《平面直角坐标系》典型例题
- 格式:doc
- 大小:419.00 KB
- 文档页数:8
七年级数学平面直角坐标系典型例题及答题技巧单选题1、点A(−3,−5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,−8)B.(1,−2)C.(−6,−1)D.(0,−1)答案:C解析:利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.解:点A的坐标为(−3,−5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:−3−3=−6,纵坐标为:−5+4=−1,即(−6,−1).故选:C.小提示:本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.2、若y轴负半轴上的点P到x轴的距离为2,则点P的坐标为()A.(0,2)B.(2,0)C.(﹣2,0)D.(0,﹣2)答案:D解析:点P在y轴上则该点横坐标为0,据此解答即可.∵y轴负半轴上的点P到x轴的距离为2,∴点P的坐标为(0,﹣2).本题考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.3、在平面直角坐标系中,将点(2,l)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)答案:B解析:在平面直角坐标系中,将点(2,l)向右平移时,横坐标增加,纵坐标不变.将点(2,l)向右平移3个单位长度,则所得的点的坐标是(5,1).故选B.小提示:本题运用了点平移的坐标变化规律,关键是把握好规律.4、下面四个点位于第四象限的是()A.(−1,2)B.(−2,−2)C.(2,5)D.(6,−2)答案:D解析:根据直角坐标系中,不同象限内点的坐标特点,依次对四个选项进行判断即可求解.A.(−1,2),因为-1<0,2>0,所以(−1,2)在第二象限,故A不符合题意B.(−2,−2),因为-2<0,所以(−2,−2)在第三象限,故B不符合题意C.(2,5),因为2>0,5>0,所以(2,5)在第一象限,故C不符合题意D.(6,−2),因为6>0,-2<0,所以(6,−2)在第四象限,故D符合题意本题考查了直角坐标系中不同象限内点的坐标特点,第四象限内的点,横坐标大于零,纵坐标小于零.5、以下能够准确表示宣城市政府地理位置的是()A.离上海市282千米B.在上海市南偏西80°C.在上海市南偏西282千米D.东经30.8°,北纬118°答案:D解析:根据点的坐标的定义,确定一个位置需要两个数据解答即可.解:能够准确表示宣城市政府地理位置的是:东经30.8°,北纬118°.故选:D.小提示:本题考查了坐标确定位置,是基础题,理解坐标的定义是解题的关键.6、在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)答案:A解析:点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A.7、某班级第3组第4排的位置可以用数对(3,4)表示,则数对(1,2)表示的位置是( )A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排答案:C解析:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.故某班级第3组第4排位置可以用数对(3,4)表示,则数对(1,2)表示的位置是第1组第2排,故选C.8、观察下面一列有序数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,按这些规律,第50个有序数对是()A.(3,8)B.(4,7)C.(5,6)D.(6,5)答案:C解析:不难发现横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,根据此规律即可知第50个有序数对.观察发现,横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,∵1+2+3+4+5+6+7+8+9=45,∴第46、47、48、49、50个有序数对依次是(1,10)、(2,9)、(3,8)、(4,7)、(5,6).所以C选项是正确的.小提示:本题主要考查了点的坐标探索规律题,找出有序数对的横、纵坐标变化规律是解决问题的关键.填空题9、如图是中国象棋棋盘的一部分,如果我们把“馬”所在的位置记作(2,1),“卒”所在的位置就是(3,4),那么“相”所在的位置是____________.答案:(5, 3) .解析:马在第2列第1行,表示为(2,1),“卒”所在的位置就是(3,4),可知数对中前面的数表示的是列,后面的数表示的是行.据此进行解答.故答案为(5, 3)由已知可得:数对中前面的数表示的是列,后面的数表示的是行.所以,“相”所在的位置是(5, 3).小提示:本题主要考查了学生用数对表示位置的知识.10、点A的坐标是(2,﹣3),将点A向上平移4个单位长度得到点A',则点A'的坐标为_____.答案:(2,1).解析:将点A的纵坐标加4,横坐标不变,即可得出点A′的坐标.解:将点A(2,﹣3)向上平移4个单位得到点A′,则点A′的坐标是(2,﹣3+4),即(2,1).故答案为(2,1).小提示:本题考查坐标与图形变化-平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.11、与点(2,−7)关于y轴对称的点的坐标为_______,关于y=−1对称的点的坐标为_______.答案:(−2,−7)(2,5)解析:关于y轴对称的点的坐标特征是:纵坐标不变,横坐标变为原数的相反数;关于y=−1对称的点的坐标特征是:横坐标不变,纵坐标关于y=−1对称,据此解题.解:点(2,−7)关于y轴对称的点的坐标为(−2,−7),关于y=−1对称的点的坐标为(2,5),所以答案是:(−2,−7);(2,5).小提示:本题考查直角坐标系、关于y轴对称的点的坐标等知识,是基础考点,掌握相关知识是解题关键.12、对于两个非零实数x,y,定义一种新的运算:x∗y=ax +by.若1∗(−1)=2,则(−2)∗2的值是__.答案:-1解析:根据新定义的运算法则即可求出答案.∵1*(-1)=2,∴a1+b−1=2,即a-b=2∴原式=a−2+b2=−12(a-b)=-1故答案为-1.小提示:本题考查代数式运算,解题的关键是熟练运用整体的思想.13、请写出一个在第三象限内的点的坐标:__________(只写一个).答案:(−1,−1)解析:根据第三象限内的点的横坐标和纵坐标都是负数直接写出即可.解:因为第三象限内的点的横坐标和纵坐标都是负数,故坐标可以是(−1,−1)(答案不唯一).小提示:本题考查了平面直角坐标系内点的坐标的特征,解题关键是熟知在不同象限的点的坐标的符号特征.解答题14、已知点P(2a−2,a+5),解答下列各题.(1)点P在x轴上,求出点P的坐标.(2)点Q的坐标为(4,5),直线PQ//y轴;求出点P的坐标.(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2020+2020的值.答案:(1)P(−12,0);(2)P(4,8);(3)2021解析:(1)根据x轴上点的坐标特征:纵坐标为0,列出方程即可求出结论;(2)根据与y轴平行的直线上两点坐标关系:横坐标相等、纵坐标不相等即可求出结论;(3)根据题意可得:点P的横纵坐标互为相反数,从而求出a的值,即可求出结论.解:(1)若点P在x轴上,∴a+5=0解得:a=-5∴P(−12,0);(2)∵点Q的坐标为(4,5),直线PQ//y轴∴2a−2=4解得:a=3∴P(4,8);(3)∵点P在第二象限,且它到x轴、y轴的距离相等∴2a−2+a+5=0解得:a=-1∴a2020+2020=(−1)2020+2020=2021小提示:此题考查的是根据题意,求点的坐标,掌握x轴上点的坐标特征、与y轴平行的直线上两点坐标关系和点到x 轴、y轴的距离与坐标关系是解题关键.15、适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点.(1)看图案像什么?(2)作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?答案:(1)“鱼”;(2)向左平移2个单位.解析:(1)描点根据顺序连线即可.(2)根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.解:(1)像“鱼”.(2)纵坐标不变,横坐标减2,即向左平移两个单位,根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.小提示:本题考查直角坐标系中描点,平移作图,细心画图即可.。
初一数学平面直角坐标系30道必做题(含答案和解析及考点)1、如图是小刚画的一张脸,他对妹妹说“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示成.答案:(2,1).解析:略.考点:函数——平面直角坐标系——点的位置与坐标.2、如图所示,小颖从家到达莲花中学要穿过一个居民小区,若小区的道路均是正南或正东方向,小颖走下面哪条线路不能到达学校().A.(0,4)(0,0)(4,0)B.(0,4)(4,4)(4,0)C.(0,4)(1,4)(1,1)(4,1)(4,0)D.(0,4)(3,4)(4,2)(4,0)答案:D.解析:(3,4)(4,2)所走路线为斜线,不符合题意,不能正常到达学校.考点:函数——平面直角坐标系.3、如图,围棋盘放置在某个平面直角坐标系内,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么,黑棋的坐标应该分别是.答案:(-6,-6),(-4,-7).解析:黑棋①的坐标是(-6,-6),黑棋③的坐标是(-4,-7).考点:函数——平面直角坐标系——点的位置与坐标.4、如果点A(x,y)在第三象限,则点B(-x,y-1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案: D.解析:∵点A(x,y)在第三象限,∴{x<0y<0.∴-x>0,y-1<0.∴点B(-x,y-1)在第四象限.考点:函数——平面直角坐标系——点的位置与坐标.5、如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点()落在第象限.答案:四.解析:由图象可知,b<5,a<7.∴6-b>0,a-10<0.∴点(6-b,a-10)落在第四象限.考点:函数——平面直角坐标系——点的位置与坐标.6、已知A(-2,0),B(a,0)且AB=5,则B点坐标为.答案:(3,0)或(-7,0).解析:由题知︱a+2︱=5,∴a=3或-7.∴B点坐标为(3,0)或(-7,0).考点:函数——平面直角坐标系——坐标与距离.7、若点A(-2,n)在x轴上,则点B(n-1,n+1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:B.解析:略.考点:函数——平面直角坐标系——点的位置与坐标.8、点P(m+3,m+1)在直角坐标系的x轴上,则点P的坐标为().A.(1,-2)B.(2,0)C.(4,0)D.(0,-4)答案:B.解析:∵点P(m+3,m+1)在直角坐标系的轴上.∴m+1=0.∴m=-1.∴点P的坐标为(2,0).考点:函数——平面直角坐标系——点的位置与坐标.9、已知点M(3a-8,a-1).(1)若点M在第二象限,并且a为整数,则点M的坐标为.(2)若点N的坐标为(3,-6),并且直线MN∥x轴,则点M的坐标为.答案:(1)(-2,1).(2)(-23,-6).解析:(1)若点M在第二象限,3a<0,a-1>0.∴1<a<8,又a为整数.3∴a=2.∴M(-2,1).(2)若点N的坐标为(3,-6),并且直线MN∥x轴.∴a-1=-6,即a=7.∴点M(-23,-6).考点:函数——平面直角坐标系——点的位置与坐标.10、若点P(-1,a),Q(b,2),且PQ∥x轴,则a ,b .答案:a=2.b≠-1.解析:∵PQ∥x轴.∴PQ两点的纵坐标相同.∴a=2.又∵P、Q应为不重合的两点.∴b≠-1.考点:函数——平面直角坐标系——点的位置与坐标.11、点P(a,b)是平面直角坐标系内的点,请根据点的坐标判断点P的特征:(1)若a=b,则P点在.(2)若a+b=0,则P点在.答案:(1)一三象限坐标轴夹角平分线上.(2)二四象限坐标轴夹角平分线上.解析:(1)略.(2)略.考点:函数——平面直角坐标系——点的位置与坐标.12、若点M在第一、三象限的角平分线上,且点M到x轴的距离为2,则点M的坐标是().A.(2,2)B.(-2,-2)C.(2,2)或(-2,-2)D.(2,-2)或(-2,2)答案:C.解析:略.考点:函数——平面直角坐标系——坐标与距离.13、已知点(3-2k2,4k-3)在第一象限的角平分线上,则k= .答案:1.解析:略.考点:函数——平面直角坐标系——点的位置与坐标.14、若点M(5-a,2a-6)在第四象限,且点M到x轴与y轴的距离相等,试求(a-2)2014-a-2015的值.答案:0.解析:由题意得,5-a+2a-6=0.解得a=1.所以,(a-2)2014-a-2015=(1-2)2014-1-2015=1-1=0.考点:函数——平面直角坐标系——坐标与距离.15、若点P位于y轴左方,距y轴3个单位长,位于x轴上方,距x轴四个单位长,则点P的坐标是.答案:(-3,4).解析:略.考点:函数——平面直角坐标系——特殊点的坐标.16、在平面直角坐标系中,点P(-3,6)关于y轴的对称点的坐标为.答案:(3,6).解析:根据关于谁对称,谁不变,可知,点P(-3,6)关于y轴的对称点的坐标为(3,6). 考点:几何变换——图形的对称——关于x轴、y轴对称的点的坐标.17、在平面直角坐标系中,点P(-1,2)关于y轴的对称点为.答案:(1,2).解析:由关于谁对称谁不变,可知点P(-1,2)关于y轴的对称点为(1,2).考点:几何变换——图形的对称——关于x轴、y轴对称的点的坐标.18、在平面直角坐标系中,点P(-1,2)关于x轴的对称点在第象限.答案:三.解析:点P(-1,2)满足点在第二象限的条件.关于x轴的对称点的横坐标与P点的横坐标相同,是-2.纵坐标互为相反数,是-3.则P关于x 轴的对称点是(-2,-3),在第三象限.考点:几何变换——图形的对称——关于x轴、y轴对称的点的坐标.19、平面直角坐标系中,将线段OA向左平移2个单位,平移后,点O 、A的对应点分别为点O1 、A1,则点O1 、A1的坐标分别是().A.(0,0),(1,4)B.(0,0),(3,4)C.(-2,0),(1,4)D.(-2,0),(-1,4)答案:D.解析:∵线段OA向左平移2个单位,点O(0,0),A(1,4).∴点O1,A1的坐标分别是(-2,0),(-1,4).考点:几何变换——图形的平移——坐标与图形变化:平移.20、已知三角形的三个顶点坐标分别是(-2,1),(2,3),(-3,-1),把△ABC运动到一个确定位置,在下列各点坐标中,()是平移得到的.A.(0,3),(0,1),(-1,-1)B.(-3,2),(3,2),(-4,0)C.(1,-2),(3,2),(-1,-3)D.(-1,3),(3,5),(-2,1)答案:D.解析:由(-2,1)→(-1,3),(2,3)→(3,5),(-3,-1)→(-2,1)可以看作点向右平移1个单位长度,向上平移2个单位长度,而图形的平移是相同的,所以D对,A、B、C错.考点:函数——平面直角坐标系——点的位置与坐标.几何变换——图形的平移——点的平移.21、线段CD是由线段AB平移得到的,点A(-1,4)的对应点为,则点B(-4,-1)的对应点D坐标为().A.(2,9)B.(5,3)C.(1,2)D.(-9,-4)答案:C.解析:略.考点:函数——平面直角坐标系——点的位置与坐标.22、已知点A(0,0),B(3,0),点C在y轴上,且△ABC的面积为6,则点C的坐标是.答案:(0,4)或(0,-4).解析:由题意可知1AC·AB=6.2∴AC=4.∴点C的坐标是(0,4)或(0,-4).考点:函数——平面直角坐标系——坐标与面积.23、如图所示,半圆AB平移到半圆CD的位置时所扫过的面积为().A.3B.3+πC.6D.6+π答案:C.解析:扫过面积即为矩形ABDC的面积.∴扫过面积=2×3=6.考点:函数——平面直角坐标系——坐标与面积.24、在正方形网格上有一个△ABC ,网格上最小正方形的边长为1.(1) 把△ABC 平移,使点A 移动到点A’的位置,画出平移后的△A’B’C’,写出结论:__________.(2)△A’B’C’的面积为__________.(3)若点A 的坐标是(-5,2),点C’为坐标是(0,-2),在图中画出平面直角坐标系,点B’的坐标是__________.答案:(1) 结论:A’B’∥AB (答案不唯一).(2)△A’B’C’的面积是为5. (3)点B’的坐标是(-3,-3).解析:(1)平移后的△A’B’C’如图所示,结论:A’B’∥AB (答案不唯一).(2)观察图形可知,△A’B’C’内接在一个长为4,宽为3的长方形中.S △A’B’C’=4×3 −12×1×3−12×1×3−12×2×4=5. ∴△A’B’C’的面积是为5.(3)平面直角坐标系如图所示,点B’的坐标是(-3,-3).考点:三角形——三角形基础——三角形面积及等积变换.几何变换——图形的平移——平移的性质——坐标与图形变化:平移——作图:平移变换.25、定义:f (a,b )=(b,a ),g (m,n )=(-m,-n ).例如f (2,3)=(3,2),g (-1,-4)=(1,4).则g[f (-5,6)] 等于 . 答案:(-6,5).解析:根据所给定义,g[f (-5,6)]=g (6,-5)=(-6,5). 考点:式——探究规律——定义新运算.函数——平面直角坐标系.26、在平面直角坐标系中,对于平面内任一点(m ,n ),规定以下两种变换①f (m ,n )=(m ,-n ),如f (2,1)=(2,-1);②g (m ,n )=(-m ,-n ),如g (2,1)=(-2,-1).按照以上变换有:f[g (3,4)]=f (-3,-4)=(-3,4),那么g[f (-3,2)] 等于( ). A.(3,2) B.(3,-2) C.(-3,2) D.(-3,-2) 答案:A.解析:∵f (-3,2)=(-3,-2).∴g[f (-3,2)]=g (-3,-2)=(3,2). 考点:式——探究规律——定义新运算.27、观察下列有规律的点的坐标:A 1(1,1),A 2(2,-4),A 3(3,4),A 4(4,-2),A 5(5,7),A 6(6,−43),A 7(7,10),A 8(8,-1)依此规律,A 11的坐标为 ,A 12的坐标为 . A.(12,16),(12,−23) B.(11,15),(11,−23)C.(11,16),(11,−23) D.(11,16),(12,−23)答案:D. 解析:略.考点:函数——平面直角坐标系——点的位置与坐标.28、如图,边长为1,2的长方形ABCD 以右下角的顶点为中心旋转90°,此时A 点的坐标为 ;依次旋转2011次,则顶点A 的坐标为 . A.(3,3),(3027,0) B.(3,3),(3017,0) C.(3,2),(3027,0) D.(3,2),(3017,0) 答案:D. 解析:略.考点:式——探究规律.方程与不等式.函数——平面直角坐标系.29、一个粒子在第一象限内及x 轴、y 轴上运动,在第1min 内它从原点运动到(1,0),而后接着按如图所示方式在与x 轴、y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么,在2011min 后,求这个粒子所处的位置坐标.A.(41,13)B.(41,14)C.(44,13)D.(44,14) 答案:C.解析:弄清粒子的运动规律,并求出靠近2011min 后粒子所在的特殊点的坐标,最后确定所求点的坐标.对于这种运算数较大的题目,我们首先来寻找规律,先观察横坐标与纵坐标相同的点:(0,0),粒子运动了0min. (1,1),粒子运动了1×2=2(min ),向左运动. (2,2),粒子运动了2×3=6(min ),向下运动.(3,3),粒子运动了3×4=12(min),向左运动.(4,4),粒子运动了4×5=20(min),向下运动.……于是点(44,44)处粒子运动了44×45=1980(min).这时粒子向下运动,从而在运动了2011后,粒子所在的位置是(44,44-31),即(44,13).考点:函数——平面直角坐标系.30、在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.①填写下列各点的坐标:A1(,),A3(,),A12(,).②写出点A4n的坐标为(是正整数).③指出蚂蚁从点A100到A101的运动方向为.A. ①(1,1),(1,0),(5,0);②(2n,0);③ 从下到上.B. ①(1,1),(1,0),(6,0);②(2n,0);③ 从上到下.C. ①(0,1),(1,0),(5,0);②(2n,0);③ 从上到下.D. ①(0,1),(1,0),(6,0);②(2n,0);③ 从下到上.答案:D.解析:略.考点:函数——平面直角坐标系——点的位置与坐标——坐标与距离.。
以下是关于在平面直角坐标系中寻找规律的100道题目:1. 绘制点(1, 1), (2, 4), (3, 9), (4, 16), ... 并继续这个规律。
2. 连接点(-1, 0), (0, 1), (1, 0), (0, -1), (-1, 0) 形成一个图形。
这个图形是什么?3. 找到缺失的坐标:(2, 5), (4, 10), (6, ?)。
4. 绘制点(0, 0), (1, 1), (2, 4), (3, 9), ... 并继续这个规律。
5. 连接点(1, 1), (2, 2), (3, 3), (4, 4), ... 形成一条直线。
这条直线的斜率是多少?6. 找到缺失的坐标:(3, 6), (5, ?), (7, 14)。
7. 绘制点(-1, 0), (-2, 0), (-3, 0), (-4, 0), ... 并继续这个规律。
8. 连接点(0, 1), (1, 0), (0, -1), (-1, 0), (0, 1) 形成一个图形。
这个图形是什么?9. 找到缺失的坐标:(2, 4), (4, ?), (6, 12)。
10. 绘制点(1, 1), (2, 4), (3, 9), (4, 16), ... 并找出这个规律的方程。
11. 连接点(1, 2), (2, 4), (3, 6), (4, 8), ... 形成一条直线。
这条直线的斜率是多少?12. 找到缺失的坐标:(2, 5), (4, ?), (6, 11)。
13. 绘制点(-1, -1), (0, 0), (1, 1), (2, 2), ... 并继续这个规律。
14. 连接点(-1, 1), (-2, 2), (-3, 3), (-4, 4), ... 形成一条直线。
这条直线的斜率是多少?15. 找到缺失的坐标:(3, 6), (5, ?), (7, 13)。
16. 绘制点(0, 0), (1, 1), (2, 4), (3, 9), ... 并找出这个规律的方程。
考点1:考点的坐标与象限的关系知识解析:各个象限的点的坐标符号特征如下:(特别值得注意的是,坐标轴上的点不属于任何象限.)1、在面直角坐标中,点M (-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 2、在平面直角坐标系中,点P (-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 3、若点P (a ,a -2)在第四象限,则a 的取值范围是( ).A .-2<a <0B .0<a <2C .a >2D .a <0 4、点P (m ,1)在第二象限内,则点Q (-m ,0)在( )A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上 5、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 6、在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 . 7、对任意实数x ,点2(2)P x x x -,一定不在..( ) A .第一象限B .第二象限C .第三象限D .第四象限8、如果a -b <0,且ab <0,那么点(a ,b)在( )A 、第一象限B 、第二象限C 、第三象限,D 、第四象限.考点2:点在坐标轴上的特点x 轴上的点纵坐标为0, y 轴上的点横坐标为0.坐标原点(0,0)1、点P (m+3,m+1)在x 轴上,则P 点坐标为( )A .(0,-2)B .(2,0)C .(4,0)D .(0,-4) 2、已知点P (m ,2m -1)在y 轴上,则P 点的坐标是 。
考点3:考对称点的坐标知识解析:1、关于x 轴对称: A (a ,b )关于x 轴对称的点的坐标为(a ,-b )。
2、关于y 轴对称: A (a ,b )关于y 轴对称的点的坐标为(-a , b )。
3、关于原点对称: A(a,b)关于原点对称的点的坐标为(-a,-b)。
平面直角坐标系答题及答案一、选择题(共5题,每题4分,共20分)1.直线y = 3x + 2与y轴的交点的坐标为: A. (0, 3) B. (3, 0) C. (0, 2) D. (-2, 0)答案:C. (0, 2)2.已知点A(2, 3)和B(7, 8),则直线AB的斜率为: A. 2 B. 3 C. 5/2 D.1/2答案:C. 5/23.在平面直角坐标系中,点P(4, -3)关于x轴的对称点为: A. (4, 3) B. (-4, 3) C. (-4, -3) D. (-4, -6)答案:C. (-4, -3)4.已知线段AB的中点坐标为(2, 5),且点A(-1, 3),则点B的坐标为:A. (5, 2)B. (3, 7)C. (-2, 5)D. (2, 7)答案:B. (3, 7)5.线段PQ的中点坐标为(1, -2),且点P(3, 1),则点Q的坐标为: A. (2, -5) B. (1, -4) C. (-1, -5) D. (2, -1)答案:C. (-1, -5)二、填空题(共3题,每题4分,共12分)1.直线y = -4x + 3与x轴的交点的坐标为(,)。
答案:(3/4, 0)2.在平面直角坐标系中,点A(5, -2)关于y轴的对称点为(,)。
答案:(-5, -2)3.已知点P(4, -3)和点Q(7, 1),则线段PQ的中点坐标为(,)。
答案:(5.5, -1)三、解答题(共2题,每题20分,共40分)1.根据平面直角坐标系,解答以下问题:(a)坐标轴上的点有哪些?答案:坐标轴上的点有无数个,如(0, 0)、(1, 0)、(0, 2)等。
(b)如何计算两点之间的距离?答案:计算两点之间的距离可以使用勾股定理,即距离等于两点间横坐标差的平方与纵坐标差的平方的和再开根号。
(c)如何判断两条直线的关系?答案:两条直线的关系可以通过斜率来判断。
如果斜率相等,且截距也相等,则两条直线重合;如果斜率相等,但截距不相等,则两条直线平行;如果斜率不相等,则两条直线相交。
八年级数学《平面直角坐标系》经典例题7、如图,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至11A B ,则a b+的值为( )A .2B .3C .4D .58、在平面直角坐标系中,已知点A (-4,0)、B (0,2),现将线段AB 向右平移,使A 与坐标原点O 重合,则B 平移后的坐标是 .9、以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是( ) A (3,3) B (5,3) C (3,5) D (5,5)10、在平面直角坐标系中,□ABCD 的顶点A 、B 、C 的坐标分别是(0,0)、(3,0)、(4,2)则顶点D 的坐标为( )A .(7,2) B. (5,4) C.(1,2) D. (2,1) 11、如图所示,在平面直角坐标系中,ABCD 的顶点A ,B ,D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是( )A .(3,7)B .(5,3)C .(7,3)D .(8,2)考点5:点到直线的距离点P (x,y )到x 轴,y 轴的距离分别为|y|和|x|,1、点M (-6,5)到x 轴的距离是_____,到y 轴的距离是______.2、已知点P (x ,y )在第四象限,且│x │=3,│y │=5,则点P 的坐标是( ) A .(-3,5) B .(5,-3) C .(3,-5) D .(-5,3)3、已知点P (m ,n )到x 轴的距离为3,到y 轴的距离等于5,则点P 的坐标是 。
4、已知点P 的坐标(2-a ,3a +6),且点P 到两坐标轴的距离相等,则点P 的坐标是 .考点6:平行于X 轴、Y 轴的直线的特点平行于x 轴的直线上点的纵坐标相同;平行于y 轴的直线上点的横坐标相同1、已知点A(1,2),AC ∥X 轴, AC=5,则点C 的坐标是 _____________.2、已知点A(1,2),AC ∥y 轴, AC=5,则点C 的坐标是_____________.)bx3、如果点A (),3a -,点B ()2,b 且AB//x 轴,则_______4、如果点A ()2,m ,点B (),6n -且AB//y 轴,则_______5、已知:A(1,2),B(x,y),AB ∥x 轴,且B 到y 轴距离为2,则点B 的坐标是 .6、已知长方形ABCD 中,AB=5,BC=8,并且AB ∥x 轴,若点A 的坐标为(-2,4),则点C 的坐标为__________________________.考点7:角平分线的理解第一、三象限角平分线的点横纵坐标相同(y=x ); 第二、四象限角平分线的点横纵坐标互为相反数(x+y=0)1、若点M 在第一、三象限的角平分线上,且点M 到x 轴的距离为2,则点M 的坐标是( ) A .(2,2) B .(-2,-2) C .(2,2)或(-2,-2) D .(2,-2)或(-2,2)2、在平面直角坐标系内,已知点(1-2a ,a-2)在第三象限的角平分线上,则a = ,点的坐标为 。
平面直角坐标系(易错必刷30题6种题型专项训练)➢平面直角坐标系➢点的坐标➢用坐标表示地理位置➢点的坐标变化规律➢图形平移规律➢求图形面积一.平面直角坐标系(共3小题)1.(2024·山东临沂·模拟预测)已知a +b <0,ab >0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是( )A .(a,b )B .(―a,b )C .(―a,―b )D .(a,―b )2.(2024八年级上·全国·专题练习)如下所示的图形中,平面直角坐标系的画法正确的有( ).3.(22-23八年级下·山西临汾·期末)笛卡尔是法国著名数学家,他于1637年发明了现代数学的基础工具——平面直角坐标系.平面直角坐标系的引入,使得我们可以用代数的方法研究几何问题,又可以用几何的方法研究代数问题.这种研究方法体现的数学思想是( )A .类比思想B .分类讨论思想C .建模思想D .数形结合思想二.点的坐标(共8小题)4.(23-24七年级下·全国·单元测试)在平面直角坐标系中,点P (―3,2)位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.(23-24七年级下·全国·期中)已知点(),N a b 位于第四象限,则点M (b,a )位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.(23-24八年级下·云南昆明·阶段练习)已知两点A (3,5),()1,B b -且直线AB ∥x 轴,则( )A .1b =-B .b 可取任意实数C .b =5D .b ≠57.(22-23八年级下·山东青岛·开学考试)在平面直角坐标系中,第一象限内的点P (a +3,a )到y 轴的距离是5,则a 的值为( )A .―4B .2或―8C .2D .88.(23-24八年级上·广东佛山·期中)已知A 点的坐标为(3,a +3),B 点的坐标为(a,a ―4),AB ∥y 轴,则线段AB = .9.(23-24七年级下·广东汕头·期末)已知点A(m,n)在第二象限, 则点(2,)--+在第象限.B n m n m10.(24-25八年级上·湖南长沙·开学考试)己知平面直角坐标系中有一点M(3―2m,3m+2).(1)存在点N(2,―3),当MN平行于y轴时,求点M的坐标:(2)当点M在x轴下方,且到x轴的距离是到y轴距离的两倍时,求点M的坐标.11.(22-23七年级下·山东临沂·期中)在平面直角坐标系中,已知点P(6―3m,m+1).(1)若P到y轴的距离为2,求m的值;(2)若点P的横纵坐标相等,求点P的坐标;(3)在(2)的条件下,在第二象限内有一点Q,使PQ//x轴,且PQ=3,求点Q的坐标.三.用坐标表示地理位置(共412.(23-24七年级下·贵州黔东南·期中)如图是某学校的平面示意图,已知旗杆的位置是(―2,2),实验室的位置是(1,3).(1)根据所给条件在图中建立适当的平面直角坐标系;(2)用坐标表示位置:食堂是______,图书馆是______;(3)已知办公楼的位置是(0,2),教学楼的位置是(2,1),在图中标出办公楼和教学楼的位置;(4)如果1个单位长度表示30m,那么宿舍楼到教学楼的实际距离为______m.13.(2024七年级上·全国·专题练习)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.例如从A到B记为A→B(+1,+4),从D到C记为:D→C(―1,+2),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(,),B C®(,),D→(―4,―2);(2)若这只甲虫从A处去P处的行走路线依次为+2,+2,+2,―1,―2,+3,―1,―2,请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.14.(23-24七年级下·浙江台州·期末)如图1是路桥区地图的一部分,其示意图如图2.分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,已知黄石公园A的坐标为(2,1).(1)分别写出路桥区政府B,街心公园C的坐标;(2)连接AC,平移线段AC,使点A和点B重合,在图2中画出点C的对应点D,并写出点D的坐标.15.(23-24七年级下·云南玉溪·期末)平面直角坐标系是数轴的拓展,是沟通几何与代数的桥梁,为发展大家的几何直观,感悟数形结合的思想,数学社团的同学们对校园进行了实地调查,作出了如图的平面示意图,已知旗杆的位置是(―2,3),实验室的位置是(1,4).(1)作出校园平面示意图所在的坐标系;(2)写出宿舍楼、食堂、图书馆的坐标.四.点的坐标变化规律(共5小题)16.(22-23七年级下·云南怒江·期中)将点A (―3,―2)向右平移5个单位长度,得到点A 1,再把点A 1向上平移4个单位长度得到点2A ,则点2A 的坐标为( )A .(―2,―2)B .(2,2)C .(―3,2)D .(3,2)17.(22-23七年级下·河北石家庄·期中)若m <0,在平面直角坐标系中,将点(m,―3)分别向左、向上平移5个单位,可以得到的对应点的位置在( )A .第一象限B .第二象限C .第三象限D .第四象限18.(2024·海南·中考真题)平面直角坐标系中,将点A 向右平移3个单位长度得到点A ′(2,1),则点A 的坐标是( )A .(5,1)B .(2,4)C .(1,1)-D .(2,―2)19.(23-24七年级上·四川南充·期中)将点P (m +2,3)向左平移4个单位长度到P ′,且P ′在y 轴上,那m 的值为 .20.(23-24八年级下·广东茂名·单元测试)已知点M (3a ―9,1―a ),将M 点向左平移6个单位长度后落在y 轴上,则M 的坐标是 .五.图形平移规律(共6小题)21.(24-25八年级上·福建福州·开学考试)△ABC 在平面直角坐标系中的位置如图所示.(1)点C的坐标是__________;(2)将△ABC先向左平移4个单位,再向下平移2个单位,得到△A′B′C′,画出平移后的△A′B′C′;(3)若△ABC内一点P经过上述平移后的对应点为Q(m,n),直接写出点P的坐标__________:(用含m,n的式子表示)22.(23-24七年级下·全国·单元测试)已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)写出A′(,)、B′(,)、C′(,)的坐标;(2)求出△ABC的面积= ;(3)点P在y轴上,且△BCP是△ABC的面积的2倍,求点P的坐标.23.(23-24八年级下·全国·期末)在平面直角坐标系中,A、B、C三点的坐标分别为(―6,7)、(―3,0)、(0,3).(1)画出△ABC;(2)在△ABC中,点C经过平移后的对应点为C′(5,4),将△ABC作同样的平移得到△A′B′C′,画出平移后的¢¢的坐标;△A′B′C′,并写出点,A B(3)P(―3,m)为△ABC中一点,将点P向右平移4个单位后,再向下平移6个单位得到点Q(n,―3),则m=,n=______.24.(24-25八年级上·全国·单元测试)三角形ABC与三角形A′B′C′在平面直角坐标系中的位置如图所示,三角形A′B′C′是由三角形ABC平移得到的.(1)分别写出点A′、B′、C′的坐标;(2)说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的?(3)若点P a,b是三角形ABC内的一点,则平移后三角形A′B′C′内的对应点为P′,写出点P′的坐标.25.(23-24八年级上·江苏镇江·期末)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A (2,―1)、B(1,―2)、C(3,―3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)点A1的坐标为,点2A的坐标为;(4)若P(a,―b)是△ABC内一点,按照(1)(2)操作后点P1的坐标为,点P2的坐标为.26.(21-22七年级下·吉林松原·阶段练习)在平面直角坐标系中,点P的坐标为(2m+5,3m+3).(1)若点P在x轴上时,求点P的坐标;(2)若点P在过点A(―5,1)且与y轴平行的直线上时,求点P的坐标;(3)将点P向右平移2个单位,再向上平移3个单位后得到点M,若点M在第三象限,且点M到y轴的距离为7,求点M的坐标.六.求图形面积(共4小题)27.(22-23七年级下·全国·期末)如图,在平面直角坐标系xOy中,点A的坐标为(0,4),点B的坐标为(4,0),过点C(3,0)作直线CD x^轴,垂足为C,交线段AB于点D,过点A作AE⊥CD,垂足为E,连接BE.(1)求△ABE的面积;(2)点P为直线CD上一动点,当S△PAB=S△AOB时,求点P的坐标.28.(22-23七年级上·甘肃定西·开学考试)已知:在平面直角坐标系中,A(0,1),B(2,0),C(4,3).(1)求△ABC的面积;(2)设点P在x轴上,且△ABP与△ABC的面积相等,求点P的坐标.29.(23-24八年级上·江苏徐州·阶段练习)如图,长方形OABC在平面直角坐标系中,其中A(4,0),C(0,3),---运动,最终到达点E.若点P运动的点E是BC的中点,动点P从O点出发,以每秒1cm的速度沿O A B E时间为x秒,(1)当x=2秒时,求△OPE的面积;(2)当△OPE的面积等于25cm时,求P点坐标.30.(23-24七年级下·辽宁盘锦·期中)如图,已知A(―4,0),B(4,0),C(3,2),D(―2,4).(1)求四边形ABCD的面积;(2)在y轴上存在一点P,使三角形APB的面积等于四边形ABCD面积的一半,求P点的坐标.。
2、在平面直角坐标系中,点A(1,2a +3)在第一象限。
(1)若点A 到x 轴的距离与到y 轴的距离相等,求a 的值; (2)若点A 到x 轴的距离小于到y 轴的距离,求a 的取值范围。
3、如图所示,三角形ABC 中,任意一点P(a ,b )经平移后对应点1P (a −2,b +3),将∆ABC 作同样的平移得到111C B A ∆.求111C B A 的坐标。
4、如图,在平面直角坐标系中,已知点A(−5,0),B(3,0),△ABC的面积为12,试确定点C的坐标特征。
5、△OAB的三个顶点坐标分别是O(0,0),A(2,0),B(0,4).(1)求△OAB的面积;(2)平移线段AB 得到线段CD,A 的对应点为点C(4,2),连接OC 、OD ,求△OCD 的面积。
6、在平面直角坐标系中,△ABC 的三个顶点的位置如图所示,点A ′的坐标是(−2,2),现将△ABC 平移,使点A 变换为点A ′,点B ′、C ′分别是B. C 的对应点。
(1)请画出平移后的△A ′B ′C ′(不写画法);(2)并直接写出点B ′、C ′的坐标:B ′(______)、C ′(______);(3)若△ABC 内部一点P 的坐标为(a ,b ),则点P 的对应点P ′的坐标是(______). 7、如图,将△ABC 平移得到111C B A ∆,使1A 点坐标为(−1,4),(1)在图中画出111C B A ∆;(2)直接写出另外两个点11C B 的坐标; (3)求111C B A ∆的面积。
坐标。
当s∆的面积.t3=时,求PDC(1)求三角形ABC 的面积;(2)如果三角形ABC 的纵坐标不变,横坐标增加3个单位长度,得到三角形111C B A ,试在图中画出三角形111C B A ,并求出111C B A 的坐标。
(3)三角形111C B A 与三角形ABC 的大小、形状有什么关系? 已知点A(-5,0),B(3,0).(1)在y 轴上找一点C,使之满足S △ABC =16,求点C 的坐标.(2)在坐标平面上找一点C,能满足S △ABC =16的点C 有多少个?这些点有什么规律?已知三角形ABC 在坐标系中的位置如图.(1)若三角形ABC中任意一点P(a,b)经平移后的对应点的坐标为P′(a+4,b-3),求将三角形ABC作同样的平移得到三角形A′B′C′三点的坐标;(2)求△ABC的面积.在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的像△A′B′C′(不写画法),并直接写出点B′、C′的坐标:B′_____、C′_____;(2)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是_____.已知:如图,A(0,3),B(2,4),C(3,0),求四边形ABCO的面积。
考点 1:考点的坐标与象限的关系知识解析: 各个象限的点的坐标符号特征如下:(特别值得注意的是,坐标轴上的点不属于任何象限. )1、在面直角坐标中,点 M - , 3) 在( )( 2A .第一象限B .第二象限C .第三象限 D.第四象限、在平面直角坐标系中,点 P - , 2 + 1) 所在的象限是() 2 ( 2 xA .第一象限B .第二象限C .第三象限D .第四象限、若点 P ( a , a )在第四象限,则 a 的取值范围是( ).3 -2A .-2 < a <B. < a <2 C.a >2 D. a <4、点 P ( m , 1)在第二象限内,则点 Q ( -m ,0)在()A . x 轴正半轴上B .x 轴负半轴上C . y 轴正半轴上D .y 轴负半轴上 5、若点 P (a ,b )在第四象限,则点 M ( b - a , a - b )在()A.第一象限B.第二象限C.第三象限D.第四象限6、在平面直角坐标系中,点 A( x 1,2 x) 在第四象限,则实数 x 的取值范围是 .7、对任意实数 x ,点 P( x , x 2 2x) 一定不在 ()..A .第一象限B .第二象限C .第三象限D .第四象限8、如果 a -b <0, 且 ab < 0, 那么点 (a ,b) 在( )A 、第一象限B 、第二象限C 、第三象限 ,D 、第四象限 .考点 2:点在坐标轴上的特点x 轴上的点纵坐标为 0,y轴上的点横坐标为 0. 坐标原点( 0, 0)1、点 P ( m+3,m+1)在 x 轴上,则 P 点坐标为()A .(0,-2 )B .(2, 0)C .( 4, 0)D .( 0, -4 )、已知点 P m , m - 1) 在 y 轴上,则 P 点的坐标是 。
2 (2考点 3:考对称点的坐标知识解析:、关于 x 轴对称: A ( a ,b )关于 x 轴对称的点的坐标为( a , b )。
平面直角坐标系重点考点例析】考点一:平面直角坐标系中点的特征例 1 在平面直角坐标系中, 点 P ( m ,m-2 )在第一象限内, 则 m 的取值范围是 思路分析: 根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出 m 的范围.解得: m > 2. 故答案为: m >2.点评: 此题考查了点的坐标的知识, 属于基础题, 解答本题的关键是掌握第一象限的点的坐 标,横坐标为正,纵坐标为正.例 1 如果 m 是任意实数,则点 P ( m-4, m+1)一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限思路分析: 求出点 P 的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答. 解: ∵( m+1)- ( m-4)=m+1-m+4=5, ∴点 P 的纵坐标一定大于横坐标,∵第四象限的点的横坐标是正数,纵坐标是负数, ∴第四象限的点的横坐标一定大于纵坐标, ∴点 P 一定不在第四象限. 故选 D .点评: 本题考查了点的坐标, 记住各象限内点的坐标的符号是解决的关键, 四个象限的符号 特点分别是:第一象限( +,+);第二象限( - ,+);第三象限( - ,- );第四象限( +,- ). 例 2 如图, 矩形 BCDE 的各边分别平行于 x 轴或 y 轴,物体甲和物体乙分别由点 A( 2,0) 同时出发,沿矩形 BCDE 的边作环绕运动,物体甲按逆时针方向以 1 个单位 / 秒匀速运动,物体乙按顺时针方向以 2 个单位 / 秒匀速运动, 则两个物体运动后的第 2012 次相遇地点的坐 标是( )A .(2, 0)B .(﹣1,1)C .(﹣2,1)D .(﹣ 1,﹣1)分析: 利用行程问题中的相遇问题,由于矩形的边长为 4 和 2,物体乙是物体甲的速度的 2 倍,求得每一次相遇的地点,找出规律即可解答.解答: 解:矩形的边长为 4 和 2,因为物体乙是物体甲的速度的 2 倍,时间相同,物体甲 与物体乙的路程比为 1: 2,由题意知: ①第一次相遇物体甲与物体乙行的路程和为 12×1,物体甲行的路程为 12× =4,物体乙行的解: 由第一象限点的坐标的特点可得:m0 m 2 0路程为12× =8,在BC 边相遇;②第二次相遇物体甲与物体乙行的路程和为 12×2,物体甲行的路程为 12×2× =8,物体乙行 的路程为 12×2× =16 ,在 DE 边相遇;③ 第三次相遇物体甲与物体乙行的 路程和为 12×3,物体甲行的路程为 12×3× =12,物体乙 行的路程为 12×3× =24 ,在 A 点相遇; 此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵2012÷3=670⋯2,故两个物体运动后的第 2012 次相遇地点的是:第二次相遇地点,即物体甲行的路程为故选: D .点评: 此题主要考查了行程问题中的相遇问题及按比例分配的运用, 通过计算发现规律就 可以解决问题.例 2 如图,动点 P 从( 0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时 反射角等于入射角,当点 P 第2013 次碰到矩形的边时,点 P 的坐标为( )A .( 1,4)B .(5,0)C .(6,4)D .(8,3)思路分析: 根据反射角与入射角的定义作出图形,可知每 6 次反弹为一个循环组依次循环, 用 2013 除以 6,根据商和余数的情况确定所对应的点的坐标即可. 解 : 如图,经过 6 次反弹后动点回到出发点(0,3),∵2013÷6=335⋯3,∴当点 P 第2013 次碰到矩形的边时为第 336个循环组的第 3次反弹, 点 P 的坐标为( 8,3).故选 D .点评:本题是对点的坐标的规律变化的考查了, 作出图形, 观察出每 6 次反弹为一个循环组 依次循环是解题的关键,也是本题的难点.对应训练2.如图,在平面直角坐标系中, A (1,1),B (﹣ 1,1),C (﹣ 1,﹣2),D (1,﹣ 2).把 一条长为 2012 个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点 A处,12×2 =16,在 DE 边相遇;此时相遇点的坐标为: (﹣ 1, ﹣1), 物体乙行的路程为并按 A ﹣B ﹣C ﹣D ﹣A ﹣⋯的规律紧绕在四边形 ABCD 的边上,则细线另一端所在位置的点 的坐标是( )∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣ 2)=3, ∴绕四边形 ABCD 一周的细线长度为 2+3+2+3=10 , 2012 ÷ 10=201 ⋯,2∴细线另一端在绕四边形第 202 圈的第 2 个单位长度的位置, 即点 B 的位置,点的坐标为(﹣ 1, 1). 故选 B .点评: 本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形 ABCD 一周的 长度,从而确定 2012 个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题 的关键. 例 2 如图,在平面直角坐标系 xOy 中,点 P ( -3,5)关于 y 轴的对称点的坐标为( )A .(-3,-5)B .(3,5)C .( 3. -5)D .(5,-3)答:B 考点二:函数的概念及函数自变量的取值范围 例 3 在函数 y 中,自变量 x 的取值范围是 .x思路分析: 本题主要考查自变量的取值范围, 函数关系中主要有二次根式和分式两部分. 根 据二次根式的意义,被开方数 x+1≥0,根据分式有意义的条件, x ≠0.就可以求出自变量 x 的取值范围.解: 根据题意得: x+1≥0且 x ≠0 解得: x ≥-1 且 x ≠0.例 3 函数 y= x 3 中自变量 x 的取值范围是( )x1A . x ≥ -3B . x ≥3C . x ≥0且 x ≠1D . x ≥ -3 且 x ≠1思路分析: 根据被开方数大于等于 0,分母不等于 0 列式计算即可得解. 解: 根据题意得, x+3≥0 且 x- 1≠0, 解得 x ≥ -3 且 x ≠ 1. 故选 D .点评: 本题考查了函数自变量的范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数;分析: 根据点的坐标求出四边形 ABCD 的周长,然后求出另一端是绕第几圈后的第几解答:1),C (﹣1,﹣2),D (1,﹣ 2), A .(1,﹣ 1) B .(﹣1,1)单位长度,从而确定答案. 解:∵ A (1,1),B (﹣ 1,(2)当函数表达式是分式时,考虑分式的分母不能为 (3)当函数表达式是二次根式时,被开方数非负. 对应训练3.函数 y2中自变量 x 的取值范围是( )x2A .x >-2B .x ≥ 2C .x ≠-2D .x ≥-2 3.A考点三:函数图象的运用例 4 一天晚饭后,小明陪妈妈从家里出去散步,如图描述了他们散步过程中离家的距离 S (米)与散步时间 t (分)之间的函数关系,下面的描述符合他们散步情景的是( )A .从家出发,到了一家书店,看了一会儿书就回家了B .从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C .从家出发,一直散步(没有停留) ,然后回家了D .从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,后开始返回与 x 轴平行后的函数图象表现为随时间的增多路程又在增加,由此即可作出判断. 解: A 、从家出发,到了一家书店,看了一会儿书就回家了,图象为梯形,错误;B 、从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了,描述不准确,错误;C 、从家出发,一直散步(没有停留) ,然后回家了,图形为上升和下降的两条折线,错误;D 、从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段, 18 分钟后开始返回从家出发,符合图象的特点,正确. 故选 D .点评: 考查了函数的图象, 读懂图象是解决本题的关键. 首先应理解函数图象的横轴和纵轴 表示的量,再根据函数图象用排除法判断.例 5 如图, Y ABCD 的边长为 8 ,面积为 32,四个全等的小平行四边形对称中心分别在Y ABCD 的顶点上,它们的各边与 Y ABCD 的各边分别平行,且与 Y ABCD 相似.若小平 行四边形的一边长为 x ,且 0<x ≤8,阴影部分的面积的和为 y ,则 y 与 x 之间的函数关系的 大致图象是( )思路分析:根据平行四边形的中心对称性可知四块阴影部分的面正好等于一个小平行四边形0;18 分钟味着有停留,而路程没有增加,意的面积,再根据相似多边形面积的比等于相似比的平方列式求出y 与x 之间的函数关系式,然后根据二次函数图象解答.解:∵四个全等的小平行四边形对称中心分别在Y ABCD 的顶点上,∴阴影部分的面积等于一个小平行四边形的面积,∵小平行四边形与Y ABCD 相似,∴y32x2 (8x)2,整理得12 y x ,2又0<x≤8,纵观各选项,只有 D 选项图象符合y 与x 之间的函数关系的大致图象.故选 D .点评:本题考查了动点问题的函数图象,根据平行四边形的对称性与相似多边形的面积的比等于相似比的平方求出y 与x 的函数关系是解题的关键.例8 已知一个矩形纸片OACB ,将该纸片放置在平面直角坐标洗中,点A(11,0),点 B (0,6),点P为BC 边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t .(Ⅰ)如图①,当∠ BOP=3°0 时,求点P 的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m ,试用含有t 的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA 上时,求点P的坐标(直接写出结果即可).考点:翻折变换(折叠问题);坐标与图形性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.分析:(Ⅰ)根据题意得,∠ OBP=9°0 ,OB=6 ,在Rt△OBP 中,由∠ BOP=3°0 ,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(Ⅱ)由△ OB′P、△ QC′P分别是由△ OBP、△ QCP 折叠得到的,可知△ OB′P≌△OBP,△ QC′P≌△QCP,易证得△ OBP∽△ PCQ,然后由相似三角形的对应边成比例,即可求得答案;(Ⅲ)首先过点P作PE⊥OA 于E,易证得△ PC′E∽△C′QA,由勾股定理可求得C′Q的长,1 11然后利用相似三角形的对应边成比例与m= t2- t+6 ,即可求得t 的值.66点评:此题考查了折叠的性质、矩形的性质以及相似三角形的判定与性质等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.对应训练4.甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是()A .甲队率先到达终点B.甲队比乙队多走了200 米路程C.乙队比甲队少用0.2 分钟D.比赛中两队从出发到 2.2 秒时间段,乙队的速度比甲队的速度快4.解: A 、由函数图象可知,甲走完全程需要4分钟,乙走完全程需要 3.8 分钟,乙队率先到达终点,本选项错误;B、由函数图象可知,甲、乙两队都走了1000 米,路程相同,本选项错误;C、因为4-3.8=02 分钟,所以,乙队比甲队少用0.2 分钟,本选项正确;D、根据0~2.2 分钟的时间段图象可知,甲队的速度比乙队的速度快,本选项错误;故选 C .5.如图,点A、B、C、D 为⊙ O的四等分点,动点P从圆心O出发,沿OC- C?D-DO 的路线做匀速运动,设运动的时间为t 秒,∠ APB 的度数为y 度,则下列图象中表示y 度)与t(秒)之间函数关系最恰当的是(D.考点:动点问题的函数图象.分析:根据动点P在OC上运动时,∠ APB 逐渐减小,当P CD上运动时,∠ APB 不变,当P 在DO 上运动时,∠ APB 逐渐增大,即可得出答案.解答:解:当动点P在OC 上运动时,∠ APB 逐渐减小;当P 在C?D 上运动时,∠ APB 不变;当P 在DO 上运动时,∠ APB 逐渐增大.故选C.点评:本题主要考查了动点问题的函数图象,用到的知识点是圆周角、圆内的角及函数图象认识的问题.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.考点四:动点问题的函数图象例 5 如图 1,E 为矩形 ABCD 边 AD 上一点, 点 P 从点 B 沿折线 BE-ED-DC 运动到点 C 时停止, 点 Q 从点 B 沿 BC 运动到点 C 时停止,它们运动的速度都是 1cm/s .若 P ,Q 同时开始运动, 设运动时间为 t ( s ),△ BPQ 的面积为 y ( cm 2).已知 y 与 t 的函数图象如图2,则下列结论 错误的是( )4B.sin ∠ EBC=522C .当 0<t ≤10 时, y= t 25D .当 t=12s 时,△ PBQ 是等腰三角形思路分析: 由图 2 可知,在点( 10, 40)至点( 14, 40)区间,△ BPQ 的面积不变,因此可 推论 BC=BE ,由此分析动点 P 的运动过程如下:(1)在 BE 段, BP=BQ ;持续时间 10s ,则 BE=BC=10; y 是 t 的二次函数; (2)在 ED 段, y=40是定值,持续时间 4s ,则 ED=4; (3)在 DC 段, y 持续减小直至为 0,y 是 t 的一次函数. 解:(1)结论 A 正确.理由如下:分析函数图象可知, BC=10cm , ED=4cm ,故 AE=AD-ED=BC-ED=10-4=6c ;m(3)结论 C 正确.理由如下: 如答图 2 所示,过点 P 作 PG ⊥BQ 于点 G , ∵BQ=BP=t ,1 1 1 42 ∴y=S △ BPQ = BQ?PG= BQ?BP?sin ∠ EBC= t?t? = t 2. 2225 5(4)结论 D 错误.理由如下:当 t=12s 时,点 Q 与点 C 重合,点 P 运动到 ED 的中点,设为 N ,如答图 3 所示,连接A. AE=6cm2)结论 B 正确.理由如下:如答图 1 所示,连接 EC ,过点 E 作 EF ⊥BC 于点 F ,11 由函数图象可知,BC=BE=10cm , S △BEC =40= BC?EF= ×10×EF ,22EF=8,EF 8∴sin ∠ EBC==BE 104; 5;NB,NC.此时AN=8,ND=2,由勾股定理求得:NB=8 2 ,NC=2 17 ,∵BC=10,∴△ BCN不是等腰三角形,即此时△ PBQ不是等腰三角形.点评:本题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运动过程.突破点在于正确判断出BC=BE=10cm.。
平面直角坐标系数学题
以下是三个关于平面直角坐标系的数学题及其答案:
题目1
题目:在平面直角坐标系中,点A的坐标为(3, -2),点B与点A关于x轴对称,则点B的坐标是什么?
答案:点B的坐标是(3, 2)。
因为点A和点B关于x轴对称,所以它们的x坐标相同,而y坐标互为相反数。
题目2
题目:在平面直角坐标系中,点C的坐标为(-4, 5),将点C向右平移6个单位长度后得到点D,则点D的坐标是什么?
答案:点D的坐标是(2, 5)。
因为将点C向右平移6个单位长度,其x坐标会增加6,而y坐标保持不变。
题目3
题目:在平面直角坐标系中,点E在第四象限,且到x轴的距离为3,到y轴的距离为4,则点E的坐标是什么?
答案:点E的坐标是(4, -3)。
因为在第四象限,点的x坐标是正数,y坐标是负数。
同时,点到x轴的距离等于其纵坐标的绝对值,点到y轴的距离等于其横坐标的绝对值。
1、如图,在平行四边形ABCO中,已知点A. C两点的坐标为AG 5,5),C( 2 .5,0).O CT(1) 求点B的坐标。
⑵将平行四边形ABCO向左平移5个单位长度,求所得四边形A B' C' O'四个顶点的坐标。
⑶求平行四边形ABCO勺面积。
2、在平面直角坐标系中,点A(1,2a+3)在第一象限。
(1)若点A到x轴的距离与到y轴的距离相等,求a的值;⑵若点A到x轴的距离小于到y轴的距离,求a的取值范围3、如图所示,三角形ABC中,任意一点P(a,b)经平移后对应点R(a- 2, b+3), 将ABC作同样的平移得到ABG .求A i B i C i的坐标。
迁A1z\%/口LXS4、如图,在平面直角坐标系中,已知点A(- 5,0),B(3,0)试确定点C的坐标特征。
无-5 亠4 -3 -2 -10-1 -2-3,△ ABC的面积为12,5、A 0AB的三个顶点坐标分别是0(0,0),A(2,0),B(0,4).(1)求厶0AB的面积;⑵平移线段AB 得到线段CD,A 的对应点为点C(4,2),连接OG OD 求厶OCD 勺面积。
6在平面直角坐标系中,△ ABG 勺三个顶点的位置如图所示,点A 2,2),现将△ ABC 平移,使点A 变换为点A ,点B'、G 分别是B.(1) 请画出平移后的厶A B' C (不写画法);⑵并直接写出点B'、C 的坐标:B' (______)、C (______);⑶若厶ABC 内部一点P 的坐标为(a , b),则点P 的对应点P'的坐标是(______).7、如图,将厶ABC 平移得到 AB .C ,,使A ,点坐标为(-1,4),171 ■ 1 Ills 1 I[|[|11111l> 1 l>J■ PH1 ・» iinI *r - ■■ 4 ■ i ■ 1 i I1 1 4 4 1 II II [| 114 4 1 ■II a1 1 *1 节lb* 1 1H1 Ii■■RH♦ -I ■ 1 :4Ilin l|ll Illi 1■ a a[■■■■」■ -1I ii P■书■£1 ■ a a Illi 1 I 1 [I 1i1!i. . . L=■H 1_ _ ・■ L ■ ■.J「11*1 I I [| 114 4 1nIcil> D¥1■ .IL.::11H1 iJL1 I ■ 1 ■ 1 ■ 14亠22斗X(1)在图中画出 A BQ7(2) 直接写出另外两个点B i C i 的坐标; ⑶求的面积。
平面直角坐标系典型例题例1已知点P(x,y+1)在第二象限,则点Q(-x+2,2y+3)在第______象限.解因为点P(x,y+1)在第二象限,所以x<0且y+1>0,因此-x+2>0且2y+3=2(y+1)+1>0.从而知Q(-x+2,2y+3)在第一象限.点评学习平面直角坐标系首先要掌握不同位置的点的坐标特征.点P坐标为(a,b),P点在x轴上,则b=0;P点在y轴上,则a=0.P点在第一象限,则a>0且b>0;P点在第二象限,则a<0且b>0;P点在第三象限,则a<0且b<0;P点在第四象限,则a>0且b<0.若P点在第一、三象限的角平分线上可设为P(a,a);若P点在第二、四象限的角平分线上可设为P(a,-a).例2已知点A(3a-1,2-b)、B(2a-4,2b+5).若A与B关于x轴对称,则a=___,b=___;若A与B关于y轴对称,则a=___,b=___;若A与B关于原点对称,则a=___,b=______.a=-3,b=-7.a=1,b=1.a=1,b=7.点评平面上不同的两点P(x1,y1)、Q(x2,y2).若x1=x2且y1=y2,则P、Q关于x轴对称;若x1=-x2且y1=y2,则P、Q关于y轴对称;若x1=-x2且y1=-y2,则p、Q关于原点中心对称.点P(a,b)关于直线y=x(一、三象限角平分线)对称点的坐标为Q(b,a).点P(a,b)关于直线y=-x(二、四象限角平分线)对称点的坐标为Q(-b,-a).例3设P(m,m+2)是坐标平面内某一象限的整点(横纵坐标皆为整数的点),已知点P到x轴的距离与它到y轴的距离之差为2m+2,求点P关于y轴对称的点的坐标.解根据题意知|m+2|-|m|=2m+2. (1)当m>0时,(1)式变为m+2-m=2m+2,得m=0与m>0矛盾,无解.当m<-2时,(1)式变为-m-2-(-m)=2m+2得m=-2与m<-2矛盾,无解.当-2<m<0时(1)式变为m+2-(-m)=2m+2,即2m+2=2m+2成立.因为m为整数得m=-1.所以P(-1,1)关于y轴对称的点的坐标为Q(1,1).点评首先要认真审题,仔细阅读原题.P(m,m+2)是坐标平面内某一象限的整点,它的含义是m≠0且m+2≠0且m为整数.另外P点到x轴的距离应是|m+2|,同理P点到y轴的距离应是|m|,不能写成m+2与m.同时解题时要进行分类讨论.因为|m+2|与|m|因m不确定而无法去掉绝对值符号进行运算,所以必须分类讨论.如何分类则根据m+2与m的正负来划分讨论区域;m>0,-2<m<0,m<-2.分类要做到不重不漏.例4如图13-1,已知ABCD是平行四边形,△DCE是等边三角形,解根据题意知E点有两种可能,一是在CD的上方,或在CD的下方.坐标为Q(b,a).点P(a,b)关于直线y=-x(二、四象限角平分线)对称点的坐标为Q(-b,-a).所以若E点在CD的上方,则若E点在CD的下方,则点评弄清题意,以CD为一边可向两边作等边三角形.另外要加强基础知识的积累,如等边三角形的边长为a,那么。
九年级中考数学复习《平面直角坐标系》专项练习题-附带答案一、单选题1.在平面直角坐标系中,点P(3,﹣2)在第()象限A.一B.二C.三D.四2.在平面直角坐标系中,已知线段PQ=4,且PQ⊥x轴,若点P的坐标为(5,−2),则点Q的坐标为()A.(5,2)B.(9,−2)C.(5,2)或(5,−6)D.(9,−2)或(1,−2)3.在平面直角坐标系中,点P(m﹣2,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5 B.6 C.7 D.84.在平面直角坐标系中,点A,B,C,D,E,F的位置如图所示,如果点E的坐标是(﹣3,0),点F的坐标是(3,0),则在第三象限上的点是()A.点A B.点B C.点C D.点D5.图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,−4),A(−1,2),则点B的坐标为()A.(−2,−3)B.(−4,−1)C.(−4,−2)D.(−2,−2)6.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为()A.(1,3)B.(5,1)C.(1,3)或(3,5)D.(1,3)或(5,1)7.如图,在平面直角坐标系xOy中,四边形ABCO是正方形,已知点A的坐标为(2,1),则点C的坐标为()A.(−1,2)B.(1,−2)C.(−1,√5)D.(−2,1)8.如图,把线段AB经过平移得到线段CD,其中A,B的对应点分别为C,D.已知A(﹣1,0),B(﹣2,3),C(2,1),则点D的坐标为()A..(1,4)B..(1,3)C..(2,4)D..(2,3)二、填空题9.点A,点B同在平行于x轴的直线上,则点A与点B的坐标相等.10.已知点P(x﹣3,2x﹣4)在纵轴上,则x的值是.11.如果将点A(-3,-1)向右平移2个单位长度,再向下平移3个单位得到点B,那么点B的坐标是.12.将点A(3,-4)沿X轴负方向平移3个单位长度,得到A′点的坐标为,再将A′沿Y轴正方向平移4个单位长度,得到A″点的坐标为13.北京中轴线南起永定门,北至钟鼓楼,全长7.8千米.如图是利用平面直角坐标系画出的中轴线及其沿线部分地点分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示天安门的点的坐标为(0,−1),表示王府井的点的坐标为(1,−1),则表示永定门的点的坐标为.三、解答题14.在雷达探测区域,可以建立平面直角坐标系表示位置.在某次行动中,当我两架飞机在A(-1,2)与B(3,2)位置时,可疑飞机在(-1,-3)位置,你能找到这个直角坐标系的横、纵坐标的位置吗?把它们表示出来并确定可疑飞机的位置,说说你的做法.15.多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?16.如图,已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC经过平移得到的△A′B′C′,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4)(1)请在图中作出△A′B′C′;(2)写出点A′、B′、C′的坐标.17.如图是某校的平面示意图,已知图书馆、行政楼的坐标分别为(-3,2),(2,3).完成以下问题:(1)请根据题意在图上建立直角坐标系;(2)写出图上其他四个地点实验楼、校门口、综合楼、信息楼的坐标;(3)在图中用点P表示体育馆(-1,-3)的位置.18.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图.(1)填写下列各点的坐标:A4(,),A8(,);(2)点A4n﹣1的坐标(n是正整数)为(3)指出蚂蚁从点A2013到点A2014的移动方向.参考答案1.D2.C3.D4.C5.C6.D7.A8.A9.纵10.311.(-1,-4)12.(0,-4);(0,0)13.(0,−7)14.解:能.如下图,先把AB四等分,然后过靠近A点的分点M作AB的垂线即为y轴,以AM为单位长度沿y轴向下2个单位即为O点,过点O作x轴垂直于y轴,然后描出敌机位置为点N.15.解:建立坐标系如图:∴南门(0,0),狮子(﹣4,5),飞禽(3,4)两栖动物(4,1).16.(1)解:∵△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4)∴平移规律为:向右平移6个单位,向上平移4个单.如图所示:(2)解:A′(2,3),B′(1,0),C′(5,1).17.(1)解:由图书馆、行政楼的坐标分别为(-3,2),(2,3)可找到O(0,0)点,从而建立平面直角坐标系,如下图;(2)解: 根据(1)中的平面直角坐标系,可得其他四个地点的坐标.故实验楼(-4,0);校门口(1,0);综合楼(-5,-3);信息楼(1,-2);(3)解: 根据平面直角坐标系,P(-1,-3)的位置如下图18.【解答】解:(1)由图可知,A4,A8都在x轴上,∵小蚂蚁每次移动1个单位,∴OA4=2,OA8=4,∴A4(2,0),A8(4,0);故答案为:2,0;4,0;(2)根据(1)OA4n=4n÷2=2n,∴点A4n﹣1的坐标(2n﹣1,0);(3)∵2013÷4=503…1,∴从点A2013到点A2014的移动方向与从点A1到A2的方向一致,为→。
平面直角坐标系1.下列各点中,在第三象限的点是( )A .()1,4--B .()1,4-C .()1,4-D .()1,4 2.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( ) A .3<x <5 B .-5<x <3 C .-3<x <5 D .-5<x <-3 3.在平面直角坐标系中,点(-2,-3)到x 轴的距离是( ) A .-2 B .-3 C .2 D .3 4.在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为( )A .()4,5-B .(5,4)-C .(4,5)-D .(5,4)- 5.如图,半径为1的圆,在x 轴上从原点O 开始向右滚动一周后,落定点M 的坐标为( )A .(0,2π)B .(2π,0)C .(π,0)D .(0,π) 6.如图,在平面直角坐标系中,以原点O 为圆心作弧,分别与x 轴和y 轴的正半轴交于点A 和点B ,再分别以A 、B 为圆心,以大于12AB 的长为半径作弧,两弧交于点P (m ﹣1,2n ),则实数m 与n 之间的关系是( )A .m ﹣2n =1B .m +2n =1C .2n ﹣m =1D .n ﹣2m =17.已知点P (3,﹣1),则点P 关于x 轴对称的点Q _____.8.在平面直角坐标系中,点A (x ﹣1,2﹣x )关于y 轴对称的对称点在第一象限,则实数x 的取值范围是_____.9.如果点P (m +3,m +1)在x 轴上,则点P 的坐标为________10.已知,AB ∥x 轴,点A 的坐标是(3,2),并且AB=5,则点B 的坐标为________. 11.若点M(a ﹣3,a+1)在y 轴上,则M 点的坐标为______.12.如图,点A 、B 、C 的坐标分别是(0,2)、(2,2)、(0,-1),那么以点A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标是:________.13.已知点(,)P x y 的坐标满足||3x =2=,且0xy <,则点P 的坐标是__________ 14.如图,若在象棋棋盘上建立平面直角坐标系,使棋子“将”的位置的坐标为(0,0),棋子“象”的位置的坐标为(2,0),则“炮”的位置的坐标为_______.答案第1页,总1页 参考答案1.A2.A3.D4.D5.B6.A7.(3,1)8.x <19.(2,0)10.(8,2)或(-2,2) 11.()0,412.(2,-1)或(-2,-1)或(2,5) 13.()3,4-14.( 3 3 )-,。
《平面直角坐标系》章节复习考点1:考点的坐标与象限的关系知识解析:各个象限的点的坐标符号特征如下:(特别值得注意的是,坐标轴上的点不属于任何象限.)1、在平面直角坐标中,点M (-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 2、在平面直角坐标系中,点P (-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 3、若点P (a ,a -2)在第四象限,则a 的取值范围是( ).A .-2<a <0B .0<a <2C .a >2D .a <0 4、点P (m ,1)在第二象限内,则点Q (-m ,0)在( )A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上 5、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 6、在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 . 7、对任意实数x ,点2(2)P x x x -,一定不在..( ) A .第一象限B .第二象限C .第三象限D .第四象限8、如果a -b <0,且ab <0,那么点(a ,b)在( )A 、第一象限B 、第二象限C 、第三象限,D 、第四象限.考点2:点在坐标轴上的特点x 轴上的点纵坐标为0, y 轴上的点横坐标为0.坐标原点(0,0)1、点P (m+3,m+1)在x 轴上,则P 点坐标为( )A .(0,-2)B .(2,0)C .(4,0)D .(0,-4) 2、已知点P (m ,2m -1)在y 轴上,则P 点的坐标是 。
考点3:考对称点的坐标知识解析:1、关于x轴对称: A(a,b)关于x轴对称的点的坐标为(a,-b)。
2、关于y轴对称: A(a,b)关于y轴对称的点的坐标为(-a,b)。
3、关于原点对称: A(a,b)关于原点对称的点的坐标为(-a,-b)。
1、点M(2-,1)关于x轴对称的点的坐标是().A. (2-,1-)B. (2,1)C.(2,1-)D. (1,2-)2、平面直角坐标系中,与点(2,-3)关于原点中心对称的点是().A.(-3,2) B.(3,-2) C.(-2,3) D.(2,3)3、如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形OABC绕点O旋转180°,旋转后的图形为矩形OA1B1C1,那么点B1的坐标为( ).A. (2,1)B.(-2,l)C.(-2,-l)D.(2,-1)4、若点A(2,a)关于x轴的对称点是B(b,-3)则ab的值是 .5、在平面直角坐标系中,点A(1,2)关于y轴对称的点为点B(a,2),则a=.6、点A(1-a,5),B(3,b)关于y轴对称,则a+b=______.7、如果点(45)P-,和点()Q a b,关于y轴对称,则a的值为.考点4:考平移后点的坐标知识解析:1、将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));2、将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).1、在平面直角坐标系中,将点(-2,-3)向上平移3个单位,则平移后的点的坐标为_______.2、在平面直角坐标系中,点P(-1,2)向右平移3个单位长度后的坐标是()A.(2,2)B.(-4,2)C.(-1,5)D.(-1,-1)3、将点P(-2,1)先向左平移1个单位长度,再向上平移2个单位长度得到点P/,则点P/的坐标为。
4.将点A(-3,-2)先沿y轴向上平移5个单位,再沿x轴向左平移4个单位得到点A ,则点A'的坐标是 .5、已知正方形ABCD 的三个顶点坐标为A (2,1),B (5,1),D(2,4),现将该正方形向下平移3个单位长度,再向左平移4个单位长度,得到正方形A'B'C'D',则C ’点的坐标为( )A. (5,4)B. (5,1)C. (1,1)D. (-1,-1) 6、在平面直角坐标系中,已知线段AB 的两个端点分别是A ( 4 ,-1). B (1, 1) 将线段AB 平移后得到线段A 'B ',若点A '的坐标为 (-2 , 2 ) ,则点 B '的坐标为( )A . ( -5 , 4 )B . ( 4 , 3 ) C. ( -1 , -2 ) D .(-2,-1) 7、如图,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至11A B ,则a b +的值为( )A .2B .3C .4D .58、在平面直角坐标系中,已知点A (-4,0)、B (0,2),现将线段AB 向右平移,使A 与坐标原点O 重合,则B 平移后的坐标是 .9、以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是( )A (3,3)B (5,3)C (3,5)D (5,5)10、在平面直角坐标系中,□ABCD 的顶点A 、B 、C 的坐标分别是(0,0)、(3,0)、(4,2)则顶点D 的坐标为( )A .(7,2) B. (5,4) C.(1,2) D. (2,1) 11、如图所示,在平面直角坐标系中,ABCD 的顶点A ,B ,D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是( )A .(3,7)B .(5,3)C .(7,3)D .(8,2)考点5:点到直线的距离点P (x,y )到x 轴,y 轴的距离分别为|y|和|x|,到原点的距离22x y +1、点M (-6,5)到x 轴的距离是_____,到y 轴的距离是______.2、已知点P (x ,y )在第四象限,且│x │=3,│y │=5,则点P 的坐标是( ) A .(-3,5) B .(5,-3) C .(3,-5) D .(-5,3)3、已知点P (m ,n )到x 轴的距离为3,到y 轴的距离等于5,则点P 的坐标yO(01)B ,(20)A ,1(3)A b ,1(2)B a ,x是 。
4、已知点P 的坐标(2-a ,3a +6),且点P 到两坐标轴的距离相等,则点P 的坐标是 .考点6:平行于X 轴、Y 轴的直线的特点平行于x 轴的直线上点的纵坐标相同;平行于y 轴的直线上点的横坐标相同1、已知点A(1,2),AC ∥X 轴, AC=5,则点C 的坐标是 _____________.2、已知点A(1,2),AC ∥y 轴, AC=5,则点C 的坐标是 _____________.3、如果点A (),3a -,点B ()2,b 且AB x ()2,m (),6n -y 6、已知长方形ABCD 中,AB=5,BC=8,并且AB ∥x 轴,若点A 的坐标为(-2,4),则点C 的坐标为__________________________.考点7:角平分线的理解第一、三象限角平分线的点横纵坐标相同(y=x ); 第二、四象限角平分线的点横纵坐标互为相反数(x+y=0)1、若点M 在第一、三象限的角平分线上,且点M 到x 轴的距离为2,则点M 的坐标是( ) A .(2,2) B .(-2,-2) C .(2,2)或(-2,-2) D .(2,-2)或(-2,2)2、在平面直角坐标系内,已知点(1-2a ,a-2)在第三象限的角平分线上,则a = ,点的坐标为 。
3、当b=______时,点B(-3,|b-1|)在第二、四象限角平分线上.考点8:考特定条件下点的坐标1、若点P (x ,y )的坐标满足x +y =xy ,则称点P 为“和谐点”。
请写出一个“和谐点”的坐标,答: .2、如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标不变,纵坐标分别变为原来的12,则点A 的对应点的坐标是( ). A.(﹣4,3) B.(4,3) C.(﹣2,6) D.(﹣2,3)DCBAOy3、如图,如果所在的位置坐标为(-1,-2),所在的位置坐标为(2,-2),则所在位置坐标为 .4、如图,若在象棋盘上建立直角坐标系,使“帥”位于点(-1,-2),“馬”位于点(2,-2),则“兵”位于点( ).A.(-1,1)B.(-2,-1)C.(-3,1)D.(1,-2) 5、如图是一台雷达探测相关目标得到的结果,若记图中目标A 的位置为(•2,90°),则其余各目标的位置分别是多少考点9:面积的求法(割补法)1、已知:A(3,1),B(5,0),E(3,4),则△ABE 的面积为________.2、如图,在四边形ABCD 中,A 、B 、C 、D 的四个点的坐标分别为(0,2)(1,0)(6,2)(2,4),求四边形ABCD 的面积。
3、如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形士相 炮1234567-1o 123456-1-2xy CD A B(2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S =ABDC S 四边形, 若存在这样一点,求出点P 的坐标,若不存在,试说明理由.4、如图为风筝的图案.(1)若原点用字母O 表示,写出图中点A ,B ,C 的坐标. (2)试求(1)中风筝所覆盖的平面的面积.考点10:根据坐标或面积的特点求未知点的坐标1、在直角坐标系中,已知点A (-5,0),点B (3,0),△ABC 的面积为12,试确定点C 的坐标特点.2、在平面直角坐标系中,点A 的坐标为(11),,点B 的坐标为(111),,点C 到直线AB 的距离为4,且ABC △是直角三角形,则满足条件的点C 有 个.3、在平面直角坐标系中,O 是坐标原点,已知A 点的坐标为(1,1),•请你在坐标轴上找出点B ,使△AOB 为等腰三角形,则符合条件的点B 共有( ) A .6个 B .7个 C .8个 D .9个4、一个长方形在平面直角坐标系中三个顶点的坐标为(–1,–1)、(–1,2)、(3,–1),则x第四个顶点的坐标为( )A .(2,2)B .(3,2)C .(3,3)D .(2,3)5、在直角坐标系中,已知A (1,0)、B (-1,-2)、C (2,-2)三点坐标,若以 A 、B 、C 、D 为顶点的四边形是平行四边形,那么点D 的坐标可以是 .①(-2,0) ②(0,-4) ③(4,0) ④(1,-4)考点11:考有规律的点的坐标1、在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:A 4( , ),A 8( , ),A 12( , ); (2)写出点A 4n 的坐标(n 是正整数); (3)指出蚂蚁从点A 100到点A 101的移动方向.2、一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( ).O 1 A 1A 2A 3 A 4 A 5A 6A 7A 8 A 9A 10A 11 A 12xyOBB 1B 2B 3xyA A 1A 2A 3A .(4,O) B.(5,0) C .(0,5) D .(5,5)3、如图,已知A l (1,0)、A 2(1,1)、A 3(-1,1)、A 4(-1,-1)、A 5(2,-1)、….则点A 2007的坐标为________.4、将杨辉三角中的每一个数都换成分数 ,得到一个如图4所示的分数三角形,称莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数121.那么(9,2)表示的分数是 .5、如图,在平面直角坐标系中,按一定的规律将△OAB 逐次变换成△OA 1B 1,△OA 2B 2,△OA 3B 3等。