 4.896.25 5.324.50 4.63 3.61 4.44 4.43 4.25 4.035.85 4.09 3.35 4.08 4.79 5.30 4.97 3.18 3.97 5.165.10 5.86 4.79 5.34 4.24 4.32 4.776.36 6.38 4.88 5.55 3.04 4.55 3.35 4.87 4.17 5.85 5.16 5.09 4.52 4.38 4.31 4.58 5.72 6.55 4.76 4.61 4.17 4.03 4.47 3.40 3.91 2.70 4.604.095.96 5.48 4.40 4.55 5.38 3.89 4.60 4.47 3.64 4.34 5.186.14 3.24 4.90 3.05一、建立数据文件1、定义变量:在数据窗口,点击,定义一个变量,变量名(Name)“x”,类型(Type)“数值()8,小数位数(Decimals)2,变量标签(Label):“血清总胆固醇”。