课堂小结
学习目标
1.了解并掌握解决两定一动求线段和的最小 值问题的方法。
2.能够运用相关知识和方法解决两定两动求 线段和的最小值问题。
达标检测
已知平面直角坐标系内两点A(1,2), B(2,-1),点P在y轴上运动,求当PA+PB取 得最小值时P点的坐标。
(第 1 题)
能力提升:已知A(0,5),EF=2,且EF在x轴 上平行移动,当AE+AF最小时求E、F 坐标。
典例一:两定一动,求和最小
例1:如图矩形顶点O在坐标原 点,OA=6,OB=8,D为OB边的 中点,若E为OA边上的一个动 点,当△DCE的周长最小时, 在图中画出E点的位置并求点 E的坐标;
变式练习1:已知平面直角坐标系中的两点A (1,2),B(4,2),点P在x轴上运动,则 PA+PB的最小值是_5__。
典例二:两定两动,求和最小
作图2:已知线段EF=1且EF在直线a上平行 移动,A 、B为两个定点,E点在什么位置 时,使得AE+BF最小,请在图中画出点来
• 变式练习2:如图矩形OACB,OA=6, OB=8,D为OB边的中点,若E、F为OA边 上的两个动点,且EF=2,当四边形CDEF 的周长最小时,求点E、F的坐标。
学习目标
1.了解并掌握解决两定一动求线段和的最小 值问题的方法。
2.能够运用相关知识和方法解决两定两动求 线段和的最小值问题。
自主学习
作图1:已知直线l,在直线l同侧 有两点A、B,在直线l上找一点P, 使+PB的值最小。
·B A﹒
l
知识点拨:
1、轴对称性; 2、三角形两边之和大于第三边。