1.1.2正数和负数(第2课时有理数分类)
- 格式:ppt
- 大小:705.50 KB
- 文档页数:2
七年级数学《正数和负数》教案设计范⽂ 正数与负数这节课是有理数这⼀章的第⼀节课,引⼊负数是实际的需要,也是学好后续内容的需要.本节先回顾前两个学段学过的数,然后通过引⾔中温度、净胜球数、加⼯允许误差的实例,引出负数,进⽽给出正数与负数的描述性定义并进⼀步介绍正负数在实际⽣活中的应⽤.接下来是⼩编为⼤家整理的七年级数学《正数和负数》教案设计范⽂,希望⼤家喜欢! 七年级数学《正数和负数》教案设计范⽂⼀ 1.1正数和负数教学设计(⼀) ⼀、教学⽬标 (⼀)知识与技能: 1.会判断⼀个数是正数还是负数 2.能⽤正、负数表⽰⽣活中具有相反意义的量 (⼆)过程与⽅法: 经历从现实⽣活中的实例引⼊负数的过程,体会引⼊负数的必要性与合理性 (三)情感态度价值观: 感知到数学知识来源于⽣活并为⽣活服务。
⼆、学法引导 1.教学⽅法:采⽤直观演⽰法,教师注意创设问题情境并及时点拨,让学⽣从实例之中⾃得知识。
2.学⽣学法:研究实际问题→认识负数→负数在实际中的应⽤。
三、重点、难点、疑点及解决办法 1.重点:会判断正数、负数,运⽤正负数表⽰具有相反意义的量。
2.难点:负数的引⼊。
3.疑点:负数概念的建⽴。
四、课时安排 2课时 五、教具学具准备 投影仪(电脑)、⾃制活动胶⽚、中国地图。
六、教学设计思路 教师通过投影给出实际问题,学⽣研究讨论,认识负数,教师再给出投影,学⽣练习反馈。
七、教学步骤 (⼀)创设情境,复习导⼊ 师:提出问题:举例说明⼩学数学中我们学过哪些数?看谁举得全? 学⽣活动:思考讨论,学⽣们互相补充,可以回答出:整数,⾃然数,分数,⼩数,奇数,偶数…… 师⼩结:为了实际⽣活需要,在数物体个数时,1、2、3……出现了⾃然数,没有物体时⽤⾃然数0表⽰,当测量或计算有时不能得出整数,我们⽤分数或⼩数表⽰。
【教法说明】学⽣对⼩学学过的各种数是⾮常熟悉的,教师提出问题后学⽣会⾮常积极地回忆、回答,这时教师注意理清学⽣的思路,点出⼩学学过的数的精华部分。
第2课时有理数的分类【知识与技能】1.理解有理数的概念.2.能够把给出的有理数分类,了解0在有理数分类中的作用.【过程与方法】引入有理数的概念,并通过各种师生活动加深学生对“有理数”概念和“有理数分类”方法的理解.【情感态度】由已学知识进一步提出问题,引导学生深入思考,培养学生主动思考的学习习惯.【教学重点】重点是知道有理数的含义及分类.【教学难点】难点是有理数的分类.一、情境导入,初步认识【情境1】实物投影,并呈现问题:把下列各数分别填入相应的框里:-16,0.04,1 2,23,+32,0,-3.6,-4.5,+0.9.【情境2】实物投影,并呈现问题:在情境1中,数0能放入正数框或负数框里吗?你认为有理数还可以怎样分类?【教学说明】通过实现情景再现,让学生体会到数0的意义及有理数的分类,培养学生良好的数学应用意识.学生通过前面的情景引入,会进行有理数的分类,同时,有趣的情境也激发了学生学习的兴趣.二、思考探究,获取新知1.有理数的概念问题1什么是有理数?上面提到的数都是有理数吗?问题2同学们学过的数中,有没有不是有理数的?举例说明.【教学说明】学生通过回顾旧知识,在经过观察、分析、类比后能得出结论.【归纳结论】整数和分数统称有理数.有限小数和无限循环小数都可以化成分数,无限不循环小数不是有理数.2.有理数的分类问题1有理数按定义如何分类?问题2有理数还有其他的分法吗?【教学说明】一方面让学生明确有理数的分类依据,另一方面让学生初步感知不同的分类方法.【归纳结论】有理数的分类:(1)按有理数的定义分类(2)按有理数的符号分类三、运用新知,深化理解1.下面说法中,错误的是()A.有理数是正数和负数的总称B.有理数是整数和分数的总称C.有理数是非负有理数和负有理数的总称D.有理数是非正有理数和正有理数的总称2.下面说法中,正确的是()A.在有理数中,零的意义仅表示没有B.0既不是正数,也不是负数,是有理数C.0是最小的整数D.0不是偶数3.将下列各数填在相应的横线上.-50,+10,1,15-,+102,51.2,-3.06,0,02.,1113+.其中正整数有______________,分数有______________ ,正分数有______________,非正数有______________. 4.把下列各数填在相应的括号中:-3,15,3.6,132-,0,+235,-0.75,+3,-2 005,310+,76.正数:{},负数:{},整数:{},分数:{},负整数:{},非负数:{}.【教学说明】通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好地巩固新知识,通过本环节的讲解与训练,让学生对数0的意义及有理数的分类有更加明确的认识.【答案】1.A 2.B3.+10,1,+102,15-,51.2,-3.06,02.,1113+51.2,02.,1113+,-50,15-,-3.06,04.正数:{15,3.6,+235,+3,310+,76}负数:{-3,132-,-0.75,-2005}整数:{-3,0,+235,+3,-2005,76}分数:{15,3.6,132-,-0.75,310+}负整数:{-3,-2005}非负数:{15,3.6,0,+235,+3,310+,76}四、师生互动,课堂小结1.什么叫有理数?有理数是如何分类的?举例说明.2.通过这节课的学习,你还有哪些疑惑,大家交流.【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深印象,同时使知识系统化.1.布置作业:从教材第5页“习题1.1”中选取.2.完成同步练习册中本课时的练习.第2课时实数的运算法则实数的运算法则.重点掌握实数的运算法则.难点实数运算法则的正确应用.一、创设情境,引入新课师:有理数的运算法则是什么?生:先算高级运算,同级运算从左至右,遇有括号的先算括号内.二、讲授新课师:很好.有理数运算法则仍适用于实数,请大家看几个题目:展示课件:【例1】计算下列各式的值:(1)(3+2)-2;(2)33+2 3.学生活动:尝试独立完成,两名学生上黑板板演,其余学生在位上做.教师活动:巡视、指导.师生共同完成:(1)(3+2)-2=3+(2-2)(加法结合律)=3+0= 3(2)33+2 3=(3+2) 3 分配律=5 3师:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.【例2】计算(结果保留小数点后两位):(1)5+π;(2)3· 2.学生尝试独立计算,一学生上黑板板演.教师巡视、纠正.师生共同完成:(1)5+π≈2.236+3.142≈5.38(2)3· 2≈1.732×1.414≈2.45三、随堂练习课本第56页第4题,第57页第4、5、6题.四、课堂小结通过本节课的学习,你有哪些收获?首先通过课本引例问题,旨在使学生通过自己的探究活动,经过老师的引导,感受并经历实数的运算、化简;让学生根据实例进行探索,通过学生互相交流合作,得出两个化简的公式,培养他们的合作精神和探索能力,也让他们获得成功的体验,充分调动、发挥学生主动性的多样化学习方式,促进学生在老师指导下主动地、富有个性地学习.一元一次方程的解法(第2课时)(30分钟50分)一、选择题(每小题4分,共12分)1.下列解方程去分母正确的是( )A.由-1=,得2x-1=3-3xB.由-=-1,得2(x-2)-3x-2=-4C.由=--y,得3y+3=2y-3y+1-6yD.由-1=,得12y-1=5y+20B.的分子作为一个整体去分母后没有加上括号,错误;C.正确;D.不含分母的项漏乘各分母的最小公倍数15,错误.2.解方程=7,下列变形较简便的是( )A.方程两边都乘20,得4(5x-120)=140B.方程两边都除以,得x-30=C.去括号,得x-24=7D.方程整理,得·=7【解析】选C.解方程时,并不一定按照解一元一次方程的步骤去解,根据方程特点选择合适的步骤去解,此题中因为与互为倒数,相乘为1,所以可以直接去括号更为简单.【变式训练】解方程-2=x怎样变形较简单?【解析】去中括号,得x+1+3-=x.3.我们来定义一种新运算:=ad-bc.例如,=2×5-3×4=-2;再如=3x-2,按照这种定义,对于=,x的值是( )A.-B.-C.D.【解析】选A.根据运算的规则:=可化简为:2-2x=(x-1)-(-4)×,化简可得-2x=3,即x=-.二、填空题(每小题4分,共12分)4.如果a2与-a2是同类项,则m= .【解析】由同类项的定义可知,(2m+1)=(m+3),解这个方程得:m=2.答案:25.当a= 时,1-与互为相反数.【解析】根据题意得1-+=0,去分母,得6-3(a-1)+2(2a-3)=0,解得a=-3.答案:-3【变式训练】当m= 时,代数式和m-3的值相等.【解析】根据题意得=m-3,去分母,得3(2m-3)=5×2m-3×15,解得m=9.答案:96.有一系列方程:第1个方程是x+=3,解为x=2;第2个方程是+=5,解为x=6;第3个方程是+=7,解为x=12;……根据规律,第10个方程是,其解为.【解析】观察给出的方程,第10个方程是+=21,其解为x=10×11=110.答案:+=21 x=110三、解答题(共26分)7.(8分)解方程:(1)(2013·梧州中考)x+2·=8+x.(2)-=1.【解析】(1)原方程变形为x+x+2=8+x,去分母,得x+5x+4=16+2x,移项,合并同类项,得4x=12,方程两边都除以4,得x=3.【一题多解】原方程变形为x+x+2=8+x,移项,合并同类项,得2x=6,方程两边都除以2,得x=3.(2)原方程变形为-=1,去分母,得5(30x-100)-2(40x-80)=10,去括号,得150x-500-80x+160=10,移项,合并同类项,得70x=350,方程两边都除以70,得x=5.【易错提醒】1.在利用分数的基本性质把分母中的小数化为整数时,方程的右边不变.2.去分母时等号右边的1不能漏乘.3.去分母时分子作为一个整体,必须加括号.8.(8分)在解方程3(x+1)-(x-1)=2(x-1)-(x+1)时,我们可以将(x+1),(x-1)各看成一个整体进行移项、合并,得到(x+1)=(x-1),再约分、去分母得3(x+1)=2(x-1),进而求解得x=-5,这种方法叫整体求解法.请用这种方法解方程:5(2x+3)-(x-2)=2(x-2)-(2x+3).【解析】移项、合并同类项得(2x+3)=(x-2),约分、去分母,得2(2x+3)=x-2,去括号,得4x+6=x-2,移项、合并同类项,得3x=-8,两边都除以3,得x=-.【培优训练】9.(10分)规定新运算符号的运算过程为,a b=a- b.解方程2(2x)=1x.【解析】因为2x=-x,所以2(2x)=-,又1x=-x,因此原方程可化为:-=-x,去括号,得:-+x=-x,移项,得x+x=-+,合并同类项,得x=-,方程两边都除以,得x=-.- 11 -。
初一数学上册各章节课时分配
第一章有理数
1.1正数和负数1课时
1.2有理数5课时
1.2.1有理数
1.2.2数轴
1.2.3相反数
1.2.4绝对值
1.3有理数的加减法4课时
1.4有理数的乘除法5课时
1.5有理数的乘方4课时
1.5.1乘方
1.5.2科学计数法
1.5.3近似数
本章复习2课时
第二章整式的加减
2.1整式3课时
2.2整式的加减3课时
本章复习2课时
第三章一元一次方程
3.1从算式到方程4课时
3.1.1一元一次方程
3.1.2等式的性质
3.2解一元一次方程(1) 4课时
------合并同类项与移项
3.3解一元一次方程(2)4课时
-------去括号与去分母
3.4 实际问题和一元一次方程4课时
本章复习2课时
第四章几何图形初步
4.1 几何图形4课时
4.1.1 立体图形与平面图形
4.1.2 点,线,面,体。
4.2直线、射线、线段2课时
4.3角 5课时
4.3.1角
4.3.2角的比较与运算
4.3.3余角和补角
4.4 课题学习设计制作长方体形状的包装纸盒 2课时。
精选《正数和负数教案》三篇《正数和负数教案》篇1学习目标 1、了解负数是从实际需要中产生的;2、能判断一个数是正数还是负数,理解数0表示的量的意义;3、会用正负数表示实际问题中具有相反意义的量.重点难点重点:正、负数的概念,具有相反意义的量难点:理解负数的概念和数0表示的量的意义教学流程师生活动时间复备标注一、导入新课我先向同学们做个自我介绍,我姓,大家可以叫我老师,身高米,体重千克,今年岁,教龄是年龄的,我将和同学们一起度过三年的初中学习生活.老师刚才的介绍中出现了一些数,它们是些什么数呢?[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……等整数;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数. 所以,数产生于人们实际生产和生活的需要.在生活中,仅有整数和分数够用了吗?二、新授1、自学章前图、第2 页,回答下列问题数-3,3,2,-2,0,1.8%, -2.7%,这些数中,哪些数与以前学习的数不同?什么是正数,什么是负数?归纳小结:像3、2、2.7%这样大于零的数叫做正数,像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数.根据需要,有时在正数前面也加上“+”(正)号,例如,+2、+0.5、+ 1/3,…,就是2、0.5、1/3,….这样,一个数就由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值.如数-3.2的符号是“一”号,绝对值是3.2,数5的符号是“+”号,绝对值是5.2、自学第2—3页,回答下列问题大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么 0是什么数呢?0有什么意义?归纳小结:数0既不是正数,也不是负数,它是正数和负数的'分界.0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量.3、用正负数表示具有相反意义的量:自学课本3—4页有哪些相反意义的量?请举出你所知道的相反意义的量?“相反意义的量”有什么特征?归纳小结:一是意义相反,二是有数量,而且是同类量.完成3页练习4、例题自学例题,完成归纳。
1.1正数和负数第2课时教学设计一、教材分析:这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。
例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数)。
这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了。
二、教学建议:为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。
通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
“做一做”对有理数进行分类,学生尝试分类时,思维相当活跃,但大部分同学缺乏条理性,重复或遗漏现象普遍存在,如奇数、偶数、合数,甚至单数、双数等等,教师切不可操之过急,应肯定其合理部分,指出其不合理部分。
可先补一个例,引导学生回顾小学学过的数是怎样分类的,再根据符号特性进行补充,鼓励学生用自己语言表达,逐步形成体系。
注意时间控制。
三、教学设计思想:教师用投影出示练习题,学生讨论解决,教师引导学生对有理数进行分类,学生以多种形式完成训练题。
四、重点:有理数包括哪些数。
难点:有理数的分类。
教具:多媒体课件五、教学目标知识与技能目标:1.能说出有理数的意义。
2.能把给出的有理数按要求分类,知道数0在有理数分类中的作用。
3.会求一个数的相反数。
经过程与方法目标:历相反数的抽象概括过程,培养归纳概括的数学思想方法。
情感与价值观目标:通过有理数的分类,得到对称美的享受。
六、教学设计:七、拓展建议对一些学有余力的学生,可以让他们通过自己实践,总结有理数的分类。
1.1正数和负数第2课时有理数的分类教学目标1.理解有理数的概念,掌握有理数的分类方法;2.会把所给的有理数填入相应的集合;3.经历对有理数进行分类探索的过程,初步感受分类讨论的数学思想。
教学重难点【教学重点】有理数的概念和对有理数进行正确的分类。
【教学难点】对有理数进行正确的分类及分类的标准。
课前准备课件、教具等。
教学过程一、情境导入某天毛毛看报纸,见到下面一段内容:冬季的一天,某地的最高气温为6℃,最低气温达到-10℃,平均气温是0℃,而同一天北京的气温-3℃~7℃.这里出现了哪些数?我们到目前为止学过了哪些数?你能试着将它们进行分类吗?今天我们要把大家学过的数进行分类命名.二、合作探究探究点一:有理数的概念【类型一】有理数的有关概念例1 下列各数:-45,1,8.6,-7,0,56,-423,+101,-0.05,-9中,( ) A .只有1,-7,+101,-9是整数B .其中有三个数是正整数C .非负数有1,8.6,+101,0D .只有-45,-445,-0.05是负分数 解析:根据有理数的有关概念,整数包括1,-7,0,+101,-9,故选项A 错误;正整数只有两个,即1和+101,故选项B 错误;非负数包括有1,8.6,+101,0,56,故选项C 错误;负分数包括-45,-423,-0.05,故选项D 正确.故选D. 方法总结:当有理数只含有单个符号时,带负号的数即为负数.然后再区分是整数还是分数.【类型二】对数“0”的理解例2 下列对“0”的说法正确的个数是( )①0是正数和负数的分界点;②0只表示“什么也没有”;③0可以表示特定的意义,如0℃;④0是正数;⑤0是自然数.A .3B .4C .5D .0解析:0除了表示“无”的意义,还表示其他的意义,所以②不正确;0既不是正数也不是负数,所以④不正确;其他的都正确.故选A.方法总结:“0”表示的意义非常广泛,比如:冰水混合物的温度就是0℃,0是正、负数的分界点等.探究点二:有理数的分类例3 把下列各数填入相应的括号内:-10,8,-712,334,-10%,3101,2,0,3.14,-67,37,0.618,-1. 正数:{ };负数:{ };整数:{ };分数:{ }.解析:要将各数填入相应的括号里,首先要弄清楚有理数的分类标准,其次要弄清楚每个数的特征.解:正数:{8,334,3101,2,3.14,37,0.618}; 负数:{-10,-712,-10%,-67,-1}; 整数:{-10,8,2,0,-67,-1};分数:{-712,334,-10%,3101,3.14,37,0.618}. 方法总结:在填数时要逐个考察给出的每一个数,看它是什么数,是否属于某一类数;逐个填写相应括号,从给出的数中找出属于这个类型的数,避免出现漏数的现象.探究点三:和正、负有关的规律探究问题例4 观察下面依次排列的一列数,请接着写出后面的3个数,你能说出第10个数、第105个数、第2016个数吗?(1)一列数:1,-2,3,-4,5,-6,______,______,______,…;(2)一列数:-1,12,-3,14,-5,16,____,____,____,…. 解析:(1)对第n 个数,当n 为奇数时,此数为n ;当n 为偶数时,此数为-n ;(2)对第n 个数,当n 为奇数是,此数为-n ;当n 为偶数时,此数为1n. 解:(1)7,-8,9;第10个数为-10,第105个数是105,第2016个数是-2016;(2)-7,18,-9;第10个数为110,第105个数是-105,第2016个数是12016. 方法总结:解答探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数字排列的特征.三、板书设计1.有理数的概念2.有理数的分类①按定义分类为: ②按性质分类为:有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数零负整数分数⎩⎪⎨⎪⎧正分数负分数有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数零负有理数⎩⎪⎨⎪⎧负整数负分数 教学反思本节课是有理数分类的教学,要给学生较大的思维空间,促进学生积极主动地参加学习活动,亲自体验知识的形成过程.避免教师直接分类带来学习的枯燥性.要有意识地突出“分类讨论”数学思想的渗透,明确分类标准不同,分类的结果也不相同,且分类结果应是无遗漏、无重复的.。
《正数和负数》第2课时教材分析本节课《正数和负数》是人教版初中数学七年级上册第一章第一节的内容.学生在上节课中已经认识了正数和负数,有了初步应用正、负数的基础.在此基础上,初步应用正、负数,进一步丰富学生对数概念的理解,有利于中小学数学的衔接,为第四学段进一步理解有理数的意义和运算打下良好的基础.本节课冲正数与负数的概念复习入手,从0的不同意义一如,让学生感受正、负数在日常的生活和生产的不同意义,引导学生应用正数和负数解决生活中的问题,从而再在具体的生活情境中理解正数和负数的意义.最后学生可以在具体的生活情境中进行运用正数和负数.学情分析《正数和负数》这个单元是在学生认识了自然数、分数和小数的基础上进行学习,上一课时已要求学生理解了正数和负数,并进行了正数与负数的初步应用,因此学生在上节课学习学习正负数概念的基础上加深拓展让学生深入了解0的意义,解决正、负数在生活正的问题.本课立足于学生的“学”,要求学生多观察,感受生活情境中的数学,从而可以帮助学生形成数学来源于生活,有应用于生活的理念,培养“三会”的数学核心素养.因此课堂采用自主探究和合作交流的方法组织教学,使每位学生都参与到课堂当中,体会到数学的乐趣!教学目标1. 会使用正数和负数表示不同问题情境中具有相反意义的量.2.在实际背景中掌握正数与负数的意义。
3.通过实例理解正数与负数,扩大对零的意义的认识.4.在经历将0与正数、负数区分辨别的过程中,初步培养学生的分类讨论的数学思想.5.经历各式各样的生活情境,体会数学与生活的紧密联系,培养学生分析和解决实际问题的能力.教学重难点重点:会使用正数和负数表示不同问题情境中具有相反意义的量.难点:在实际背景中掌握正数与负数的意义。
.教学过程活动一回忆巩固正数和负数问题1:通过上节课的学习,同学们已经对正数和负数有了一定的了解,什么是正数、什么是负数?它们是如何表示的,快来分享一下吧!师生活动:小组形式汇报.设计意图:通过提前布置预习作业,复习上节课内容,巩固学习过的知识点,并引发学生的思考,正数和负数在日常生活中有哪些应用,为学习新课做铺垫.活动二重新认识数字“0”问题2:1.0的含义是什么?它只表示没有吗?2.根据下图中给出的信息,说出珠穆朗玛峰和吐鲁番盆地应该用如何数来区分表示.答:0的含义不只表示没有,还可以作为正数和负数的分界.珠穆朗玛峰可以记为:+8844.43米;吐鲁番盆地可以记作:-155米.总结归纳0是正数与负数的分界,0℃是一个确定的温度,海拔0m表示海平面的平均高度...0的意义已不仅是表示“没有”.师生活动:学生先独立思考,再以小组形式汇报展示.问题3:下面图中的正数和负数的含义是什么?你能再举一些用正数、负数表示数量的实际例子吗?答:图1中的正数、负数表示:A地高于海平面4 600米,B地低于海平面100米.图2中的正数、负数分别表示:存入2 300元,支出1 800元.总结归纳:用正负、数表示相反意义的量一般情况下,把向前、上升、增加、收入等规定为正,把它们的相反意义规定为负.师生活动:老师提问学生举手回答问题.设计意图:通过学生参与小组活动,激发学生参与课堂教学的热情,使学生进入问题情境,引出正数和负数的实际意义.通过实例引出用各种符号表示的数,让学生试着解释,激发学生的求知欲望,感受0的意义及正数和负数的应用.⏹活动三应用正负数解决问题【经典例题】(1)转动转盘时,若规定顺时针转动为正,那么逆时针转动5圈应该怎样表示?(2)若把向西规定为负,那么+102米表示什么?0米表示什么?(3)如果正午12时记作0时,午后3时记作+3时,那么上午8时记作什么?解:(1)逆时针转动5圈应该表示为-5圈.(2)+102米表示向东102米,0米表示不进不退,即原地不动.(3)上午8时记作-4时.总结:用正、负数表示具有相反意义的量,必须有“基准”,但这个“基准”不一定都是0,比如(3)中的基准是正午12时,而不是0时.(1)表示相反意义的常有“上升”与“下降”,“前”与“后”,“高于”与“低于”,“得到”与“失去”,“收入”与“支出”等.(2)0是正数与负数的分界,已不再是表示“没有”.师生活动:学生先独立思考再作答.设计意图:通过0的重新认识,帮助学生体会正数和负数的实际应用,加入0的基准意义,让学生一起感受正数和负数的实际意义,增加考察难度.⏹活动四灵活运用正负表示量【教材例题】(1)一个月内,李明体重增加1.2kg,张华体重减少0.5kg,刘伟体重无变化,写出他们这个月的体重增长值.(2)四种品牌的手机今年第二季度的销售量与第一季度相比,变化率如下:A品牌减少2%,b 品牌增长4%,C品牌增长1%,D品牌减少3%.写出今年第二季度这些品牌的手机销售量的增长率.分析:(1)体重增加,增长值为正数;体重减少,增长值为负数.(2)变化率减少,增长率为负数;变化率增长,增长率为正值.解: (1)这个月李明体重增长1.2kg,张华体重增长-0.5kg,刘伟体重增长0kg.(2)四种品牌的手机今年第二季度销售量的增长率是:A品牌:-2%,b品牌:4%,C品牌:1%,D品牌:-3%.总结:解题时若“基准”是0,那正向的词如增加、增长通常表示正数,负向的词如减少通常表示负数.师生活动:学生先独立思考再作答.【经典例题】在一次数学测验中,七(1)班全体同学的平均分为85 分,其中5 名同学的成绩分别为80分、98分、90分、84分、73分.以平均分为基准,用正数表示超出部分,用负数表示不足部分.(1)上面5名同学对应的成绩分别应记为多少?(2)另有2名同学的成绩分别记为+3分和0分,这2名同学的实际成绩是多少?分析:比平均成绩高的记为正数,高1分记作+1分,依此类推;比平均成绩低的记为负数,低 1 分记作-1分,依此类推;若和平均成绩相同,则记作0 分.解:(1)5名同学对应成绩分别记为-5,13,5,-1,-12.(2)这2名成绩为88分和85分.总结:解题时一定要先弄清“基准”,用与基准的差表示量,或把数据按照基准还原成原数据.师生活动:学生先独立思考再作答.上述问题中出现了基准的概念.为了重新定义生活应用中的正负数,用以解决生活中的简单问题.设计意图:这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学生充分发表想法,使学生对定义基准的实际问题中的正负数的意义有一个系统的认识.使学生学会用正数和负数解决生活中的问题,深入理解正负数的使用意义.⏹活动五运用新知显身手【教材练习】1.如果水位升高3m时水位变化记作+3 m,那么水位下降3m时水位变化记作m,水位不升不降时水位变化记作.2.某蓄水池的标准水位记为0m,如果用正数表示水面高于标准水位的高度,那么0.08m和-0.2m各表示什么?(2)水面低于标准水位0.1m和高于标准水位0.23 m各怎样表示?3.如果把一个物体向后移动5m记作移动-5m,那么这个物体又移动+5 m是什么意思?这时物体离它两次移动前的位置多远?答案:1.−3,02.(1)0.08m表示高于标准水位0.08m,−0.2 m表示低于标准水位0.2 m.(2)-0.1m,0.23m.3.+5 m表示这个物体向前移动5m,距离它两次移动前的位置是10m.师生活动:学生先独立作答,再随机选择学生回答.设计意图:让学生进一步巩固所学知识,加深理解用正负数的应用.⏹活动六限时5分测测看1.下列关于“0”的叙述中,正确的有()℃0是正数与负数的分界;℃0比任何负数都大;℃0只表示没有;℃0常用来表示某种量的基准.A.1个B.2个C.3个D.4个答案:C2.有四包真空小包装火腿,每包以标准克数(450克)为基数,超过标准的克数记作正数,不足标准的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A.-2 B.-3 C.+1 D.+4答案:C3..小戴同学的微信钱包账单如图所示,+29.74表示收入29.74元,下列说法正确的是( )A.-18.50表示收入18.50元B.-18.50表示支出18.50元C.-18.50表示支出-18.50元D.收支总和为48.24元答案:B4.某种商品的标准价格是200元,随着季节的变化,商品的价格可浮动±10%.(1)±10%的含义是什么?(2)请你计算出该商品的最高价格和最低价格;解:(1)+10%表示比标准价格高10%,-10%表示比标准价格低10%.(2)最高价格为220元,最低价格为180元.设计意图:通过课堂练习巩固新知,加深对本节课的理解及应用.活动七课堂总结师生活动:教师和学生一起回顾本节课所讲的内容.1.本节课你学到了什么?2.应该如何理解“0”?3.如何应用正负数结局实际问题?设计意图:通过小结让学生进一步熟悉巩固本节课所学的知识.实践作业以班级平均身高为基准,尝试用正负数表示班级同学的身高.板书设计教学反思本节课是第一章“有理数”的第一课时,引入负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理,引入中的举例就是这个目的.0的理解有着新的意义,学生理解了这个意义,在结合教材的例子或图片中出现的正、负数就是让学生去感受和体验正、负数在生活中的应用.使学生接受生活生产实际中确实存在着两种相反意义的量是本节课的教学重点,所以在教学中可以多举几个这方面的例子,并且所举的例子又应该符合学生的年龄和思维特点.当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就水到渠成了.本节课教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,体现了学生自主学习、合作交流的教学理念,图片和例子都是生活生产中常见的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导即可.。
《正数和负数(第2课时)》教学设计教学目标:知识与技能:理解有理数的意义;能把给出的有理数按要求分类;了解数0在有理数分类中的作用;理解相反数的意义;给一个数,能求出它的相反数。
过程与方法:通过本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力。
情感态度与价值观:通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育。
教学重点:有理数的分类,理解相反数的意义 教学难点:掌握有理数的两种分类教材分析:正确进行有理数的分类,理解相反数的意义,可为今后绝对值的学习,有理数大小比较及有理数的运算打下基础。
同时可培养学生对事物进行分类讨论的思想,因此成为本节课的重点。
两种分类是按不同标准划分的,学生很容易混淆,因此成为本节课的难点,本节课是继负数引入后的一节课,它把以前所学的数作了梳理和归纳,使得知识系统化,能培养学生分类讨论的思想。
同时相反数的意义可为以后的学习作准备,本节课旨在通过学生观察、思考、探索、总结知识,培养学生的讨论、交流、总结、归纳能力和合作探究意识,树立分类讨论思想。
教学方法:情境教学法、生生互动法 课时安排:一课时环节 教师活动 学生活动 设计意图 创设情境导入新课 合作探究一现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数。
大家讨论一下,到目前为止,你已经认识了哪些类型的数。
教师板书学生说出的数。
然后引出新课并板书课题:2.1正数和负数(二) 议一议:你能把这些数分类吗?教师对学生的回答给予鼓励性的评价,同时指出:我们把所有的这些数统称为有理数。
一、 讨论与交流,归纳有理数的分类: 1、试一试:你能对以上各种类型的数作出一张分类表吗?教师启发诱导,参与讨论,最后师生共同完成。
教师板书:学生同桌讨论、交流,自由发言学生踊跃发言,相互补充学生观察思考,分组讨论,尝试归纳对所学过的数作了梳理和回顾,自由发言激发了学生学习的热情和求知欲。
为有理数的分类作准备培养了学生观察、思考、总结、归纳的能力,同时培养学生对数分类讨论的观点。
第一章:有理数(1.1正数和负数)知识点1.正数和负数的定义(1)正数:大于0的数叫正数。
(2)负数:在正数前加上符号:“-”(负号)的数叫做负数,小于0的数叫负数. 注意:比0大的数是正数。
正数前面有“+”号,人们习惯将“+”号省略,在正数前面加“-”号,就是负数,负数前面必须有“-”号。
3)“0”既不是正数,也不是负数。
( 0是正数和负数的分界)2. 正数负数是表示具有相反意义的量(1)用正数和负数表示具有相反意义的量时,哪种意义为正是可以任意选择的,习惯上把升、上、零上为正 ,而相反为负;(2)具有相反意义的量一定是具体的数量;(3)具有相反意义的量中的两个量必须是同类量.不是同类量不具有对此性;(例如:上升和下降,零上和零下)(4)具有相反意义的量是成对出现的,单独的个量不能成为具有相反意义的量;考试点:用正数和负数表示具有相反意义的量时要明确“基准"。
为了计算方便,常把高于平均数,标准数或某一基准数的量规定为正,把与它们具有相反意义的量用负数表示。
1.2.1 有理数有理数的有关概念1.整数:正整数0、负整数统称为整数,如-3,-2,2,0,1,2,3等。
,0.2,-1.25等。
2.分数:正分数负分数统称为分数,如2133.有理数:整数和分数统称为有理数。
(m,n是整数,m≠0)的形式任何一个有理数都可以写成nm4.部分常用的数的名称正整数:如1,2,3,...负整数:如-1,-2,-3,..正分数:形如nm(m,n是正整数)的数,例如12,23,157…负分数:形如- nm(m,n是正整数)的数,例如-0.5,-52非负数:正数和0;非正数:负数和0.●注意:引入负数之后,小学学过的奇数和偶数的范围相应地扩大了,奇数和偶数也可以是负数,如-6,-4,-2都是偶数,也可以写成2n(n为整数)的形式;-5,-3,-1都是奇数,可以写成2n-1(n为整数)或2n+1(n为整数)的形式。