神经毒理学方法_附件
- 格式:ppt
- 大小:107.00 KB
- 文档页数:1
背景:近一个世纪以来,氢氧化铝(明矾)一直被用作疫苗的佐剂。
1926年,免疫学家亚历山大·T·格伦尼Glenny首次使用它来增强免疫反应。
它的巨大效率使铝得以继续使用到目前为止。
方法:利用Google Scholar、Web of Science、PubMed等公认的科学数据库检索关键词。
根据它们的相关性,对所选的作品进行了审查和分析。
分析中只包括同行评议的文章。
结果:在动物身上进行的当代研究表明,它具有神经毒性作用。
此外,使用先进的成像技术发现,死于自闭症的人的神经系统组织中铝浓度增加。
这种范式转变建议重新考虑明矾基佐剂的使用,并呼吁仔细剖析,以避免错误的解释。
这一提议并不构成对疫苗接种的攻击,因为没有人否认这一事实,即它已被系统地证明在拯救数百万人的生命方面是有效的。
不幸的是,研究铝基佐剂毒性的科学家被不公平地贴上了“抗黄曲霉毒素”的标签。
相反,他们一直在质疑的是铝作为佐剂的安全性。
结论:目前的工作鼓励研究人员、卫生监管机构,甚至制药公司允许自己考虑铝基佐剂对易感儿童可能有毒的可能性。
关键词:自闭症、神经毒性、疫苗接种、范式转换免疫接种是已开发的最有效的保健干预措施,当伴随着足够的卫生条件和抗生素时,它消除了曾经导致许多人死亡的传染性疾病的相当大比例。
如今,超过25种剧毒和有害的传染病病原体拥有保护性疫苗,因此,接种疫苗拯救了数百万人的生命。
方法:搜索了几个著名的科学数据库,包括Google Scholar、Scope 和PubMed,以查找在过去60年中发表的参考出版物。
关键词为“自闭症”、“神经毒性”、“疫苗接种”和“范式转换”。
在撰写文献之前,选定的内容经过不同阶段的评估,最终版本得到所有作者的批准。
结果:Djuvare是一个来自拉丁语的词,用来解释佐剂是如何工作的。
它的意思是“协助”。
1926年,亚历山大·T·格伦尼首次描述了含铝佐剂的免疫刺激作用。
在工业社会快速发展的时代,重金属的使用是必不可少的,例如铅、锰、镉等,由于这些重金属的使用,使环境中的重金属含量不断上升,严重危害到了人们的健康。
其中铅就是一种广泛存在于环境中的重金属,铅对身体的损害是多方面的,能对身体的很多系统造成损伤,例如血液系统、肾脏、中枢神经系统、生殖系统、外周神经系统等,这其中危害最大的就是对神经系统的损伤[1]。
在对神经系统造成损伤的情况下,对儿童的神经系统作用最为明显。
因为婴幼儿和儿童的神经系统还处在发育阶段,并不完善,此时的血脑屏障选择透过性能不强,则铅极容易通过血脑屏障,对儿童的神经系统造成损伤,影响智力的发育。
并有研究表明产前的铅暴露会影响胎儿的形成,以及今后的新生儿的身高和体重。
而且研究表明铅对儿童的影响并没有浓度下限,即只要少许的铅存在就会对儿童的神经造成一定的损伤,研究表明当儿童血液中的铅含量每上升100ug/L,智商就会下降1~2分[2]。
近些年来关于铅神经中毒机制已经有了大量的研究,本文将对部分研究进行综述。
1、铅对神经递质的影响电压门Ca2+通道可以控制神经递质的释放和再吸收,而在铅中毒后,此控制则会受受到影响,神经递质的基础性释放则会被增强,而激活状态下的释放则会受到抑制[3]。
在细胞受到刺激之后,Ca2+就会内流与钙调蛋白相结合,结合了Ca2+的钙调蛋白的三维构象则发生改变被激活,激活的钙调蛋白又会激活下游的调节蛋白,例如钙调蛋白依赖激酶Ⅱ。
在神经系统中钙调蛋白依赖激酶Ⅱ发挥着非常重要的作用,其可以调节突触前神经递质的释放以及突触后效应产生,钙调蛋白依赖激酶Ⅱ可使突触蛋白Ⅰ(SpⅠ) 磷酸化,从而促进突触小泡与突触前膜的结合,释放神经递质。
但在铅中毒后,铅会代替Ca2+与钙调蛋白结合形成复合物,促进神经递质的基础性释放,从而引发神经毒性。
在对铅中毒进行体外实验发现,铅能激活钙调蛋白,从而使突触小泡蛋白发生磷酸化,进而介导乙酰胆碱在突触囊泡内的释放,可体内的实验却发现铅能减少乙酰胆碱的释放,而且实验还表明神经行为的损伤与乙酰胆碱的释放呈正比关系[4]。
毒理学实验方法与技术作者:王心如主编出版社:人民卫生出版社•出版时间:2006-2-1•字数:302000•版次:1•页数:203•印刷时间:2006-2-1•开本:•印次:•纸张:胶版纸•I S B N :9787117056618•包装:平装所属分类:图书>> 医学>> 医药卫生教材第一章毒理学实验基础第一节毒理学实验的原则和局限性在描述毒理学的试验中,有三个基本的原则:1.化学物在实验动物产生的作用,可以外推于人。
基本假设为:①人是最敏感的动物物种;②人和实验动物的生物学过程包括化学物的代谢,与体重(或体表面积)相关。
这两个假设也是全部实验生物学和医学的前提。
以单位体表面积计算在人产生毒作用的剂量和实验动物通常相近似。
而以体重计算则人通常比实验动物敏感,差别可能达10倍。
因此可以利用安全系数来计算人的相对安全剂量。
已知人致癌物都对某种实验动物具有致癌性。
实验动物致癌物是否都对人有致癌性,还不清楚,但此已作为动物致癌试验的基础。
一般认为,如果某一化学物对几个物种实验动物的毒性是相伺的,则人的反应也可能是相似的。
2.实验动物必须暴露于高剂量,这是发现对人潜在危害的必需和可靠的方法。
此原则是根据质反应的概念,随剂量或暴露增加,群体中效应发生率增加。
毒理学试验中,一般要设3个或3个以上剂量组,以观察剂量-反应(效应)关系,确定受试化学物引起的毒效应及其毒性参数。
毒性试验的设计并不是为了证明化学品的安全性,而是为了了解化学品可能产生的毒作用。
仅仅检测受试化学物在人的暴露剂量是否引起毒效应是不够的,尽管此剂量已超过人可能的暴露剂量。
当引起毒效应的最低剂量(LOAEL)与人的暴露剂量接近时,说明该化学物不安全。
当该剂量与人的暴露剂量有很大的距离(几十倍,几百倍或以上),才认为具有一定安全性,此距离越大,安全性越可靠。
如果在研究中所用的一系列的剂量不能引起毒性效应,则认为所用剂量还不足够高,应增加剂量,以确定受试化学晶的毒性。
(课件重点)毒理学研究方法1.体内试验(in vivo):也称整体动物试验,可严格控制接触条件,测定多种类型的毒作用。
大鼠,小鼠,豚鼠,家兔,狗和猴等。
也有鱼类,鸟类,昆虫等2.体外试验(in vitro):利用游离器官、培养的细胞或细胞器、生物模拟系统进行毒理学研究。
器官(肝、胚胎),细胞,细胞器,分子等3.人体观察(human toxicology),事故或志愿者4.流行病学研究(epidemiological study):为什么有选择毒性1.物种和细胞学的差异 (植物生长调节剂) 2.蓄积能力3.代谢过程和速率4.损伤的修复能力非损害作用(non-adverse effect)所致机体发生的一切生物学变化都是暂时的、可逆的,应在机体代偿能力范围之内,不造成机体形态、生长发育过程及寿命的改变、不降低机体维持稳态的能力和对额外应激代偿的能力、不影响机体的功能容量,如进食量、体力劳动负荷能力等涉及到解剖、生理生化和行为方面的指标,也不引起机体对其他环境有害因素的易感性增高。
损害作用(adverse effect)所致的机体生物学改变是持久的、不可逆的,造成机体功能容量的各项指标改变、维持体内的稳态能力下降、对额外应激状态的代偿能力降低以及对其他环境有害因素的易感性增高,使机体正常形态、生长发育过程均受到影响,寿命缩短生物膜biomembrane定义:将细胞或细胞器与周围环境分隔开的一层半透膜。
功能:将细胞或细胞器与周围环境隔离;保持细胞或细胞器内部理化性质的稳定;选择地允许或部允许某些物质通过,主动摄入或排出一些物质生物转运过程的机理1、被动转运1)简单扩散:溶液中的化学物质分子,由浓集部位向各个方向分散,直到全部分子均匀分布在溶液中。
simple diffusion:化学物质由浓度较高部位透过生物膜向浓度较低部位分散的过程。
特点:化学物不与膜起反应;不消耗代谢能量;膜两侧浓度差愈大,脂溶性愈高,其简单扩散速度快;在毒理学上,是大多数化学物透过生物膜的主要转运方式。