材料断裂韧性 的测定
- 格式:ppt
- 大小:544.50 KB
- 文档页数:8
材料强度和断裂特性测试方法概述材料强度和断裂特性是评估材料性能和可靠性的重要指标。
在工程领域中,如果材料无法经受住所需的力量或无法在适当的载荷条件下延展,可能导致结构和功能的失败。
因此,了解材料的强度和断裂特性对于设计和制造过程至关重要。
本文将概述几种常见的材料强度和断裂特性测试方法。
一、材料强度测试方法1. 拉伸测试:拉伸测试是最常见和基础的材料强度测试方法之一。
这种测试方法通过将材料置于拉伸设备中,施加一个持续增加的拉伸载荷,直到材料发生断裂。
拉伸测试可以确定材料的拉伸强度、屈服强度、断裂强度等力学性能。
2. 压缩测试:压缩测试是另一种常见的材料强度测试方法,它与拉伸测试相反。
在压缩测试中,材料被放置在压缩设备中,施加一个持续增加的压缩载荷,直到材料发生压缩变形或破坏。
压缩测试可以评估材料的压缩强度、屈服强度以及抗压性能。
3. 弯曲测试:弯曲测试常用于评估材料在受弯曲载荷下的性能。
在弯曲测试中,材料被放置在一个弯曲设备中,施加一个持续增加的弯曲载荷,直到材料产生弯曲或破坏。
弯曲测试可以测量材料的弯曲强度、弯曲刚度以及抗弯刚性。
二、材料断裂特性测试方法1. 断裂韧性测试:断裂韧性是评估材料在受到撞击或快速载荷下承载能力的能力。
常见的断裂韧性测试方法包括冲击试验和拉伸试验。
- 冲击试验:冲击试验通过施加一个快速、高能量的外力来模拟撞击条件。
常用的冲击试验方法有冲击强度试验和冲击韧性试验。
这些试验可以评估材料在受到冲击载荷时的断裂特性。
- 拉伸试验:拉伸试验用于评估材料在肯尼迪构面的韧性。
这种试验方法会施加一个快速增加的拉伸载荷,以模拟材料在快速载荷下的响应。
拉伸试验可以通过测量材料断口面积的增加和断口延伸来评估材料的断裂韧性。
2. 断裂韧性测试:断裂韧性是评估材料在受到撞击或快速载荷下承载能力的能力。
常见的断裂韧性测试方法包括冲击试验和拉伸试验。
- 冲击试验:冲击试验通过施加一个快速、高能量的外力来模拟撞击条件。
实验报告六千分尺一把;试样示意图:图一:弯曲和紧凑拉伸试样04 28329.852 28329.852数据处理及有效性判定: 一、 20#钢退火态 1:402号试样厚度B (mm )=12.00mm ;宽度W (mm )=25.00mm ;跨距S=100.00mm ;a=2.751mm ;P Q =14500 N 当S/W =4时,=0.866计算K Q=837.13根据Q K 有效性的判据:(1)P max P Q=1.346>1.10;(2)2.5 (KQ σy)^2=12.80>12.00402号试样的断裂韧性实验是无效的,需加厚试样尺寸再进行实验。
2:404号试样厚度B (mm )=12.00mm ;宽度W (mm )=25.00mm ;跨距S=100.00mm a=3.536mm ;P Q =10500N 当S/W =4时,=0.988计算K Q=691.6根据Q K 有效性的判据:(1)P max P Q=1.3000>1.100(2)2.5 (K Q σy)^2=8.73<12.00404样的断裂韧性实验是无效的,需加厚试样尺寸再进行实验。
二、40Cr800℃+100℃回火试样 1:01号试样厚度B (mm )=12.50mm ;宽度W (mm )=25.00mm ;跨距S=100.00mm a=4.026mm ;P Q =21678.081 当S/W =4时,=1.052计算K Q=1459.51根据Q K 有效性的判据:(1)P max P Q=1.000<1.110(2)2.5 (K Q σy)^2=3.476<12.5001号试样断裂韧性实验有效。
2:04号试样厚度B (mm )=12.50mm ;宽度W (mm )=25.00mm ;跨距S=100.00mm a=5.243mm ;P Q 28329.852N 。
当S/W =4时,=1.907计算K Q=3571.83根据Q K 有效性的判据:(1)P max P Q=1<1.10(2)2.5 (KQ σy)^2=8.504<12.50 04试样断裂韧性实验有效。
断裂韧性的测试流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!断裂韧性是材料抵抗裂纹扩展的能力,是材料的重要力学性能指标之一。
物理实验技术中的材料断裂韧性测量与分析方法材料的断裂韧性是指材料在受到外力作用下,能够抵抗破坏的能力。
在工程领域,了解材料的断裂韧性对于设计和制造安全可靠的产品非常重要。
本文将介绍物理实验技术中常用的材料断裂韧性测量与分析方法。
1. 冲击试验法冲击试验法是测量材料在高速冲击载荷下的断裂韧性的一种方法。
常见的冲击试验方法有冲击试样弯曲法和平板撞击法。
冲击试样弯曲法是将试样夹在两个支承点之间,然后从一侧施加冲击载荷。
通过测量试样在冲击过程中的位移或挠度,可以得到材料的断裂韧性。
平板撞击法是将平板状试样固定在支撑装置上,然后用冲击装置撞击试样的一侧。
通过测量试样在冲击过程中的应力和应变,可以估计材料的断裂韧性。
2. 拉伸试验法拉伸试验是一种常用的测量材料断裂韧性的方法。
通常采用标准的拉伸试验机进行测试。
在拉伸试验中,试样被加载,逐渐拉伸直到断裂。
通过测量试样的拉伸力和伸长量,可以计算出材料的断裂韧性参数,如断裂应力和断裂伸长率。
3. 压缩试验法压缩试验也是一种测量材料断裂韧性的方法。
在压缩试验中,试样被加载并施加垂直于试样轴线的压缩力,直到试样发生压缩破坏。
通过测量试样在压缩过程中的应力和应变,可以推断材料的断裂韧性。
4. 断裂面形貌分析除了上述实验方法,断裂面形貌分析也是评估材料断裂韧性的重要手段之一。
断裂面形貌分析可以通过扫描电子显微镜(SEM)观察断裂表面的形貌特征。
不同的断裂机制会在断裂面上留下特定的痕迹,例如沟槽、毛刺等。
通过观察这些痕迹,可以对材料的断裂韧性和断裂机制进行分析。
此外,断裂面形貌分析还可以结合X射线衍射(XRD)和能谱仪等技术,对断裂表面的组成进行分析,从而深入了解材料断裂的原因和机制。
综上所述,物理实验技术中常用的材料断裂韧性测量与分析方法包括冲击试验法、拉伸试验法、压缩试验法和断裂面形貌分析。
这些方法可以不仅可以提供关于材料断裂韧性的定量数据,还能够揭示材料断裂的机制和性质,为工程设计和材料选择提供重要依据。
断裂韧性是衡量陶瓷材料抵抗裂纹扩展能力大小的基本力学参数,是材料发生断裂前应力场强度临界值[1]。
对于Ⅰ型断裂该临界值即为KⅠC。
断裂韧性是材料的本征属性,可以衡量材料对裂纹扩展的抵抗能力大小[2],反映外部载荷和裂纹尺寸对材料断裂失效的影响。
陶瓷材料断裂韧性的准确测量有助于评估材料服役性能及可靠性能。
目前,用于结构陶瓷材料断裂韧性的测试方法有很多,根据裂纹制备的类型可以分为两大类:宏观开口槽法和微观缺陷法。
宏观开口槽法主要包括:单边预裂纹梁法(Single Edge Precrack Beam,SEPB)[3]、单边切口梁法(Single Edge Notched Beam,SENB)[4]、单边V型切口梁法(Single Edge V-Notched Beam,SVENB)[5]等。
制备微观缺陷测试结构陶瓷材料断裂韧性的方法主要有:压痕法(Indentation Method,IM)[6]和表面裂纹弯曲法(SurfaceCrack in Flexure,SCF)[7]。
在实际应用中,目前最为常用的结构陶瓷材料断裂韧性的测试方法为:单边预裂纹梁法(SEPB)[8,9]和单边V型切口梁法(SEVNB)[10-13]。
这两种方法有较为详细的标准可以作为参考,获得的测定结果较为准确。
目前陶瓷材料现行的主要测试标准有:国际标准化组织标准ISO23146-2016[14](以下简称ISO)、美国材料与试验协会标准ASTM C1421-18[15](以下简称ASTM)和中国国家标准GB/T23806-2009[16](以下简称GB)。
本文对比分析了以上三种现行标准中SEPB和SEVNB两种测量方法的异同点,为陶瓷断裂韧性的测量提供参考。
ASTM C1421-18(Standard Test Methods for Determi-nation of Fracture Toughness of Advanced Ceramics at Am-bient Temperature)中除了SEPB法外,还提供了其它几种断裂韧性的测试方法,本文仅限于讨论其中SEPB法部分内容。
06断裂韧性的测试原理断裂韧性是材料在受到外部加载时能够抵抗断裂的能力,是材料力学性能中的一个重要指标。
断裂韧性的测试对于材料的性能评价、设计和选材具有重要意义。
本文将介绍断裂韧性的测试原理,主要包括断裂韧性的概念、测试方法和影响因素等内容。
一、断裂韧性的概念断裂韧性是材料在受到外部加载时能够在不断扩展断裂过程中吸收能量的能力。
断裂韧性通常用断裂能量或断裂韧性指标来衡量,是材料在工程应用中承受冲击或振动载荷时的重要性能指标之一、高断裂韧性的材料具有较好的抗震、抗冲击性能,更有利于延长材料的使用寿命。
二、断裂韧性的测试方法目前常用的测试方法主要包括冲击试验法、拉伸试验法、多普勒声发射法、断口显微镜观察法等。
1.冲击试验法:冲击试验是一种常用的测试方法,通常采用冲击试验机进行测试。
在冲击试验过程中,通过施加冲击载荷,在不同温度和速度条件下测试材料的韧性性能。
冲击试验的结果通常用击穿能量或击穿强度来表示材料的抗冲击性能。
2.拉伸试验法:拉伸试验是另一种常用的测试方法,通常采用万能材料试验机进行测试。
拉伸试验通过施加拉伸载荷,测试材料在拉伸过程中的断裂性能,通常用断裂伸长率、断口形貌等指标来评价材料的韧性性能。
3.多普勒声发射法:多普勒声发射法是一种非破坏性测试方法,通过检测材料在断裂过程中产生的声波信号,分析材料的损伤状态和裂纹扩展情况,可用于评估材料的断裂韧性性能。
4.断口显微镜观察法:断口显微镜观察法是一种常用的显微观察方法,通过对材料的断口形貌进行显微观察,可以分析材料断裂的机制和性能。
不同的材料在断口上表现出不同的形态,如韧性断裂呈现韧窝、韧条、颗粒溅射等形貌。
三、断裂韧性的影响因素1.材料本身的性能:材料的化学成分、组织结构、晶粒大小、晶界强度等因素都会影响材料的断裂韧性。
一般来说,高强度、高硬度和细晶粒的材料往往具有较好的韧性性能。
2.温度和速度:温度和加载速度是影响材料断裂韧性的重要因素。
实验五断裂韧性K IC测试试验一、试样的材料、热处理工艺及该种钢材的σy 和KⅠC的参考值本实验采用标准三点弯曲试样(代号SE(B)),材料为40Cr,其热处理工艺如下:①热处理工艺:860℃保温1h,油淬;220℃回火,保温0.5~1h ;②缺口加疲劳裂纹总长:9~11mm (疲劳裂纹2~3.5mm)③不导角,保留尖角。
样品实测HRC50,从机械手册中关于40Cr 的热处理实验数据曲线上查得:σy=σ 0.2=1650MPa,σb=1850MPa,δ 5=9%,ψ =34%,KⅠC=42MN · m -3/2。
二、试样的形状及尺寸国家标准GB/T 4161-1984《金属材料平面应变断裂韧度KⅠC 试验方法》中规定了两种测试断裂韧性的标准试样:标准三点弯曲试样(代号SE(B))和紧凑拉伸试样(代号C(T))。
这两种试样的裂纹扩展方式都是Ⅰ型的。
本实验采用标准三点弯曲试样(代号SE(B))。
试样的形状及各尺寸之间的关系如图所示:为了达到平面应变条件,试样厚度 B 必须满足下式:B≧2.5(KⅠC/ σy)2a≧2.5(KⅠC/ σy)2(W-a)≧ 2.5(KⅠC/σ y)2式中:σ y—屈服强度σ 0.2 或σ s 。
因此,在确定试样尺寸时,要预先估计所测材料的KⅠC 和σ y 值,再根据上式确定试样的最小厚度B。
若材料的KⅠC 值无法估计,则可根据σ y/E 的值来确定B 的大小,然后再确定试样的其他尺寸。
试样可从机件实物上切去,或锻、铸试样毛坯。
在轧制钢材取样时,应注明裂纹面取向和裂纹扩展方向。
试样毛坯粗加工后,进行热处理和磨削,随后开缺口和预制裂纹。
试样上的缺口一般在钼丝电切割机床上进行切割。
为了使引发的裂纹平直,缺口应尽可能地尖锐。
开好缺口的试样,在高频疲劳试验机上预制裂纹。
疲劳裂纹长度应不小于2.5%W,且不小于1.5mm 。
a/W 值应控制在0.45~0.55 范围内。
本试样采用标准三点弯曲试样(代号SE(B)),其尺寸:宽W=19.92mm ,厚B=10.20mm 总长100.03mm 。
金属材料的断裂韧性测试当我们谈论金属材料时,断裂韧性是一个重要的性质。
它指的是材料在受力下能够承受多大的应变能量,而不会发生断裂。
断裂韧性测试是评估金属材料性能的一种常用方法,它可以帮助工程师确定材料的可靠性和适用性。
本文将介绍金属材料的断裂韧性测试的原理、方法和应用。
一、原理金属材料的断裂韧性是指材料在断裂之前能够吸收的能量。
它与材料的强度、韧性和硬度等性质密切相关。
断裂韧性测试的原理是通过施加外力,使材料发生断裂,并测量断裂前后的应变能量差。
这个差值可以用来评估材料的断裂韧性。
二、方法1. 塑性断裂韧性测试塑性断裂韧性测试是一种常用的测试方法。
它通过在试样上施加拉伸力,使其发生塑性变形,然后测量断裂前后的应变能量差。
常用的测试方法包括冲击试验和拉伸试验。
冲击试验是一种快速施加冲击载荷的测试方法。
它通常使用冲击试验机进行,将试样固定在机器上,然后施加冲击载荷。
当试样发生断裂时,测试机会记录下断裂前后的能量差。
拉伸试验是一种更常见的测试方法。
它通过在试样上施加拉伸力,使其发生塑性变形,然后测量断裂前后的应变能量差。
常用的拉伸试验方法有静态拉伸试验和动态拉伸试验。
静态拉伸试验是一种较慢的测试方法,通过逐渐增加载荷来进行。
动态拉伸试验是一种更快的测试方法,通过快速施加载荷来进行。
2. 脆性断裂韧性测试脆性断裂韧性测试是一种针对脆性材料的测试方法。
脆性材料在受力下容易发生断裂,因此需要特殊的测试方法来评估其断裂韧性。
常用的测试方法包括冲击试验和压缩试验。
冲击试验是一种常用的测试方法,通过在试样上施加冲击载荷来评估脆性材料的断裂韧性。
冲击试验机将试样固定在机器上,然后施加冲击载荷。
当试样发生断裂时,测试机会记录下断裂前后的能量差。
压缩试验是一种较少使用的测试方法,通过在试样上施加压缩载荷来评估脆性材料的断裂韧性。
压缩试验机将试样固定在机器上,然后施加压缩载荷。
当试样发生断裂时,测试机会记录下断裂前后的能量差。
断裂韧性测定
断裂韧性测定,也叫断裂硬度测定,是一种测定物体的破坏容性能力的重要评价标准。
其实质就是针对特定物体,在承受一定表面拉力时,观测物体断裂趋势,推算出断裂硬度数据,从而衡量物体强度和完整性能,并分析断裂分离原因。
断裂韧性测定,基本装置主要由待测样品、测试机架、拉力发生装置、负荷传递系统等组成,以及控制测试过程的操作台。
断裂硬度测定,做法通常是将物体固定在测试架上,采用拉力发生装置使其承受外力,然后观测其断裂趋势及分离形态。
一般而言,断裂硬度越大,表明物体强度及完整性能越好,耐久性比较强;相反,断裂硬度越小,则物体强度及完整性较差,耐久性较差。
断裂韧性测定具有明确、准确与可控等优点,可用于金属材料、塑料、橡胶、碳纤维、食品等多种物体的完整性研究,并且在材料科学领域和工程生产实际应用中广泛。
有效准确地测量断裂韧性,不仅有助于提升物体的完整性,而且对于判断对比相同物体的强度及完整性,也大有裨益。
总之,断裂韧性测定是一种重要的物体完整性评估方式,结合了科学实验与工程应用,为各领域提供了助力,具有广阔的发展前景。